1
|
Živanović M, Selaković M, Pavić A, Selaković Ž, Šolaja B, Santibanez JF, Srdić-Rajić T. Unveiling the 4-aminoquinoline derivatives as potent agents against pancreatic ductal adenocarcinoma (PDAC) cell lines. Chem Biol Interact 2024; 404:111281. [PMID: 39428053 DOI: 10.1016/j.cbi.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Common antimalarials such as artemisinins, chloroquine and their derivatives also possess potent anti-inflamantory, antiviral and anticancer properties. In the search for new therapeutics to combat difficult-to-treat pancreatic carcinomas, we unveiled that 4-aminoquinoline derivatives, with significant antiplasmodial properties and a great safety profile in vivo, have remarkable anticancer activity against pancreatic ductal adenocarcinoma (PDAC) and considerable efficacy in the xenograft model in vivo. The aim of the present study was to further investigate anticancer properties of these compounds in a drug-repurposing manner. The compounds showed profound cytotoxic effects at nanomolar to low micromolar concentration in 2D cultured cells (in vitro) and in the zebrafish PDAC xenograft model (in vivo). A deeper insight into their mechanisms of cytotoxic action showed these compounds induce apoptosis while increasing reactive oxygen species levels along with autophagy inhibition. Additional investigation of the autophagy modulation proved that tested quinoline derivatives cause P62 and LC3-II accumulation in PDAC cells alongside lysosomal alkalinization. Further, in vivo toxicity studies in the zebrafish model showed low toxicity without developmental side effects of the investigated 4-aminoquinolines, while the applied compounds effectively inhibited tumor growth and prevented the metastasis of xenografted pancreatic cells. Taken together, these results highlight the 4-aminoquinolines as privileged structures that ought to be investigated further for potential application in pancreatic carcinoma treatment.
Collapse
Affiliation(s)
- Marija Živanović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia; Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Milica Selaković
- Innovative Centre of the Faculty of Chemistry in Belgrade, ltd., Studentski Trg 12-16, 11158, Belgrade, Serbia.
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Života Selaković
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11158, Belgrade, Serbia
| | - Bogdan Šolaja
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158, Belgrade, Serbia
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| |
Collapse
|
2
|
García-Chávez D, Domínguez-Martín E, Kawasaki L, Ongay-Larios L, Ruelas-Ramírez H, Mendoza-Martinez AE, Pardo JP, Funes S, Coria R. Prohibitins, Phb1 and Phb2, function as Atg8 receptors to support yeast mitophagy and also play a negative regulatory role in Atg32 processing. Autophagy 2024; 20:2478-2489. [PMID: 38964378 PMCID: PMC11572199 DOI: 10.1080/15548627.2024.2371717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The prohibitins Phb1 and Phb2 assemble at the mitochondrial inner membrane to form a multi-dimeric complex. These scaffold proteins are highly conserved in eukaryotic cells, from yeast to mammals, and have been implicated in a variety of mitochondrial functions including aging, proliferation, and degenerative and metabolic diseases. In mammals, PHB2 regulates PINK1-PRKN mediated mitophagy by interacting with lipidated MAP1LC3B/LC3B. Despite their high conservation, prohibitins have not been linked to mitophagy in budding yeasts. In this study, we demonstrate that both Phb1 and Phb2 are required to sustain mitophagy in Saccharomyces cerevisiae. Prohibitin-dependent mitophagy requires formation of the Phb1-Phb2 complex and a conserved AIM/LIR-like motif identified in both yeast prohibitins. Furthermore, both Phb1 and Phb2 interact and exhibit mitochondrial colocalization with Atg8. Interestingly, we detected a basal C terminus processing of the mitophagy receptor Atg32 that depends on the presence of the i-AAA Yme1. In the absence of prohibitins this processing is highly enhanced but reverted by the inactivation of the rhomboid protease Pcp1. Together our results revealed a novel role of yeast prohibitins in mitophagy through its interaction with Atg8 and regulating an Atg32 proteolytic event. Abbreviation: AIM/LIR: Atg8-family interacting motif/LC3-interacting region; ANOVA: analysis of variance; ATG/Atg: autophagy related; C terminus/C-terminal: carboxyl terminus/carboxyl-terminal; GFP: green fluorescent protein; HA: human influenza hemagglutinin; Idh1: isocitrate dehydrogenase 1; MAP1C3B/LC3B: microtubule associated protein 1 light chain 3 beta; mCh: mCherry; MIM: mitochondrial inner membrane; MOM: mitochondrial outer membrane; N starvation: nitrogen starvation; N terminus: amino terminus; PARL: presenilin associated rhomboid like; Pcp1: processing of cytochrome c peroxidase 1; PCR: polymerase chain reaction; PGAM5: PGAM family member 5 mitochondrial serine/threonine protein phosphatase; PHBs/Phb: prohibitins; PINK1: PTEN induced kinase 1; PMSF: phenylmethylsulfonyl fluoride; PRKN: parkin RBR E3 ubiquitin protein ligase; SD: synthetic defined medium; SDS: sodium dodecyl sulfate; SMD-N: synthetic defined medium lacking nitrogen; WB: western blot; WT: wild type; Yme1: yeast mitochondrial escape 1; YPD: yeast extract-peptone-dextrose medium; YPLac: yeast extract-peptone-lactate medium.
Collapse
Affiliation(s)
- Diana García-Chávez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| | - Eunice Domínguez-Martín
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura Kawasaki
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Mexico City, México
| | - Hilario Ruelas-Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Mexico City, México
| | | | - Juan P. Pardo
- Departamento de Bioquímica, Facultad de Medicina, Mexico City, México
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Mexico City, México
| | - Roberto Coria
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Mexico City, México
| |
Collapse
|
3
|
Maruyama T, Hama Y, Noda NN. Mechanisms of mitochondrial reorganization. J Biochem 2024; 175:167-178. [PMID: 38016932 DOI: 10.1093/jb/mvad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The cytoplasm of eukaryotes is dynamically zoned by membrane-bound and membraneless organelles. Cytoplasmic zoning allows various biochemical reactions to take place at the right time and place. Mitochondrion is a membrane-bound organelle that provides a zone for intracellular energy production and metabolism of lipids and iron. A key feature of mitochondria is their high dynamics: mitochondria constantly undergo fusion and fission, and excess or damaged mitochondria are selectively eliminated by mitophagy. Therefore, mitochondria are appropriate model systems to understand dynamic cytoplasmic zoning by membrane organelles. In this review, we summarize the molecular mechanisms of mitochondrial fusion and fission as well as mitophagy unveiled through studies using yeast and mammalian models.
