1
|
Le Bris J, Chen N, Supandy A, Rendueles O, Van Tyne D. Phage therapy for Klebsiella pneumoniae: Understanding bacteria-phage interactions for therapeutic innovations. PLoS Pathog 2025; 21:e1012971. [PMID: 40198880 PMCID: PMC11978313 DOI: 10.1371/journal.ppat.1012971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Klebsiella pneumoniae (KP) is a Gram-negative bacterium that commonly resides in the human gastrointestinal tract and can also act as an opportunistic pathogen and cause extra-intestinal infections. KP poses a global health threat because it causes both hospital- and community-acquired infections in immune-competent and immunocompromised hosts. These infections can be multidrug-resistant and/or hypervirulent, making KP infections difficult to treat and deadly. In the absence of effective treatments for recalcitrant KP infections, bacteriophage (phage) therapy is gaining attention as a promising alternative. In this review, we evaluate KP epidemiology and epitope diversity, discuss interactions between KP-targeting phages and their bacterial hosts from an eco-evolutionary perspective, and summarize recent efforts in phage therapy for treating KP infections. We also discuss novel approaches, including genetic engineering and machine learning, as initial steps toward developing KP-targeting phage therapy as a precision medicine approach for an emerging and dangerous pathogen.
Collapse
Affiliation(s)
- Julie Le Bris
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, Paris, France
| | - Nathalie Chen
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adeline Supandy
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Olaya Rendueles
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), CNRS UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
4
|
Kakkar A, Kandwal G, Nayak T, Jaiswal LK, Srivastava A, Gupta A. Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria. Heliyon 2024; 10:e34333. [PMID: 39100447 PMCID: PMC11295868 DOI: 10.1016/j.heliyon.2024.e34333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.
Collapse
Affiliation(s)
- Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014, Jyväskylä, Finland
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
5
|
Wottrich S, Mendonca S, Safarpour C, Nguyen C, Marinelli LJ, Hancock SP, Modlin RL, Parker JM. Putative pseudolysogeny-dependent phage gene implicated in the superinfection resistance of Cutibacterium acnes. MICROBIOME RESEARCH REPORTS 2024; 3:27. [PMID: 39421248 PMCID: PMC11480721 DOI: 10.20517/mrr.2023.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 10/19/2024]
Abstract
Objectives: Cutibacterium acnes, formerly Propionibacterium acnes, is a bacterial species characterized by tenacious acne-contributing pathogenic strains. Therefore, bacteriophage therapy has become an attractive treatment route to circumvent issues such as evolved bacterial antibiotic resistance. However, medical and commercial use of phage therapy for C. acnes has been elusive, necessitating ongoing exploration of phage characteristics that confer bactericidal capacity. Methods: A novel phage (Aquarius) was isolated and analyzed. Testing included genomic sequencing and annotation, electron microscopy, patch testing, reinfection assays, and qPCR to confirm pseudolysogeny and putative superinfection exclusion (SIE) protein expression. Results: Given a superinfection-resistant phenotype was observed, reinfection assays and patch tests were performed, which confirmed the re-cultured bacteria were resistant to superinfection. Subsequent qPCR indicated pseudolysogeny was a concomitantly present phenomenon. Phage genomic analysis identified the presence of a conserved gene (gp41) with a product containing Ltp family-like protein signatures which may contribute to phage-mediated bacterial superinfection resistance (SIR) in a pseudolysogeny-dependent manner. qPCR was performed to analyze and roughly quantify gp41 activity, and mRNA expression was high during infection, implicating a role for the protein during the phage life cycle. Conclusions: This study confirms that C. acnes bacteria are capable of harboring phage pseudolysogens and suggests that this phenomenon plays a role in bacterial SIR. This mechanism may be conferred by the expression of phage proteins while the phage persists within the host in the pseudolysogenic state. This parameter must be considered in future endeavors for efficacious application of C. acnes phage-based therapeutics.
