1
|
Hanief Abdurrahman B, Irmansyah I, Ahmad F. Electronic thygmonasty model in Mimosa pudicabiomimetic robot. BIOINSPIRATION & BIOMIMETICS 2022; 18:016001. [PMID: 36301693 DOI: 10.1088/1748-3190/ac9d7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Direct contact of random objects from the open environment to the panel surface of an electronic device may reduce the work efficiency and cause permanent damage. However, there is a possible way to solve this problem, notably by implementing an adaptive structure design inspired by plants. TheMimosa pudicaplant provides several interesting information on its adaptability. Various studies have been conducted on the electrical properties of its organs explaining the phytoactuator and phytosensor cells that function within it. We combined the use of sensors, actuators, and synthetic excitable tissue as the first robot model purposed to mimic the behavior of theM. pudicaplant. The Computer vision method was used to measure leaf angular movement and collected it as plant behavior data based on the mechanical stimulus experiment. The Robot structure has eight arms equipped with sensors, servo motors, and microcontrollers that are operated with two activation system models approach. The first model could imitate the stimulus process received by electronic circuits that generate action potential signals with a maximum voltage of 4.71-5.02 V and a minimum voltage of -5.33 to -3.45 V that propagated from node to node. The second model involves a trained artificial neural network model with a supervised learning pattern that provides 100% accuracy when choosing movement output based on the given combination. This robot imitates theM. pudica's intelligent sensing capabilities and its ability to change the structure shape based on the thygmonasty experiments data which could provide an overview of how plants process information and perform hazard avoidance actions efficiently. Future applications for the technology inspired by the plant's self-defense mechanisms are adaptive intelligent structures that can protect against harmful conditions, particle contamination, and adjusting panel structure to search for desired environmental parameters.
Collapse
Affiliation(s)
| | - Irmansyah Irmansyah
- Applied Physics Division, Department of Physics, IPB University, Bogor, Indonesia
| | - Faozan Ahmad
- Theoretical Physics Division, Department of Physics, IPB University, Bogor, Indonesia
| |
Collapse
|
2
|
Memory and habituation to harmful and non-harmful stimuli in a field population of the sensitive plant, Mimosa pudica. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMimosa pudica is a Neotropical legume that closes its leaves rapidly in response to touch stimulation, hypothetically as herbivory defence. Habituation to non-harmful stimuli and long-term memory of past events have been demonstrated in this species, the former with relatively heavy objects and the latter under laboratory conditions. This species should not habituate to harmful stimuli if leaf movement is a response to herbivore damage. We tested in Monteverde, Costa Rica, whether (1) memory occurs in wild plants, (2) whether habituation occurs under harmful stimuli: simulated herbivory, and (3) whether wild plants can habituate to light non-harmful stimuli. The degree of closing of the leaflets and time until reopening was measured in response to repeated harmful and non-harmful stimuli. The results showed habituation to repeated non-harmful very light stimuli and showed lack of habituation to simulated leaf damage. Wild plants also showed faster rehabituation to repeated non-harmful stimuli when they had been exposed 15 days previously, suggesting possible long-term memory. These results indicate that wild plants are capable of (1) distinguishing between harmful and non-harmful stimuli (only habituating to the latter), (2) memorizing previous events, and 3) habituating very light tactile stimuli commonly experienced in the field.
Collapse
|
3
|
Baluška F, Yokawa K. Anaesthetics and plants: from sensory systems to cognition-based adaptive behaviour. PROTOPLASMA 2021; 258:449-454. [PMID: 33462719 PMCID: PMC7907011 DOI: 10.1007/s00709-020-01594-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 05/02/2023]
Abstract
Plants are not only sensitive to exogenous anaesthetics, but they also produce multitudes of endogenous substances, especially when stressed, that often have anaesthetic and anelgesic properties when applied to both humans and animals. Moreover, plants rely on neurotransmitters and their receptors for cell-cell communication and integration in a similar fashion to the use of neural systems in animals and humans. Plants also use their plant-specific sensory systems and neurotransmitter-based communication, including long-distance action potentials, to manage stress via cognition-like plant-specific behaviour and adaptation.