Collapse
Affiliation(s)
- Tatsuro Maruyama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yutaro Hama
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
4
|
Abeliovich H. Mitophagy in yeast: known unknowns and unknown unknowns. Biochem J 2023; 480:1639-1657. [PMID: 37850532 PMCID: PMC10586778 DOI: 10.1042/bcj20230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Mitophagy, the autophagic breakdown of mitochondria, is observed in eukaryotic cells under various different physiological circumstances. These can be broadly categorized into two types: mitophagy related to quality control events and mitophagy induced during developmental transitions. Quality control mitophagy involves the lysosomal or vacuolar degradation of malfunctioning or superfluous mitochondria within lysosomes or vacuoles, and this is thought to serve as a vital maintenance function in respiring eukaryotic cells. It plays a crucial role in maintaining physiological balance, and its disruption has been associated with the progression of late-onset diseases. Developmentally induced mitophagy has been reported in the differentiation of metazoan tissues which undergo metabolic shifts upon developmental transitions, such as in the differentiation of red blood cells and muscle cells. Although the mechanistic studies of mitophagy in mammalian cells were initiated after the initial mechanistic findings in Saccharomyces cerevisiae, our current understanding of the physiological role of mitophagy in yeast remains more limited, despite the presence of better-defined assays and tools. In this review, I present my perspective on our present knowledge of mitophagy in yeast, focusing on physiological and mechanistic aspects. I aim to focus on areas where our understanding is still incomplete, such as the role of mitochondrial dynamics and the phenomenon of protein-level selectivity.
Collapse
Affiliation(s)
- Hagai Abeliovich
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, 1 Hankin St, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Kumar A, Waingankar TP, D'Silva P. Functional crosstalk between the TIM22 complex and YME1 machinery maintains mitochondrial proteostasis and integrity. J Cell Sci 2023; 136:286750. [PMID: 36601773 DOI: 10.1242/jcs.260060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
TIM22 pathway cargos are essential for sustaining mitochondrial homeostasis as an excess of these proteins leads to proteostatic stress and cell death. Yme1 is an inner membrane metalloprotease that regulates protein quality control with chaperone-like and proteolytic activities. Although the mitochondrial translocase and protease machinery are critical for organelle health, their functional association remains unexplored. The present study unravels a novel genetic connection between the TIM22 complex and YME1 machinery in Saccharomyces cerevisiae that is required for maintaining mitochondrial health. Our genetic analyses indicate that impairment in the TIM22 complex rescues the respiratory growth defects of cells without Yme1. Furthermore, Yme1 is essential for the stability of the TIM22 complex and regulates the proteostasis of TIM22 pathway substrates. Moreover, impairment in the TIM22 complex suppressed the mitochondrial structural and functional defects of Yme1-devoid cells. In summary, excessive levels of TIM22 pathway substrates could be one of the reasons for respiratory growth defects of cells lacking Yme1, and compromising the TIM22 complex can compensate for the imbalance in mitochondrial proteostasis caused by the loss of Yme1.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| | - Tejashree Pradip Waingankar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| |
Collapse
|
6
|
Camougrand N, Vigié P, Dompierre J, Massoni-Laporte A, Lasserre JP, Bhatia-Kiššová I. The Dep1 protein: A new regulator of mitophagy in yeast. Biochem Biophys Res Commun 2022; 635:218-226. [PMID: 36283334 DOI: 10.1016/j.bbrc.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria play a crucial role in most eukaryotic cells. Mitophagy is a process that controls their quality and quantity within the cells. The outer mitochondrial membrane protein, Atg32, serves as the mitophagic receptor. It interacts with the Atg11 protein to initiate mitophagy and with the Atg8 protein to ensure the engulfment of mitochondria into the autophagosomes for elimination. The Atg32 protein is regulated at the transcriptional level but also by posttranslational modifications. In this study, we described a new regulator of mitophagy, the protein Dep1, identified as a part of the Rpd3L histone deacetylase complex. We showed that the Dep1 protein is localized in the nucleus and associated with mitochondria. This protein is needed for mitophagy and to regulate the transcription and expression of the Atg32 protein. The absence of this protein affects the mitophagy process induced by either starvation for nitrogen or the stationary phase of growth.
Collapse
Affiliation(s)
- Nadine Camougrand
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France; Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France.
| | - Pierre Vigié
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France
| | - Jim Dompierre
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France; Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France
| | - Aurélie Massoni-Laporte
- CNRS, UMR5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France; Université de Bordeaux, UMR5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux cedex, France
| | - Jean Paul Lasserre
- INCIA - UMR 5287- CNRS, Université de Bordeaux, 146, rue Léo Saignat, 33076, Bordeaux cedex, France
| | - Ingrid Bhatia-Kiššová
- Comenius University, Faculty of Natural Sciences, Department of Biochemistry, Ilkovicova 6, 84215, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Kan KT, Nelson MG, Grant CM, Hubbard SJ, Lu H. Understanding the Role of Yeast Yme1 in Mitochondrial Function Using Biochemical and Proteomics Analyses. Int J Mol Sci 2022; 23:ijms232213694. [PMID: 36430179 PMCID: PMC9694332 DOI: 10.3390/ijms232213694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial i-AAA proteinase Yme1 is a multifunctional protein that plays important roles in maintaining mitochondrial protein homeostasis and regulating biogenesis and function of mitochondrial proteins. However, due to the complex interplay of mitochondria and the multifunctional nature of Yme1, how Yme1 affects mitochondrial function and protein homeostasis is still poorly understood. In this study, we investigated how YME1 deletion affects yeast Saccharomyces cerevisiae growth, chronological life span, mitochondrial protein homeostasis and function, with a focus on the mitochondrial oxidative phosphorylation (OXPHOS) complexes. Our results show that whilst the YME1 deleted cells grow poorly under respiratory conditions, they grow similar to wild-type yeast under fermentative conditions. However, the chronological life span is impaired, indicating that Yme1 plays a key role in longevity. Using highly enriched mitochondrial extract and proteomic analysis, we show that the abundances of many mitochondrial proteins are altered by YME1 deletion. Several components of the respiratory chain complexes II, III, IV and V were significantly decreased, suggesting that Yme1 plays an important role in maintaining the level and function of complexes II-V. This result was confirmed using blue native-PAGE and in-solution-based enzyme activity assays. Taken together, this study shows that Yme1 plays an important role in the chronological life span and mitochondrial protein homeostasis and has deciphered its function in maintaining the activity of mitochondrial OXPHOS complexes.
Collapse
Affiliation(s)
| | | | | | | | - Hui Lu
- Correspondence: ; Tel.: +44-161-2751553; Fax: +44-161-3065201
| |
Collapse
|
8
|
Fu W, Cao X, An T, Zhao H, Zhang J, Li D, Jin X, Liu B. Genome-wide identification of resistance genes and transcriptome regulation in yeast to accommodate ammonium toxicity. BMC Genomics 2022; 23:514. [PMID: 35840887 PMCID: PMC9287935 DOI: 10.1186/s12864-022-08742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Ammonium is an important raw material for biomolecules and life activities, and the toxicity of ammonium is also an important ecological and agricultural issue. Ammonium toxicity in yeast has only recently been discovered, and information on its mechanism is limited. In recent years, environmental pollution caused by nitrogen-containing wastewater has been increasing. In addition, the use of yeast in bioreactors to produce nitrogen-containing compounds has been developed. Therefore, research on resistance mechanisms that allow yeast to grow under conditions of high concentrations of ammonium has become more and more important. Results To further understand the resistance mechanism of yeast to grow under high concentration of ammonium, we used NH4Cl to screen a yeast non-essential gene-deletion library. We identified 61 NH4Cl-sensitive deletion mutants from approximately 4200 mutants in the library, then 34 of them were confirmed by drop test analysis. Enrichment analysis of these 34 genes showed that biosynthesis metabolism, mitophagy, MAPK signaling, and other pathways may play important roles in NH4Cl resistance. Transcriptome analysis under NH4Cl stress revealed 451 significantly upregulated genes and 835 significantly downregulated genes. The genes are mainly enriched in: nitrogen compound metabolic process, cell wall, MAPK signaling pathway, mitophagy, and glycine, serine and threonine metabolism. Conclusions Our results present a broad view of biological pathways involved in the response to NH4Cl stress, and thereby advance our understanding of the resistance genes and cellular transcriptional regulation under high concentration of ammonium. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08742-y.