Collapse
Affiliation(s)
- Stephanie Wottrich
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Neurology, Dell Seton Medical Center at the University of Texas at Austin, Austin, TX 78701, USA
| | - Stacee Mendonca
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Cameron Safarpour
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Christine Nguyen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Laura J. Marinelli
- UCLA Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Robert L. Modlin
- UCLA Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jordan Moberg Parker
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Biomedical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| |
Collapse
|
6
|
Fitschen LJ, Newing TP, Johnston NP, Bell CE, Tolun G. Half a century after their discovery: Structural insights into exonuclease and annealase proteins catalyzing recombineering. ENGINEERING MICROBIOLOGY 2024; 4:100120. [PMID: 39628787 PMCID: PMC11611040 DOI: 10.1016/j.engmic.2023.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is an essential tool for molecular biologists, allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes. The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing (SSA) homologous recombination pathway to repair double-stranded DNA breaks. While there have been several reviews examining recombineering methods and applications, comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway: a 5'→3' exonuclease and a single-strand annealing protein (SSAP or "annealase"). This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E. coli: the RecET system from E. coli Rac prophage and the λRed system from bacteriophage λ. By comparing the structures of the RecT and Redβ annealases, and the RecE and λExo exonucleases, we provide new insights into how the structures of these proteins dictate their function. Examining the sequence conservation of the λExo and RecE exonucleases gives more profound insights into their critical functional features. Ultimately, as recombineering accelerates and evolves in the laboratory, a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.
Collapse
Affiliation(s)
- Lucy J. Fitschen
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Timothy P. Newing
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Nikolas P. Johnston
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Charles E. Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Gökhan Tolun
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- The ARC Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Costa AR, Azeredo J, Pires DP. Synthetic Biology to Engineer Bacteriophage Genomes. Methods Mol Biol 2024; 2734:261-277. [PMID: 38066375 DOI: 10.1007/978-1-0716-3523-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered toward a wide range of applications, including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes will be addressed: the bacteriophage recombineering of electroporated DNA (BRED) and the yeast-based phage-engineering platform.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Priscila Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
8
|
Abstract
Antibiotic resistance among pathogenic bacteria is one of the most severe global challenges. It is predicted that over ten million lives will be lost annually by 2050. Phage therapy is a promising alternative to antibiotics. However, the ease of development of phage resistance during therapy is a concern. This review focuses on the possible ways to overcome phage resistance in phage therapy.
Collapse
Affiliation(s)
- Elina Laanto
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland.
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Asin-Garcia E, Garcia-Morales L, Bartholet T, Liang Z, Isaacs F, Martins dos Santos VP. Metagenomics harvested genus-specific single-stranded DNA-annealing proteins improve and expand recombineering in Pseudomonas species. Nucleic Acids Res 2023; 51:12522-12536. [PMID: 37941137 PMCID: PMC10711431 DOI: 10.1093/nar/gkad1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
The widespread Pseudomonas genus comprises a collection of related species with remarkable abilities to degrade plastics and polluted wastes and to produce a broad set of valuable compounds, ranging from bulk chemicals to pharmaceuticals. Pseudomonas possess characteristics of tolerance and stress resistance making them valuable hosts for industrial and environmental biotechnology. However, efficient and high-throughput genetic engineering tools have limited metabolic engineering efforts and applications. To improve their genome editing capabilities, we first employed a computational biology workflow to generate a genus-specific library of potential single-stranded DNA-annealing proteins (SSAPs). Assessment of the library was performed in different Pseudomonas using a high-throughput pooled recombinase screen followed by Oxford Nanopore NGS analysis. Among different active variants with variable levels of allelic replacement frequency (ARF), efficient SSAPs were found and characterized for mediating recombineering in the four tested species. New variants yielded higher ARFs than existing ones in Pseudomonas putida and Pseudomonas aeruginosa, and expanded the field of recombineering in Pseudomonas taiwanensisand Pseudomonas fluorescens. These findings will enhance the mutagenesis capabilities of these members of the Pseudomonas genus, increasing the possibilities for biotransformation and enhancing their potential for synthetic biology applications. .
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Tessa Bartholet
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Zhuobin Liang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Vitor A P Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- LifeGlimmer GmbH, Berlin 12163, Germany
| |
Collapse
|
10
|
Li R, Li A, Zhang Y, Fu J. The emerging role of recombineering in microbiology. ENGINEERING MICROBIOLOGY 2023; 3:100097. [PMID: 39628926 PMCID: PMC11610958 DOI: 10.1016/j.engmic.2023.100097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 12/06/2024]
Abstract
Recombineering is a valuable technique for generating recombinant DNA in vivo, primarily in bacterial cells, and is based on homologous recombination using phage-encoded homologous recombinases, such as Redαβγ from the lambda phage and RecET from the Rac prophage. The recombineering technique can efficiently mediate homologous recombination using short homologous arms (∼50 bp) and is unlimited by the size of the DNA molecules or positions of restriction sites. In this review, we summarize characteristics of recombinases, mechanism of recombineering, and advances in recombineering for DNA manipulation in Escherichia coli and other bacteria. Furthermore, the broad applications of recombineering for mining new bioactive microbial natural products, and for viral mutagenesis, phage genome engineering, and understanding bacterial metabolism are also reviewed.