Collapse
Affiliation(s)
| | - Ken Yokawa
- Faculty of Engineering, Kitami Institute of Technology, Hokkaido, 090-8597, Japan.
| |
Collapse
|
4
|
Kumar A, Memo M, Mastinu A. Plant behaviour: an evolutionary response to the environment? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:961-970. [PMID: 32557960 DOI: 10.1111/plb.13149] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 05/21/2023]
Abstract
Plants are not just passive living beings that exist in nature. They are complex and highly adaptable species that react sensitively to environmental forces/stimuli with movement, morphological changes and through the communication via volatile molecules. In a way, plants mimic some traits of animal and human behaviour; they compete for limited resources by gaining more area for more sunlight and spread their roots underground. Furthermore, in order to survive and thrive, they evolve and 'learn' to control various environmental stress factors in order to increase the yield of flowering, fertilization and germination processes. The concept of associating complex behaviour, such as intelligence, with plants is still a highly debatable topic among researchers worldwide. Recent studies have shown that plants are able to discriminate between positive and negative experiences and 'learn' from them. Some botanists have interpreted these behavioural data as a form of primitive cognitive processes. Others have evaluated these responses as biological automatisms of plants determined by adaptation to the environment and absence of intelligence. This review aims to explore adaptive behavioural aspects of various plant species distributed in different ecosystems by emphasizing their biological complexity and survival instincts.
Collapse
Affiliation(s)
- A Kumar
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - M Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - A Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Volana Randriamandimbisoa M, Manitra Nany Razafindralambo NA, Fakra D, Lucia Ravoajanahary D, Claude Gatina J, Jaffrezic-Renault N. Electrical response of plants to environmental stimuli: A short review and perspectives for meteorological applications. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Sun B, Chen Y, Xiao M, Zhou G, Ranjan S, Hou W, Zhu X, Zhao Y, Redfern SAT, Zhou YN. A Unified Capacitive-Coupled Memristive Model for the Nonpinched Current-Voltage Hysteresis Loop. NANO LETTERS 2019; 19:6461-6465. [PMID: 31434487 DOI: 10.1021/acs.nanolett.9b02683] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The concept of the memristor, a resistor with memory, was proposed by Chua in 1971 as the fourth basic element of electric circuitry. Despite a significant amount of effort devoted to the understanding of memristor theory, our understanding of the nonpinched current-voltage (I-V) hysteresis loop in memristors remains incomplete. Here we propose a physical model of a memristor, with a capacitor connected in parallel, which explains how the nonpinched I-V hysteresis behavior originates from the capacitive-coupled memristive effect. Our model replicates eight types of characteristic nonlinear I-V behavior, which explains all observed nonpinched I-V curves seen in experiments. Furthermore, a reversible transition from a nonpinched I-V hysteresis loop to an ideal pinched I-V hysteresis loop is found, which explains the experimental data obtained in C15H11O6-based devices when subjected to an external stimulus (e.g., voltage, moisture, or temperature). Our results provide the vital physics models and materials insights for elucidating the origins of nonpinched I-V hysteresis loops ascribed to capacitive-coupled memristive behavior.
Collapse
Affiliation(s)
- Bai Sun
- Department of Mechanics and Mechatronics Engineering, Centre for Advanced Materials Joining , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China) , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China) , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Ming Xiao
- Department of Mechanics and Mechatronics Engineering, Centre for Advanced Materials Joining , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Guangdong Zhou
- Scholl of Artificial Intelligence , Southwest University , Chongqing 400715 , China
| | - Shubham Ranjan
- Department of Electrical and Computer Engineering , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Wentao Hou
- Department of Mechanics and Mechatronics Engineering, Centre for Advanced Materials Joining , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Xiaoli Zhu
- Department of Electrical and Computer Engineering , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China) , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Simon A T Redfern
- Department of Earth Sciences , University of Cambridge , Downing Street , Cambridge CB2 3EQ , United Kingdom
| | - Y Norman Zhou
- Department of Mechanics and Mechatronics Engineering, Centre for Advanced Materials Joining , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
7
|