Collapse
Affiliation(s)
- Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China. .,Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90, Goteborg, Sweden. .,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, SE-413 90, Goteborg, Sweden.
| |
Collapse
|
9
|
Schuster R, Okamoto K. An overview of the molecular mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 2022; 1866:130203. [PMID: 35842014 DOI: 10.1016/j.bbagen.2022.130203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Autophagy-dependent selective degradation of excess or damaged mitochondria, termed mitophagy, is a tightly regulated process necessary for mitochondrial quality and quantity control. Mitochondria are highly dynamic and major sites for vital cellular processes such as ATP and iron‑sulfur cluster biogenesis. Due to their pivotal roles for immunity, apoptosis, and aging, the maintenance of mitochondrial function is of utmost importance for cellular homeostasis. In yeast, mitophagy is mediated by the receptor protein Atg32 that is localized to the outer mitochondrial membrane. Upon mitophagy induction, Atg32 expression is transcriptionally upregulated, which leads to its accumulation on the mitochondrial surface and to recruitment of the autophagic machinery via its direct interaction with Atg11 and Atg8. Importantly, post-translational modifications such as phosphorylation further fine-tune the mitophagic response. This review summarizes the current knowledge about mitophagy in yeast and its connection with mitochondrial dynamics and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ramona Schuster
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Vega M, Castillo D, de Cubas L, Wang Y, Huang Y, Hidalgo E, Cabrera M. Antagonistic effects of mitochondrial matrix and intermembrane space proteases on yeast aging. BMC Biol 2022; 20:160. [PMID: 35820914 PMCID: PMC9277893 DOI: 10.1186/s12915-022-01352-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Background In many organisms, aging is characterized by a loss of mitochondrial homeostasis. Multiple factors such as respiratory metabolism, mitochondrial fusion/fission, or mitophagy have been linked to cell longevity, but the exact impact of each one on the aging process is still unclear. Results Using the deletion mutant collection of the fission yeast Schizosaccharomyces pombe, we have developed a genome-wide screening for mutants with altered chronological lifespan. We have identified four mutants associated with proteolysis at the mitochondria that exhibit opposite effects on longevity. The analysis of the respiratory activity of these mutants revealed a positive correlation between increased respiration rate and prolonged lifespan. We also found that the phenotype of the long-lived protease mutants could not be explained by impaired mitochondrial fusion/fission activities, but it was dependent on mitophagy induction. The anti-aging role of mitophagy was supported by the effect of a mutant defective in degradation of mitochondria, which shortened lifespan of the long-lived mutants. Conclusions Our characterization of the mitochondrial protease mutants demonstrates that mitophagy sustains the lifespan extension of long-lived mutants displaying a higher respiration potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01352-w.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain. .,Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
11
|
Cao X, An T, Fu W, Zhang J, Zhao H, Li D, Jin X, Liu B. Genome-Wide Identification of Cellular Pathways and Key Genes That Respond to Sodium Bicarbonate Stress in Saccharomyces cerevisiae. Front Microbiol 2022; 13:831973. [PMID: 35495664 PMCID: PMC9042421 DOI: 10.3389/fmicb.2022.831973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Sodium bicarbonate (NaHCO3) is an important inorganic salt. It is not only widely used in industrial production and daily life, but is also the main stress in alkaline saline soil. NaHCO3 has a strong ability to inhibit the growth of fungi in both natural environment and daily application. However, the mechanism by which fungi respond to NaHCO3 stress is not fully understood. To further clarify the toxic mechanisms of NaHCO3 stress and identify the specific cellular genes and pathways involved in NaHCO3 resistance, we performed genome-wide screening with NaHCO3 using a Saccharomyces cerevisiae deletion mutant library. A total of 33 deletion mutants with NaHCO3 sensitivity were identified. Compared with wild-type strains, these mutants had significant growth defects in the medium containing NaHCO3. Bioinformatics analysis found that the corresponding genes of these mutants are mainly enriched in the cell cycle, mitophagy, cell wall integrity, and signaling pathways. Further study using transcriptomic analysis showed that 309 upregulated and 233 downregulated genes were only responded to NaHCO3 stress, when compared with yeast transcriptomic data under alkaline and saline stress. Upregulated genes were mainly concentrated in amino acid metabolism, steroid biosynthesis, and cell wall, while downregulated genes were enriched in various cellular metabolisms. In summary, we have identified the cellular pathways and key genes that respond to NaHCO3 stress in the whole genome, providing resource and direction for understanding NaHCO3 toxicity and cellular resistance mechanisms.
Collapse
Affiliation(s)
- Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
13
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
14
|
Innokentev A, Kanki T. Mitophagy in Yeast: Molecular Mechanism and Regulation. Cells 2021; 10:cells10123569. [PMID: 34944077 PMCID: PMC8700587 DOI: 10.3390/cells10123569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Mitophagy is a type of autophagy that selectively degrades mitochondria. Mitochondria, known as the “powerhouse of the cell”, supply the majority of the energy required by cells. During energy production, mitochondria produce reactive oxygen species (ROS) as byproducts. The ROS damage mitochondria, and the damaged mitochondria further produce mitochondrial ROS. The increased mitochondrial ROS damage cellular components, including mitochondria themselves, and leads to diverse pathologies. Accordingly, it is crucial to eliminate excessive or damaged mitochondria to maintain mitochondrial homeostasis, in which mitophagy is believed to play a major role. Recently, the molecular mechanism and physiological role of mitophagy have been vigorously studied in yeast and mammalian cells. In yeast, Atg32 and Atg43, mitochondrial outer membrane proteins, were identified as mitophagy receptors in budding yeast and fission yeast, respectively. Here we summarize the molecular mechanisms of mitophagy in yeast, as revealed by the analysis of Atg32 and Atg43, and review recent progress in our understanding of mitophagy induction and regulation in yeast.