Collapse
Affiliation(s)
- Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
11
|
Lv S, Wang Y, Jiang K, Guo X, Zhang J, Zhou F, Li Q, Jiang Y, Yang C, Teng T. Genetic Engineering and Biosynthesis Technology: Keys to Unlocking the Chains of Phage Therapy. Viruses 2023; 15:1736. [PMID: 37632078 PMCID: PMC10457950 DOI: 10.3390/v15081736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Phages possess the ability to selectively eliminate pathogenic bacteria by recognizing bacterial surface receptors. Since their discovery, phages have been recognized for their potent bactericidal properties, making them a promising alternative to antibiotics in the context of rising antibiotic resistance. However, the rapid emergence of phage-resistant strains (generally involving temperature phage) and the limited host range of most phage strains have hindered their antibacterial efficacy, impeding their full potential. In recent years, advancements in genetic engineering and biosynthesis technology have facilitated the precise engineering of phages, thereby unleashing their potential as a novel source of antibacterial agents. In this review, we present a comprehensive overview of the diverse strategies employed for phage genetic engineering, as well as discuss their benefits and drawbacks in terms of bactericidal effect.
Collapse
Affiliation(s)
- Sixuan Lv
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kaixin Jiang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinge Guo
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Zhang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fang Zhou
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qiming Li
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuan Jiang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Changyong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Loganathan K, Viswanathan B. Genome editing for phage design and uses for therapeutic applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:203-224. [PMID: 37770172 DOI: 10.1016/bs.pmbts.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The over usage of antibiotics leads to antibiotic abuse which in turn eventually raises resistance mechanisms among wide range of pathogens. Due to lack of experimental data of efficacy of phages as potential antimicrobial and therapeutic agent and also more specific and cumbersome isolation process against specific pathogens makes it not so feasible technology to be looked as an alternative therapy. But, recent developments in genome editing techniques enables programmed nuclease enzymes that has effectively improvised our methodology to make accurate changes in the genomes of prokaryote as well as eukaryote cells. It is already strengthening our ability to improvise genetic engineering to disease identification by facilitating the creation of more precise models to identify the root cause. The present chapter discusses on improvisation of phage therapy using recent genome editing tools and also shares data on the methods of usage of phages and their derivatives like proteins and enzymes such as lysins and depolymerases, as a potential therapeutic or prophylaxis agent. Methods involved in recombinant based techniques were also discussed in this chapter. Combination of traditional approach with modern tools has led to a potential development of phage-based therapeutics in near future.