Volkov AG, Nyasani EK. Sunpatiens compact hot coral: memristors in flowers. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:222-227. [PMID: 32291036 DOI: 10.1071/fp16326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/07/2017] [Indexed: 06/11/2023]
Abstract
Leon Chua postulated the theory of a memristor - a resistor with memory - in 1971, and the first solid-state memristor was built in 2008. Memristors exist in vivo as components of plasma membranes in plants, fruits, roots and seeds. A memristor is a nonlinear element; its current-voltage characteristic is similar to that of a Lissajous pattern. Here, we found memristors in flowers. Electrostimulation by bipolar periodic sinusoidal or triangular waves of an androecium, a spur, petals and a pedicel in Sunpatiens flowers induces hysteresis loops with a pinched point at low frequencies between 0.1mHz and 1mHz. At high frequencies, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=U/R for ideal memristors because the amplitude of electrical current depends on capacitance of a flower's tissue and electrodes, frequency and direction of scanning. The discovery of memristors in Sunpatiens (Impatiens spp.) creates a new direction in the modelling and understanding of electrophysiological phenomena in flowers.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd, Huntsville, AL 35896, USA
| | - Eunice K Nyasani
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd, Huntsville, AL 35896, USA
| |
Collapse
|
8
|
Mathematical Models of Electrical Activity in Plants. J Membr Biol 2017; 250:407-423. [PMID: 28711950 DOI: 10.1007/s00232-017-9969-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Electrical activity plays an important role in plant life; in particular, electrical responses can participate in the reception of the action of stressors (local electrical responses and oscillations) and signal transduction into unstimulated parts of the plant (action potential, variation potential and system potential). Understanding the mechanisms of electrical responses and subsequent changes in physiological processes and the prediction of plant responses to stressors requires the elaboration of mathematical models of electrical activity in plant organisms. Our review describes approaches to the simulation of plant electrogenesis and summarizes current models of electrical activity in these organisms. It is shown that there are numerous models of the generation of electrical responses, which are based on various descriptions (from modifications of the classical Hodgkin-Huxley model to detailed models, which consider ion transporters, regulatory processes, buffers, etc.). A moderate number of works simulate the propagation of electrical signals using equivalent electrical circuits, systems of excitable elements with local electrical coupling and descriptions of chemical signal propagation. The transmission of signals from a plasma membrane to intracellular compartments (endoplasmic reticulum, vacuole) during the generation of electrical responses is much less modelled. Finally, only a few works simulate plant physiological changes that are connected with electrical responses or investigate the inverse problem: reconstruction of the type and parameters of stimuli through the analysis of electrical responses. In the conclusion of the review, we discuss future perspectives on the simulation of electrical activity in plants.
Collapse
|
9
|
Cyclic voltammetry of apple fruits: Memristors in vivo. Bioelectrochemistry 2016; 112:9-15. [DOI: 10.1016/j.bioelechem.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/25/2023]
|
10
|
Volkov AG, Nyasani EK, Tuckett C, Scott JM, Jackson MMZ, Greeman EA, Greenidge AS, Cohen DO, Volkova MI, Shtessel YB. Electrotonic potentials in Aloe vera L.: Effects of intercellular and external electrodes arrangement. Bioelectrochemistry 2016; 113:60-68. [PMID: 27756010 DOI: 10.1016/j.bioelechem.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023]
Abstract
Electrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we found that electrical networks in plant tissues have electrical differentiators. The amplitude of electrical responses decreases along a leaf and increases by decreasing the distance between polarizing Pt-electrodes. Intercellular Ag/AgCl electrodes inserted in a leaf and extracellular Ag/AgCl electrodes attached to the leaf surface were used to detect the electrotonic potential propagation along a leaf of Aloe vera. There is a difference in duration and amplitude of electrical potentials measured by electrodes inserted in a leaf and those attached to a leaf's surface. If the external reference electrode is located in the soil near the root, it changes the amplitude and duration of electrotonic potentials due to existence of additional resistance, capacitance, ion channels and ion pumps in the root. The information gained from this study can be used to elucidate extracellular and intercellular communication in the form of electrical signals within plants.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA.