Collapse
|
15
|
Bhatia-Kissova I, Camougrand N. Mitophagy in Yeast: Decades of Research. Cells 2021; 10:3541. [PMID: 34944049 PMCID: PMC8700663 DOI: 10.3390/cells10123541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, is one of the most important mechanisms of mitochondrial quality control, and its proper functioning is essential for cellular homeostasis. In this review, we describe the most important milestones achieved during almost 2 decades of research on yeasts, which shed light on the molecular mechanisms, regulation, and role of the Atg32 receptor in this process. We analyze the role of ROS in mitophagy and discuss the physiological roles of mitophagy in unicellular organisms, such as yeast; these roles are very different from those in mammals. Additionally, we discuss some of the different tools available for studying mitophagy.
Collapse
Affiliation(s)
- Ingrid Bhatia-Kissova
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia;
| | - Nadine Camougrand
- CNRS, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, UMR 5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
16
|
Mitochondrial Phospholipid Homeostasis Is Regulated by the i-AAA Protease PaIAP and Affects Organismic Aging. Cells 2021; 10:cells10102775. [PMID: 34685755 PMCID: PMC8534651 DOI: 10.3390/cells10102775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.
Collapse
|
17
|
Huang YJ, Klionsky DJ. Yeast mitophagy: Unanswered questions. Biochim Biophys Acta Gen Subj 2021; 1865:129932. [PMID: 34022298 PMCID: PMC8205991 DOI: 10.1016/j.bbagen.2021.129932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023]
Abstract
Superfluous and damaged mitochondria need to be efficiently repaired or removed. Mitophagy is a selective type of autophagy that can engulf a portion of mitochondria within a double-membrane structure, called a mitophagosome, and deliver it to the vacuole for degradation. Mitophagy has significant physiological functions from yeast to human, and recent advances in yeast mitophagy shed light on the molecular mechanisms of mitophagy, especially the regulation of mitophagy induction. This review summarizes our current knowledge about yeast mitophagy and considers several unsolved questions, with a particular focus on Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yuxiang J Huang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Common Principles and Specific Mechanisms of Mitophagy from Yeast to Humans. Int J Mol Sci 2021; 22:ijms22094363. [PMID: 33922020 PMCID: PMC8122514 DOI: 10.3390/ijms22094363] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double membrane-bound organelles in eukaryotic cells essential to a variety of cellular functions including energy conversion and ATP production, iron-sulfur biogenesis, lipid and amino acid metabolism, and regulating apoptosis and stress responses. Mitochondrial dysfunction is mechanistically linked to several neurodegenerative diseases, cancer, and ageing. Excessive and dysfunctional/damaged mitochondria are degraded by selective autophagic pathways known as mitophagy. Both budding yeast and mammals use the well-conserved machinery of core autophagy-related genes (ATGs) to execute and regulate mitophagy. In mammalian cells, the PINK1-PARKIN mitophagy pathway is a well-studied pathway that senses dysfunctional mitochondria and marks them for degradation in the lysosome. PINK1-PARKIN mediated mitophagy relies on ubiquitin-binding mitophagy adaptors that are non-ATG proteins. Loss-of-function mutations in PINK1 and PARKIN are linked to Parkinson´s disease (PD) in humans, and defective mitophagy is proposed to be a main pathomechanism. Despite the common view that yeast cells lack PINK1- and PARKIN-homologs and that mitophagy in yeast is solely regulated by receptor-mediated mitophagy, some studies suggest that a ubiquitination-dependent mitophagy pathway also exists. Here, we will discuss shared mechanisms between mammals and yeast, how mitophagy in the latter is regulated in a ubiquitin-dependent and -independent manner, and why these pathways are essential for yeast cell survival and fitness under various physiological stress conditions.
Collapse
|
19
|
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell 2021; 56:881-905. [PMID: 33662258 DOI: 10.1016/j.devcel.2021.02.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Timothy Wai
- Institut Pasteur CNRS UMR 3691, 25-28 Rue du Docteur Roux, Paris, France.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
20
|
Liu Y, Okamoto K. Regulatory mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 2021; 1865:129858. [PMID: 33545228 DOI: 10.1016/j.bbagen.2021.129858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic organelles functioning in diverse reactions and processes such as energy metabolism, apoptosis, innate immunity, and aging, whose quality and quantity control is critical for cell homeostasis. Mitochondria-specific autophagy, termed mitophagy, is an evolutionarily conserved process that selectively degrades mitochondria via autophagy, thereby contributing to mitochondrial quality and quantity control. In the budding yeast Saccharomyces cerevisiae, the single-pass membrane protein Atg32 accumulates on the surface of mitochondria and recruit the autophagy machinery to initiate mitophagy. This catabolic process is elaborately regulated through transcriptional induction and post-translational modifications of Atg32. Notably, other factors acting in manifold pathways including protein N-terminal acetylation, phospholipid methylation, stress signaling, and endoplasmic reticulum-localized protein dephosphorylation and membrane protein insertion are also linked to mitophagy. Here we review recent discoveries of molecules regulating mitophagy in yeast.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
21
|
Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J 2021; 40:e104705. [PMID: 33438778 PMCID: PMC7849173 DOI: 10.15252/embj.2020104705] [Citation(s) in RCA: 810] [Impact Index Per Article: 202.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy-mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady-state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Koji Yamano
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Miyuki Sato
- Laboratory of Molecular Membrane BiologyInstitute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Noriyuki Matsuda
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Koji Okamoto
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
22
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
23
|
Camougrand N, Vigié P, Gonzalez C, Manon S, Bhatia-Kiššová I. The yeast mitophagy receptor Atg32 is ubiquitinated and degraded by the proteasome. PLoS One 2020; 15:e0241576. [PMID: 33362225 PMCID: PMC7757876 DOI: 10.1371/journal.pone.0241576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Mitophagy, the process that degrades mitochondria selectively through autophagy, is involved in the quality control of mitochondria in cells grown under respiratory conditions. In yeast, the presence of the Atg32 protein on the outer mitochondrial membrane allows for the recognition and targeting of superfluous or damaged mitochondria for degradation. Post-translational modifications such as phosphorylation are crucial for the execution of mitophagy. In our study we monitor the stability of Atg32 protein in the yeast S. cerevisiae and show that Atg32 is degraded under normal growth conditions, upon starvation or rapamycin treatment. The Atg32 turnover can be prevented by inhibition of the proteasome activity, suggesting that Atg32 is also ubiquitinated. Mass spectrometry analysis of purified Atg32 protein revealed that at least lysine residue in position 282 is ubiquitinated. Interestingly, the replacement of lysine 282 with alanine impaired Atg32 degradation only partially in the course of cell growth, suggesting that additional lysine residues on Atg32 might also be ubiquitinated. Our results provide the foundation to further elucidate the physiological significance of Atg32 turnover and the interplay between mitophagy and the proteasome.