Collapse
|
13
|
Kumar A, Yadav A. Synthetic phage and its application in phage therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:61-89. [PMID: 37739560 DOI: 10.1016/bs.pmbts.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Synthetic phage analysis has been implemented in progressive various areas of biology, such as genetics, molecular biology, and synthetic biology. Many phage-derived technologies have been altered for developing gene circuits to program biological systems. Due to their extremely potent potency, phages also provide greater medical availability against bacterial agents and bacterial diagnostic agents. Its host specificity and our growing ability to manipulate, them further expand its possibility. New Phages also genetically redesign programmable biomaterials with highly tunable properties. Moreover, new phages are central to powerful directed evolution platforms. It is used to enhance existing biological, functions to create new phages. In other sites, the mining of antibiotics, and the emergence and dissemination of more than one type of drug-resistant microbe, a human health concerns. The major point in controlling and treating microbial infections. At present, genetic modifications and biochemical treatments are used to modify phages. Among these, genetic engineering involves the identification of defective proteins, modification of host bodies, recognized receptors, and disruption of bacterial phage resistance signaling gateways.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| | - Anuj Yadav
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
14
|
Jia HJ, Jia PP, Yin S, Bu LK, Yang G, Pei DS. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions. Front Microbiol 2023; 14:1172635. [PMID: 37323893 PMCID: PMC10264812 DOI: 10.3389/fmicb.2023.1172635] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteriophages, the most abundant organisms on earth, have the potential to address the rise of multidrug-resistant bacteria resulting from the overuse of antibiotics. However, their high specificity and limited host range can hinder their effectiveness. Phage engineering, through the use of gene editing techniques, offers a means to enhance the host range of bacteria, improve phage efficacy, and facilitate efficient cell-free production of phage drugs. To engineer phages effectively, it is necessary to understand the interaction between phages and host bacteria. Understanding the interaction between the receptor recognition protein of bacteriophages and host receptors can serve as a valuable guide for modifying or replacing these proteins, thereby altering the receptor range of the bacteriophage. Research and development focused on the CRISPR-Cas bacterial immune system against bacteriophage nucleic acids can provide the necessary tools to promote recombination and counter-selection in engineered bacteriophage programs. Additionally, studying the transcription and assembly functions of bacteriophages in host bacteria can facilitate the engineered assembly of bacteriophage genomes in non-host environments. This review highlights a comprehensive summary of phage engineering methods, including in-host and out-of-host engineering, and the use of high-throughput methods to understand their role. The main aim of these techniques is to harness the intricate interactions between bacteriophages and hosts to inform and guide the engineering of bacteriophages, particularly in the context of studying and manipulating the host range of bacteriophages. By employing advanced high-throughput methods to identify specific bacteriophage receptor recognition genes, and subsequently introducing modifications or performing gene swapping through in-host recombination or out-of-host synthesis, it becomes possible to strategically alter the host range of bacteriophages. This capability holds immense significance for leveraging bacteriophages as a promising therapeutic approach against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Huang-Jie Jia
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Supei Yin
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Kang Bu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guan Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
16
|
Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, Bui NL, Chu D, Karapurkar JK, Jang SH, Chung HY, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med 2023; 8:e10381. [PMID: 36925687 PMCID: PMC10013820 DOI: 10.1002/btm2.10381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gargi Bhattacharjee
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Nisarg Gohil
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gurneet K. Dhanoa
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Antonia P. Sagona
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Indra Mani
- Department of MicrobiologyGargi College, University of DelhiNew DelhiIndia
| | - Nhat Le Bui
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
| | - Dinh‐Toi Chu
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
- Faculty of Applied SciencesInternational School, Vietnam National UniversityHanoiVietnam
| | | | - Su Hwa Jang
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
| | - Hee Yong Chung
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Rupesh Maurya
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories SciencesCollege of Applied Medical Sciences, Taif UniversityTaifSaudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Vijai Singh
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| |
Collapse
|
17
|
Sun Q, Shen L, Zhang BL, Yu J, Wei F, Sun Y, Chen W, Wang S. Advance on Engineering of Bacteriophages by Synthetic Biology. Infect Drug Resist 2023; 16:1941-1953. [PMID: 37025193 PMCID: PMC10072152 DOI: 10.2147/idr.s402962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Since bacteriophages (phages) were firstly reported at the beginning of the 20th century, the study on them experiences booming-fading-emerging with discovery and overuse of antibiotics. Although they are the hotspots for therapy of antibiotic-resistant strains nowadays, natural phage applications encounter some challenges such as limited host range and bacterial resistance to phages. Synthetic biology, one of the most dramatic directions in the recent 20-years study of microbiology, has generated numerous methods and tools and has contributed a lot to understanding phage evolution, engineering modification, and controlling phage-bacteria interactions. In order to better modify and apply phages by using synthetic biology techniques in the future, in this review, we comprehensively introduce various strategies on engineering or modification of phage genome and rebooting of recombinant phages, summarize the recent researches and potential directions of phage synthetic biology, and outline the current application of engineered phages in practice.