| | - Eunice K Nyasani
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Clayton Tuckett
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Jessenia M Scott
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Mariah M Z Jackson
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Esther A Greeman
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Ariane S Greenidge
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Devin O Cohen
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Maia I Volkova
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Yuri B Shtessel
- Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
11
|
Musah RA, Lesiak AD, Maron MJ, Cody RB, Edwards D, Fowble KL, Dane AJ, Long MC. Mechanosensitivity below Ground: Touch-Sensitive Smell-Producing Roots in the Shy Plant Mimosa pudica. PLANT PHYSIOLOGY 2016; 170:1075-89. [PMID: 26661932 PMCID: PMC4734582 DOI: 10.1104/pp.15.01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/04/2015] [Indexed: 05/12/2023]
Abstract
The roots of the shy plant Mimosa pudica emit a cocktail of small organic and inorganic sulfur compounds and reactive intermediates into the environment, including SO2, methanesulfinic acid, pyruvic acid, lactic acid, ethanesulfinic acid, propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, phenothiazine, and thioformaldehyde, an elusive and highly unstable compound that, to our knowledge, has never before been reported to be emitted by a plant. When soil around the roots is dislodged or when seedling roots are touched, an odor is detected. The perceived odor corresponds to the emission of higher amounts of propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, and phenothiazine. The mechanosensitivity response is selective. Whereas touching the roots with soil or human skin resulted in odor detection, agitating the roots with other materials such as glass did not induce a similar response. Light and electron microscopy studies of the roots revealed the presence of microscopic sac-like root protuberances. Elemental analysis of these projections by energy-dispersive x-ray spectroscopy revealed them to contain higher levels of K(+) and Cl(-) compared with the surrounding tissue. Exposing the protuberances to stimuli that caused odor emission resulted in reductions in the levels of K(+) and Cl(-) in the touched area. The mechanistic implications of the variety of sulfur compounds observed vis-à-vis the pathways for their formation are discussed.
Collapse
Affiliation(s)
- Rabi A Musah
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| | - Ashton D Lesiak
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| | - Max J Maron
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| | - Robert B Cody
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| | - David Edwards
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| | - Kristen L Fowble
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| | - A John Dane
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| | - Michael C Long
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222 (R.A.M., A.D.L., M.J.M., K.L.F., M.C.L.); andJEOL USA, Inc., Peabody, Massachusetts 01960 (R.B.C., D.E., A.J.D.)
| |
Collapse
|
12
|
G. Volkov A, B. Shtessel Y. Propagation of electrotonic potentials in plants: Experimental study and mathematical modeling. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.3.358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Volkov AG, Nyasani EK, Tuckett C, Greeman EA, Markin VS. Electrophysiology of pumpkin seeds: Memristors in vivo. PLANT SIGNALING & BEHAVIOR 2016; 11:e1151600. [PMID: 26926652 PMCID: PMC4883829 DOI: 10.1080/15592324.2016.1151600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds.
Collapse
Affiliation(s)
| | - Eunice K Nyasani
- a Department of Chemistry , Oakwood University , Huntsville , AL , USA
| | - Clayton Tuckett
- a Department of Chemistry , Oakwood University , Huntsville , AL , USA
| | - Esther A Greeman
- a Department of Chemistry , Oakwood University , Huntsville , AL , USA
| | - Vladislav S Markin
- b Department of Neurology , University of Texas, Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
14
|
Volkov AG, Nyasani EK, Blockmon AL, Volkova MI. Memristors: Memory elements in potato tubers. PLANT SIGNALING & BEHAVIOR 2015; 10:e1071750. [PMID: 26237427 PMCID: PMC4883904 DOI: 10.1080/15592324.2015.1071750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
A memristor is a nonlinear element because its current-voltage characteristic is similar to that of a Lissajous pattern for nonlinear systems. This element was postulated recently and researchers are looking for it in different biosystems. We investigated electrical circuitry of red Irish potato tubers (Solanum tuberosum L.). The goal was to discover if potato tubers might have a new electrical component - a resistor with memory. The analysis was based on a cyclic current-voltage characteristic where the resistor with memory should manifest itself. We found that the electrostimulation by bipolar sinusoidal or triangle periodic waves induces electrical responses in the potato tubers with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in potato tubers. Our results demonstrate that a voltage gated K(+) channel in the excitable tissue of potato tubers has properties of a memristor. Uncoupler carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decreases the amplitude of electrical responses at low and high frequencies of bipolar periodic sinusoidal or triangle electrostimulating waves. The discovery of memristors in plants creates a new direction in the understanding of electrical phenomena in plants.
Collapse
Affiliation(s)
| | | | | | - Maya I Volkova
- Department of Chemistry; Oakwood University; Huntsville, AL USA
| |
Collapse
|