Collapse
Affiliation(s)
- Nadine Camougrand
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
- * E-mail:
| | - Pierre Vigié
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Cécile Gonzalez
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Stéphen Manon
- CNRS and Université de Bordeaux, IBGC, UMR5095, Bordeaux, France
| | - Ingrid Bhatia-Kiššová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
24
|
Margolis HK, Katzenell S, Leary KA, Ragusa MJ. The Third Coiled Coil Domain of Atg11 Is Required for Shaping Mitophagy Initiation Sites. J Mol Biol 2020; 432:5752-5764. [PMID: 32896530 DOI: 10.1016/j.jmb.2020.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Selective autophagy is the capture of specific cytosolic contents in double-membrane vesicles that subsequently fuse with the vacuole or lysosome, thereby delivering cargo for degradation. Selective autophagy receptors (SARs) mark the cargo for degradation and, in yeast, recruit Atg11, the scaffolding protein for selective autophagy initiation. The mitochondrial protein Atg32 is the yeast SAR that mediates mitophagy, the selective autophagic capture of mitochondria. Atg11-Atg32 interactions concentrate Atg32 into puncta that are thought to represent sites of mitophagy initiation. However, it is unclear how Atg11 concentrates Atg32 to generate mitophagy initiation sites. We show here that the coiled coil 3 (CC3) domain of Atg11 is required for concentrating Atg32 into puncta. We determined the structure of the majority of the CC3, demonstrating that the CC3 forms a parallel homodimer whose dimer interface is formed by a small number of hydrophobic residues. We further show that the CC3 interface is not required for Atg11 dimerization but is required for shaping Atg32 into functional mitophagy initiation sites and for delivery of mitochondria to the vacuole. Our findings suggest that Atg11 self-interactions help concentrate SARs as a necessary precondition for cargo capture.
Collapse
Affiliation(s)
| | - Sarah Katzenell
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Kelsie A Leary
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA; Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
25
|
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Front Cell Dev Biol 2020; 8:467. [PMID: 32671064 PMCID: PMC7326955 DOI: 10.3389/fcell.2020.00467] [Citation(s) in RCA: 381] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are highly plastic and dynamic organelles that have graded responses to the changing cellular, environmental, and developmental cues. Mitochondria undergo constant mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy, which coordinately control mitochondrial morphology, quantity, quality, turnover, and inheritance. Mitophagy is a cellular process that selectively removes the aged and damaged mitochondria via the specific sequestration and engulfment of mitochondria for subsequent lysosomal degradation. It plays a pivotal role in reinstating cellular homeostasis in normal physiology and conditions of stress. Damaged mitochondria may either instigate innate immunity through the overproduction of ROS or the release of mtDNA, or trigger cell death through the release of cytochrome c and other apoptogenic factors when mitochondria damage is beyond repair. Distinct molecular machineries and signaling pathways are found to regulate these mitochondrial dynamics and behaviors. It is less clear how mitochondrial behaviors are coordinated at molecular levels. BCL2 family proteins interact within family members to regulate mitochondrial outer membrane permeabilization and apoptosis. They were also described as global regulators of mitochondrial homeostasis and mitochondrial fate through their interaction with distinct partners including Drp1, mitofusins, PGAM5, and even LC3 that involved mitochondrial dynamics and behaviors. In this review, we summarize recent findings on molecular pathways governing mitophagy and its coordination with other mitochondrial behaviors, which together determine cellular fate.
Collapse
Affiliation(s)
- Kaili Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhui Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Oliver Kepp
- Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, UMR 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
26
|
DNA methyltransferase implicated in the recovery of conidiation, through successive plant passages, in phenotypically degenerated Metarhizium. Appl Microbiol Biotechnol 2020; 104:5371-5383. [PMID: 32318770 DOI: 10.1007/s00253-020-10628-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Metarhizium robertsii is a fungus with two lifestyles; it is a plant root symbiont and an insect pathogen. A spontaneously phenotypically degenerated strain of M. robertsii strain ARSEF 2575 (M. robertsii lc-2575; lc = low conidiation) showed a reduction in conidiation and fungal virulence after successive subculturing on agar medium. In order to recover conidiation, we experimentally passaged M. robertsii lc-2575 through plant (soldier bean and switchgrass) root or insect (Galleria mellonella) larvae. After five passages, the resultant strains had significantly increased conidial yields on agar and increased virulence in insect bioassays. Concomitantly, DNA methyltransferase, MrDIM-2 expression was downregulated in BR5 (a strain after 5 bean root passages) and isolates after switchgrass and insect passages. Bisulfite sequencing showed little difference in overall genomic DNA methylation levels (~ 0.37%) between M. robertsii lc-2575 and BR5. However, a finer comparison of the different methylated regions (DMRs) showed that DMRs of BR5 were more abundant in the intergenic regions (69.32%) compared with that of M. robertsii lc-2575 (33.33%). The addition of DNA methyltransferase inhibitor, 5-azacytidine, to agar supported the role of DNA methyltransferases and resulted in an increase in conidiation of M. robertsii lc-2575. Differential gene expression was observed in selected DMRs in BR5 when compared with M. robertsii lc-2575. Here we implicated epigenetic regulation in the recovery of conidiation through the effects of DNA methyltransferase and that plant passage could be used as a method to recover fungal conidiation and virulence in a phenotypically degenerated M. robertsii. KEY POINTS: • Passage of Metarhizium through plant root or insect results in increased conidiation. • DNA methyltransferase is downregulated after host passage. • Bisulfite sequencing identified potentially methylated genes involved in conidiation.
Collapse
|
27
|
Chen G, Kroemer G, Kepp O. Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Front Cell Dev Biol 2020; 8:200. [PMID: 32274386 PMCID: PMC7113588 DOI: 10.3389/fcell.2020.00200] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction constitutes one of the hallmarks of aging and is characterized by irregular mitochondrial morphology, insufficient ATP production, accumulation of mitochondrial DNA (mtDNA) mutations, increased production of mitochondrial reactive oxygen species (ROS) and the consequent oxidative damage to nucleic acids, proteins and lipids. Mitophagy, a mitochondrial quality control mechanism enabling the degradation of damaged and superfluous mitochondria, prevents such detrimental effects and reinstates cellular homeostasis in response to stress. To date, there is increasing evidence that mitophagy is significantly impaired in several human pathologies including aging and age-related diseases such as neurodegenerative disorders, cardiovascular pathologies and cancer. Therapeutic interventions aiming at the induction of mitophagy may have the potency to ameliorate these dysfunctions. In this review, we summarize recent findings on mechanisms controlling mitophagy and its role in aging and the development of human pathologies.
Collapse
Affiliation(s)
- Guo Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR 1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, UMR 1138, Centre de Recherche des Cordeliers, Paris, France
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Sorbonne Université, Paris, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| |
Collapse
|
28
|
Phosphorylation of mitochondrial matrix proteins regulates their selective mitophagic degradation. Proc Natl Acad Sci U S A 2019; 116:20517-20527. [PMID: 31548421 DOI: 10.1073/pnas.1901759116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitophagy is an important quality-control mechanism in eukaryotic cells, and defects in mitophagy correlate with aging phenomena and neurodegenerative disorders. It is known that different mitochondrial matrix proteins undergo mitophagy with very different rates but, to date, the mechanism underlying this selectivity at the individual protein level has remained obscure. We now present evidence indicating that protein phosphorylation within the mitochondrial matrix plays a mechanistic role in regulating selective mitophagic degradation in yeast via involvement of the Aup1 mitochondrial protein phosphatase, as well as 2 known matrix-localized protein kinases, Pkp1 and Pkp2. By focusing on a specific matrix phosphoprotein reporter, we also demonstrate that phospho-mimetic and nonphosphorylatable point mutations at known phosphosites in the reporter increased or decreased its tendency to undergo mitophagy. Finally, we show that phosphorylation of the reporter protein is dynamically regulated during mitophagy in an Aup1-dependent manner. Our results indicate that structural determinants on a mitochondrial matrix protein can govern its mitophagic fate, and that protein phosphorylation regulates these determinants.