Collapse
Affiliation(s)
- Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Bai-Ling Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jiaoyang Yu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, 210003, People’s Republic of China
- Correspondence: Wei Chen; Shiwei Wang, Email ;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| |
Collapse
|
18
|
Elois MA, da Silva R, Pilati GVT, Rodríguez-Lázaro D, Fongaro G. Bacteriophages as Biotechnological Tools. Viruses 2023; 15:349. [PMID: 36851563 PMCID: PMC9963553 DOI: 10.3390/v15020349] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
19
|
Phage Therapy for Nontuberculous Mycobacteria: Challenges and Opportunities. Pulm Ther 2022; 9:91-107. [PMID: 36583829 PMCID: PMC9931961 DOI: 10.1007/s41030-022-00210-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 12/31/2022] Open
Abstract
Non-tuberculous mycobacterium (NTM) infections are often clinically challenging, with lengthy antibiotic regimens that fail to resolve the infections with few good outcomes remaining. Mycobacteriophages-viruses that infect Mycobacterium hosts-show promise as therapeutic agents for NTM infections and have been used in 20 compassionate use cases. Favorable outcomes were observed in many but not all cases, although the phages show exceptional safety profiles and no evidence of phage resistance was observed, even when only a single phage was administered. Phage-specific antibodies are commonly present following intravenous administration and are often neutralizing for the phage in vitro. However, phage neutralization does not consistently correlate with poor treatment outcomes and may not be a therapeutic limitation in all patients, even when immunocompetent. Currently, the therapeutic potential of phages is substantially limited by the great variation in phage susceptibility and a relatively small repertoire of therapeutically useful phages. As many as 45% of clinical isolates can have a smooth colony morphotype, and phages that both efficiently infect and kill these strains have yet to be described. In contrast, ~ 75% of rough strains are susceptible to and killed by one or more phages and therapeutic options can be considered on a compassionate use basis. Although therapies must currently be personalized, elucidating the determinants of phage host specificity, expanding the useful phage repertoire, and identifying the key determinants of clinical outcomes will reveal their full therapeutic potential.
Collapse
|
20
|
Guan J, Oromí-Bosch A, Mendoza SD, Karambelkar S, Berry JD, Bondy-Denomy J. Bacteriophage genome engineering with CRISPR-Cas13a. Nat Microbiol 2022; 7:1956-1966. [PMID: 36316452 PMCID: PMC9722621 DOI: 10.1038/s41564-022-01243-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022]
Abstract
Jumbo phages such as Pseudomonas aeruginosa ФKZ have potential as antimicrobials and as a model for uncovering basic phage biology. Both pursuits are currently limited by a lack of genetic engineering tools due to a proteinaceous 'phage nucleus' structure that protects from DNA-targeting CRISPR-Cas tools. To provide reverse-genetics tools for DNA jumbo phages from this family, we combined homologous recombination with an RNA-targeting CRISPR-Cas13a enzyme and used an anti-CRISPR gene (acrVIA1) as a selectable marker. We showed that this process can insert foreign genes, delete genes and add fluorescent tags to genes in the ФKZ genome. Fluorescent tagging of endogenous gp93 revealed that it is ejected with the phage DNA while deletion of the tubulin-like protein PhuZ surprisingly had only a modest impact on phage burst size. Editing of two other phages that resist DNA-targeting CRISPR-Cas systems was also achieved. RNA-targeting Cas13a holds great promise for becoming a universal genetic editing tool for intractable phages, enabling the systematic study of phage genes of unknown function.
Collapse
Affiliation(s)
- Jingwen Guan
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA
| | | | - Senén D Mendoza
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shweta Karambelkar
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Joel D Berry
- Felix Biotechnology, Inc., San Francisco, CA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
21
|
Cunliffe T, Parker AL, Jaramillo A. Pseudotyping Bacteriophage P2 Tail Fibers to Extend the Host Range for Biomedical Applications. ACS Synth Biol 2022; 11:3207-3215. [PMID: 36084285 PMCID: PMC9594776 DOI: 10.1021/acssynbio.1c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bacteriophages (phages) represent powerful potential treatments against antibiotic-resistant bacterial infections. Antibiotic-resistant bacteria represent a significant threat to global health, with an estimated 70% of infection-causing bacteria being resistant to one or more antibiotics. Developing novel antibiotics against the limited number of cellular targets is expensive and time-consuming, and bacteria can rapidly develop resistance. While bacterial resistance to phage can evolve, bacterial resistance to phage does not appear to spread through lateral gene transfer, and phage may similarly adapt through mutation to recover infectivity. Phages have been identified for all known bacteria, allowing the strain-selective killing of pathogenic bacteria. Here, we re-engineered the Escherichia coli phage P2 to alter its tropism toward pathogenic bacteria. Chimeric tail fibers formed between P2 and S16 genes were designed and generated through two approaches: homology- and literature-based. By presenting chimeric P2:S16 fibers on the P2 particle, our data suggests that the resultant phages were effectively detargeted from the native P2 cellular target, lipopolysaccharide, and were instead able to infect via the proteinaceous receptor, OmpC, the natural S16 receptor. Our work provides evidence that pseudotyping P2 is feasible and can be used to extend the host range of P2 to alternative receptors. Extension of this work could produce alternative chimeric tail fibers to target pathogenic bacterial threats. Our engineering of P2 allows adsorption through a heterologous outer-membrane protein without culturing in its native host, thus providing a potential means of engineering designer phages against pathogenic bacteria from knowledge of their surface proteome.