Collapse
|
29
|
Cui L, Zhao H, Yin Y, Liang C, Mao X, Liu Y, Yu Q, Li M. Function of Atg11 in non-selective autophagy and selective autophagy of Candida albicans. Biochem Biophys Res Commun 2019; 516:1152-1158. [PMID: 31284951 DOI: 10.1016/j.bbrc.2019.06.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Candida albicans is an important opportunistic pathogenic fungus in the human body. It is a common microbe inhabiting on the mucosa surfaces of healthy individuals, but may cause infections when the host immune system is weak. Autophagy is a "self-eating" process in eukaryotes, which can recover and utilize damaged organelles and misfolded proteins. Here we investigated the role of the autophagy-related protein Atg11 in C. albicans. Deletion of ATG11 led to the defect in growth under the nitrogen starvation condition. Western blotting and GFP localization further revealed that the transport and degradation of Atg8 was blocked in the atg11Δ/Δ mutant under both the nitrogen starvation and hypha-inducing conditions. Moreover, degradation of both Lap41 (the indicator of the cytoplasm-to-vacuole pathway) and Csp37 (the indicator of mitophagy) was also thoroughly suppressed in this mutant under nitrogen starvation. These results indicated that Atg11 plays an essential role in both non-selective and selective autophagy in C. albicans.
Collapse
Affiliation(s)
- Lifang Cui
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - He Zhao
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yujun Yin
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chao Liang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiaolong Mao
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yingzheng Liu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
30
|
Abstract
Mitochondria are metabolic hubs that use multiple proteases to maintain proteostasis and to preserve their overall quality. A decline of mitochondrial proteolysis promotes cellular stress and may contribute to the aging process. Mitochondrial proteases have also emerged as tightly regulated enzymes required to support the remarkable mitochondrial plasticity necessary for metabolic adaptation in a number of physiological scenarios. Indeed, the mutation and dysfunction of several mitochondrial proteases can cause specific human diseases with severe metabolic phenotypes. Here, we present an overview of the proteolytic regulation of key mitochondrial functions such as respiration, lipid biosynthesis, and mitochondrial dynamics, all of which are required for metabolic control. We also pay attention to how mitochondrial proteases are acutely regulated in response to cellular stressors or changes in growth conditions, a greater understanding of which may one day uncover their therapeutic potential.
Collapse
|
31
|
|
32
|
AAA Proteases: Guardians of Mitochondrial Function and Homeostasis. Cells 2018; 7:cells7100163. [PMID: 30314276 PMCID: PMC6210556 DOI: 10.3390/cells7100163] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are dynamic, semi-autonomous organelles that execute numerous life-sustaining tasks in eukaryotic cells. Functioning of mitochondria depends on the adequate action of versatile proteinaceous machineries. Fine-tuning of mitochondrial activity in response to cellular needs involves continuous remodeling of organellar proteome. This process not only includes modulation of various biogenetic pathways, but also the removal of superfluous proteins by adenosine triphosphate (ATP)-driven proteolytic machineries. Accordingly, all mitochondrial sub-compartments are under persistent surveillance of ATP-dependent proteases. Particularly important are highly conserved two inner mitochondrial membrane-bound metalloproteases known as m-AAA and i-AAA (ATPases associated with diverse cellular activities), whose mis-functioning may lead to impaired organellar function and consequently to development of severe diseases. Herein, we discuss the current knowledge of yeast, mammalian, and plant AAA proteases and their implications in mitochondrial function and homeostasis maintenance.
Collapse
|
33
|
Xia X, Katzenell S, Reinhart EF, Bauer KM, Pellegrini M, Ragusa MJ. A pseudo-receiver domain in Atg32 is required for mitophagy. Autophagy 2018; 14:1620-1628. [PMID: 29909755 DOI: 10.1080/15548627.2018.1472838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Mitochondria are targeted for degradation by mitophagy, a selective form of autophagy. In Saccharomyces cerevisiae, mitophagy is dependent on the autophagy receptor, Atg32, an outer mitochondrial membrane protein. Once activated, Atg32 recruits the autophagy machinery to mitochondria, facilitating mitochondrial capture in phagophores, the precursors to autophagosomes. However, the mechanism of Atg32 activation remains poorly understood. To investigate this crucial step in mitophagy regulation, we examined the structure of Atg32. We have identified a structured domain in Atg32 that is essential for the initiation of mitophagy, as it is required for the proteolysis of the C-terminal domain of Atg32 and the subsequent recruitment of Atg11. The solution structure of this domain was determined by NMR spectroscopy, revealing that Atg32 contains a previously undescribed pseudo-receiver (PsR) domain. Our data suggests that the PsR domain of Atg32 regulates Atg32 activation and the initiation of mitophagy. ABBREVIATIONS AIM: Atg8-interacting motif; GFP: green fluorescent protein; LIR: LC3-interacting region; NMR: nuclear magnetic resonance; NOESY: nuclear Overhauser effect spectroscopy; PDB: protein data bank; PsR: pseudo-receiver; RMSD: root-mean-square deviation.
Collapse
Affiliation(s)
- Xue Xia
- a Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA
| | - Sarah Katzenell
- b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| | - Erin F Reinhart
- b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| | - Katherine M Bauer
- a Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA
| | - Maria Pellegrini
- b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| | - Michael J Ragusa
- a Department of Biochemistry & Cell Biology , Geisel School of Medicine at Dartmouth , Hanover , NH , USA.,b Department of Chemistry , Dartmouth College , Hanover , NH , USA
| |
Collapse
|
34
|
Lahiri V, Klionsky DJ. Functional impairment in RHOT1/Miro1 degradation and mitophagy is a shared feature in familial and sporadic Parkinson disease. Autophagy 2018; 13:1259-1261. [PMID: 28598233 DOI: 10.1080/15548627.2017.1327512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Mitophagy is a conserved and highly regulated process of selective degradation crucial in maintaining normal cellular physiology. Genetic defects and cellular aberrations affecting mitophagy have been associated with the development of Parkinson disease. In their recently published article (highlighted in a punctum in this issue of the journal) Hsieh et al. present a putative mitophagy marker, which serves as a mechanistic link between sporadic and familial Parkinson disease.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- a Life Sciences Institute , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
35
|
Broda M, Millar AH, Van Aken O. Mitophagy: A Mechanism for Plant Growth and Survival. TRENDS IN PLANT SCIENCE 2018; 23:434-450. [PMID: 29576328 DOI: 10.1016/j.tplants.2018.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 05/17/2023]
Abstract
Mitophagy is a conserved cellular process that is important for autophagic removal of damaged mitochondria to maintain a healthy mitochondrial population. Mitophagy also appears to occur in plants and has roles in development, stress response, senescence, and programmed cell death. However, many of the genes that control mitophagy in yeast and animal cells are absent from plants, and no plant proteins marking defunct mitochondria for autophagic degradation are yet known. New insights implicate general autophagy-related proteins in mitophagy, affecting the senescence of plant tissues. Mitophagy control and its importance for energy metabolism, survival, signaling, and cell death in plants are discussed. Furthermore, we suggest mitochondrial membrane proteins containing ATG8-interacting motifs, which might serve as mitophagy receptor proteins in plant mitochondria.
Collapse
Affiliation(s)
- Martyna Broda
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - A Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| |
Collapse
|
36
|
Puchades C, Rampello AJ, Shin M, Giuliano CJ, Wiseman RL, Glynn SE, Lander GC. Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science 2018; 358:358/6363/eaao0464. [PMID: 29097521 DOI: 10.1126/science.aao0464] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
We present an atomic model of a substrate-bound inner mitochondrial membrane AAA+ quality control protease in yeast, YME1. Our ~3.4-angstrom cryo-electron microscopy structure reveals how the adenosine triphosphatases (ATPases) form a closed spiral staircase encircling an unfolded substrate, directing it toward the flat, symmetric protease ring. Three coexisting nucleotide states allosterically induce distinct positioning of tyrosines in the central channel, resulting in substrate engagement and translocation to the negatively charged proteolytic chamber. This tight coordination by a network of conserved residues defines a sequential, around-the-ring adenosine triphosphate hydrolysis cycle that results in stepwise substrate translocation. A hingelike linker accommodates the large-scale nucleotide-driven motions of the ATPase spiral relative to the planar proteolytic base. The translocation mechanism is likely conserved for other AAA+ ATPases.
Collapse
Affiliation(s)
- Cristina Puchades
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute HZ 175, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anthony J Rampello
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Mia Shin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute HZ 175, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher J Giuliano
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA.
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute HZ 175, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Cargo recognition and degradation by selective autophagy. Nat Cell Biol 2018; 20:233-242. [PMID: 29476151 DOI: 10.1038/s41556-018-0037-z] [Citation(s) in RCA: 815] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Macroautophagy, initially described as a non-selective nutrient recycling process, is essential for the removal of multiple cellular components. In the past three decades, selective autophagy has been characterized as a highly regulated and specific degradation pathway for removal of unwanted cytosolic components and damaged and/or superfluous organelles. Here, we discuss different types of selective autophagy, emphasizing the role of ligand receptors and scaffold proteins in providing cargo specificity, and highlight unanswered questions in the field.
Collapse
|
38
|
Fukuda T, Kanki T. Mechanisms and Physiological Roles of Mitophagy in Yeast. Mol Cells 2018; 41:35-44. [PMID: 29370687 PMCID: PMC5792711 DOI: 10.14348/molcells.2018.2214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510,
Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510,
Japan
| |
Collapse
|
39
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
40
|
Glynn SE. Multifunctional Mitochondrial AAA Proteases. Front Mol Biosci 2017; 4:34. [PMID: 28589125 PMCID: PMC5438985 DOI: 10.3389/fmolb.2017.00034] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022] Open
Abstract
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.
Collapse
Affiliation(s)
- Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony Brook, NY, United States
| |
Collapse
|
41
|
Eisenberg-Bord M, Schuldiner M. Mitochatting - If only we could be a fly on the cell wall. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1469-1480. [PMID: 28433686 DOI: 10.1016/j.bbamcr.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria, cellular metabolic hubs, perform many essential processes and are required for the production of metabolites such as ATP, iron-sulfur clusters, heme, amino acids and nucleotides. To fulfill their multiple roles, mitochondria must communicate with all other organelles to exchange small molecules, ions and lipids. Since mitochondria are largely excluded from vesicular trafficking routes, they heavily rely on membrane contact sites. Contact sites are areas of close proximity between organelles that allow efficient transfer of molecules, saving the need for slow and untargeted diffusion through the cytosol. More globally, multiple metabolic pathways require coordination between mitochondria and additional organelles and mitochondrial activity affects all other cellular entities and vice versa. Therefore, uncovering the different means of mitochondrial communication will allow us a better understanding of mitochondria and may illuminate disease processes that occur in the absence of proper cross-talk. In this review we focus on how mitochondria interact with all other organelles and emphasize how this communication is essential for mitochondrial and cellular homeostasis. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
42
|
Srinivasainagendra V, Sandel MW, Singh B, Sundaresan A, Mooga VP, Bajpai P, Tiwari HK, Singh KK. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med 2017; 9:31. [PMID: 28356157 PMCID: PMC5370490 DOI: 10.1186/s13073-017-0420-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Methods Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Results Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Conclusions Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and demonstrate that inactivation of YME1L1 induces migration of mtDNA to the nuclear genome. Our study reveals that numtogenesis plays an important role in the development of cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0420-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinodh Srinivasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Michael W Sandel
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.,Present address: Department of Biological and Environmental Sciences, School of Natural Sciences and Mathematics, University of West Alabama, Livingston, Alabama, USA
| | - Bhupendra Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Aishwarya Sundaresan
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Ved P Mooga
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Prachi Bajpai
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
| | - Keshav K Singh
- Departments of Genetics, Environmental Health, Center for Free Radical Biology, Center for Aging and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA. .,Departments of Pathology, Environmental Health, Center for Free Radical Biology, Center for Aging and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA. .,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, 35294, USA. .,Department of Genetics, School of Medicine, University of Alabama at Birmingham, Kaul Genetics Building, Suite 620, 720 20th St. South, Birmingham, AL, 35294, USA.
| |
Collapse
|
43
|
Lahiri V, Klionsky DJ. PHB2/prohibitin 2: An inner membrane mitophagy receptor. Cell Res 2017; 27:311-312. [PMID: 28220775 DOI: 10.1038/cr.2017.23] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitophagy, the selective autophagic elimination of mitochondria, is a conserved cellular process critical for maintaining normal cellular physiology, and defects in this process are associated with certain pathophysiologies. In a recently published paper, Wei et al. describe their discovery of a hitherto unexplored mechanism of marking mitochondria for degradation.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Opalińska M, Parys K, Murcha MW, Jańska H. Plant i - AAA protease controls the turnover of the essential mitochondrial protein import component. J Cell Sci 2017; 131:jcs.200733. [DOI: 10.1242/jcs.200733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are multifunctional organelles that play a central role in energy metabolism. Due to life-essential functions of these organelles, mitochondrial content, quality, and dynamics are tightly controlled. Across the species, highly conserved ATP - dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of plant mitochondrial inner membrane-embedded i – AAA protease, FTSH4, providing its first bona fide substrate. Here, we report that the abundance of Tim17-2 protein, the essential component of the TIM17:23 translocase, is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23 - dependent pathway. Together with the observation that FTSH4 prevents accumulation of Tim17-2, our data points towards the role of this i - AAA protease in the regulation of mitochondrial biogenesis in plants.
Collapse
Affiliation(s)
- Magdalena Opalińska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Katarzyna Parys
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
- Present address: Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, A-1030 Vienna, Austria
| | - Monika W. Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia
| | - Hanna Jańska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| |
Collapse
|
45
|
Gómez-Sánchez R, Sánchez-Wandelmer J, Reggiori F. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae. Methods Enzymol 2017; 588:323-365. [DOI: 10.1016/bs.mie.2016.09.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Mitophagy as a stress response in mammalian cells and in respiring S. cerevisiae. Biochem Soc Trans 2016; 44:541-5. [PMID: 27068967 DOI: 10.1042/bst20150278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/17/2022]
Abstract
The degradation of malfunctioning or superfluous mitochondria in the lysosome/vacuole is an important housekeeping function in respiring eukaryotic cells. This clearance is thought to occur by a specific form of autophagic degradation called mitophagy, and plays a role in physiological homoeostasis as well as in the progression of late-onset diseases. Although the mechanism of bulk degradation by macroautophagy is relatively well established, the selective autophagic degradation of mitochondria has only recently begun to receive significant attention. In this mini-review, we introduce mitophagy as a form of mitochondrial quality control and proceed to provide specific examples from yeast and mammalian systems. We then discuss the relationship of mitophagy to mitochondrial stress, and provide a broad mechanistic overview of the process with an emphasis on evolutionarily conserved pathways.
Collapse
|
47
|
Levchenko M, Lorenzi I, Dudek J. The Degradation Pathway of the Mitophagy Receptor Atg32 Is Re-Routed by a Posttranslational Modification. PLoS One 2016; 11:e0168518. [PMID: 27992522 PMCID: PMC5161373 DOI: 10.1371/journal.pone.0168518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
The outer mitochondrial membrane protein Atg32 is the central receptor for mitophagy, the mitochondria-specific form of autophagy. Atg32 is an unstable protein, and is rapidly degraded under conditions in which mitophagy is not induced. Here we show that Atg32 undergoes a posttranslational modification upon induction of mitophagy. The modification is dependent on the core autophagic machinery, including Atg8, and on the mitophagy-specific adaptor protein Atg11. The modified Atg32 is targeted to the vacuole where it becomes stabilized when vacuolar proteases are deficient. Interestingly, we find that this degradation pathway differs from the degradation pathway of non-modified Atg32, which neither involves vacuolar proteases, nor the proteasome. These analyses reveal that a posttranslational modification discriminates a form of Atg32 targeting mitochondria for mitophagy from that, which escapes mitophagy by rapid degradation.
Collapse
Affiliation(s)
- Mariia Levchenko
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| |
Collapse
|
48
|
Wu H, Wei H, Sehgal SA, Liu L, Chen Q. Mitophagy receptors sense stress signals and couple mitochondrial dynamic machinery for mitochondrial quality control. Free Radic Biol Med 2016; 100:199-209. [PMID: 27036363 DOI: 10.1016/j.freeradbiomed.2016.03.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential organelles for many fundamental cellular processes, including energy production, fatty acid β-oxidation, metabolite synthesis, iron and calcium homeostasis, and programmed cell death. Mitochondrial quality thus influences not only individual cell functions but also whole body metabolism. Dysregulated mitochondrial quality control is closely associated with the progression of aging related diseases, such as cancers and neurodegenerative disorders. Mitochondrial quality is monitored at the protein, organelle and sub-organelle levels. The critical issues are how stresses such as bioenergetic stress, oxidative stress and proteotoxic stress, are sensed and how the mitochondrial events are coordinated. Recently, several receptors were identified to mediate selective mitophagy, which is essential for mitochondrial quality control in yeast and mammalian cells. It is emerging that these receptors sense distinct stress signals and couple mitophagy machineries with mitochondrial fission/fusion machineries for mitochondrial quality control. Herein, we will review recent advances in receptors mediated mitophagy and mitochondrial dynamics for mitochondrial quality control, with attempt to have an integrative view on the molecular mechanisms for mitochondrial quality control.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huifang Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Sheikh Arslan Sehgal
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
49
|
Farré JC, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 2016; 17:537-52. [PMID: 27381245 PMCID: PMC5549613 DOI: 10.1038/nrm.2016.74] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy has burgeoned rapidly as a field of study because of its evolutionary conservation, the diversity of intracellular cargoes degraded and recycled by this machinery, the mechanisms involved, as well as its physiological relevance to human health and disease. This self-eating process was initially viewed as a non-selective mechanism used by eukaryotic cells to degrade and recycle macromolecules in response to stress; we now know that various cellular constituents, as well as pathogens, can also undergo selective autophagy. In contrast to non-selective autophagy, selective autophagy pathways rely on a plethora of selective autophagy receptors (SARs) that recognize and direct intracellular protein aggregates, organelles and pathogens for specific degradation. Although SARs themselves are not highly conserved, their modes of action and the signalling cascades that activate and regulate them are. Recent yeast studies have provided novel mechanistic insights into selective autophagy pathways, revealing principles of how various cargoes can be marked and targeted for selective degradation.
Collapse
Affiliation(s)
- Jean-Claude Farré
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| | - Suresh Subramani
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| |
Collapse
|
50
|
Dengjel J, Abeliovich H. Roles of mitophagy in cellular physiology and development. Cell Tissue Res 2016; 367:95-109. [PMID: 27488107 DOI: 10.1007/s00441-016-2472-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/04/2016] [Indexed: 12/19/2022]
Abstract
The autophagic degradation of mitochondria, or mitophagy, has been shown to occur in eukaryotic cells under various physiological conditions. Broadly, these fall into two categories: quality-control related mitophagy and developmentally induced mitophagy. Quality-control related mitophagy, which is the lysosomal/vacuolar degradation of malfunctioning or superfluous mitochondria, is an important housekeeping function in respiring eukaryotic cells. It plays an essential role in physiological homeostasis and its deregulation has been linked to the progression of late-onset diseases. On the other hand, developmental processes such as reticulocyte maturation have also been shown to involve mitophagy. Importantly, there are clear differences between these processes. Unlike our knowledge of the more general degradation of soluble cytosolic content during starvation-induced macroautophagy, the mechanisms involved in the selective autophagic degradation of mitochondria have only recently begun to receive significant attention. Here, we review the current literature on these topics and proceed to provide specific examples from yeast and mammalian systems. Finally, we cover experimental approaches, with a focus on proteomic methods dedicated to the study of mitophagy in different systems.
Collapse
Affiliation(s)
- Jörn Dengjel
- Department of Dermatology, Medical Center, Freiburg Institute for Advanced Studies (FRIAS), ZBSA Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.,Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Hagai Abeliovich
- Department of Biochemistry and Food Science, Hebrew University of Jerusalem, Rehovot, 76100, Israel. .,FRIAS Senior Fellow and Marie Curie Fellow of the European Union Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany.
| |
Collapse
|