Collapse
Affiliation(s)
- Tabitha
G. Cunliffe
- Division
of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14
4XN, U.K.,School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Alan L. Parker
- Division
of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14
4XN, U.K.,Systems
Immunity University Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14
4XN, U.K.,. Phone: +44 2922 510 231
| | - Alfonso Jaramillo
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.,De
Novo Synthetic Biology Laboratory, I2SysBio, CSIC-University of Valencia, Parc Científic Universitat de València, Calle Catedrático Agustín
Escardino, 9, 46980 Paterna, Spain,. Phone: +34 963 543 056
| |
Collapse
|
22
|
Past, Present, and Future of Genome Modification in Escherichia coli. Microorganisms 2022; 10:microorganisms10091835. [PMID: 36144436 PMCID: PMC9504249 DOI: 10.3390/microorganisms10091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K-12 is one of the most well-studied species of bacteria. This species, however, is much more difficult to modify by homologous recombination (HR) than other model microorganisms. Research on HR in E. coli has led to a better understanding of the molecular mechanisms of HR, resulting in technical improvements and rapid progress in genome research, and allowing whole-genome mutagenesis and large-scale genome modifications. Developments using λ Red (exo, bet, and gam) and CRISPR-Cas have made E. coli as amenable to genome modification as other model microorganisms, such as Saccharomyces cerevisiae and Bacillus subtilis. This review describes the history of recombination research in E. coli, as well as improvements in techniques for genome modification by HR. This review also describes the results of large-scale genome modification of E. coli using these technologies, including DNA synthesis and assembly. In addition, this article reviews recent advances in genome modification, considers future directions, and describes problems associated with the creation of cells by design.
Collapse
|
23
|
Isaev A, Andriianov A, Znobishcheva E, Zorin E, Morozova N, Severinov K. Editing of Phage Genomes—Recombineering-assisted SpCas9 Modification of Model Coliphages T7, T5, and T3. Mol Biol 2022. [DOI: 10.1134/s0026893322060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Bacteriophages—viruses that infect bacterial cells—are the most abundant biological entities on Earth. The use of phages in fundamental research and industry requires tools for precise manipulation of their genomes. Yet, compared to bacterial genome engineering, modification of phage genomes is challenging because of the lack of selective markers and thus requires laborious screenings of recombinant/mutated phage variants. The development of the CRISPR-Cas technologies allowed to solve this issue by the implementation of negative selection that eliminates the parental phage genomes. In this manuscript, we summarize current methods of phage genome engineering and their coupling with CRISPR-Cas technologies. We also provide examples of our successful application of these methods for introduction of specific insertions, deletions, and point mutations in the genomes of model Escherichia coli lytic phages T7, T5, and T3.
Collapse
|
24
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
25
|
Li Y, Mensah EO, Fordjour E, Bai J, Yang Y, Bai Z. Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnol Adv 2022; 59:107970. [PMID: 35550915 DOI: 10.1016/j.biotechadv.2022.107970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
The preparation of genetic libraries is an essential step to evolve microorganisms and study genotype-phenotype relationships by high-throughput screening/selection. As the large-scale synthesis of oligonucleotides becomes easy, cheap, and high-throughput, numerous novel strategies have been developed in recent years to construct high-quality oligo-mediated libraries, leveraging state-of-art molecular biology tools for genome editing and gene regulation. This review presents an overview of recent advances in creating and characterizing in vitro and in vivo genetic libraries, based on CRISPR/Cas, regulatory RNAs, and recombineering, primarily for Escherichia coli and Saccharomyces cerevisiae. These libraries' applications in high-throughput metabolic engineering, strain evolution and protein engineering are also discussed.
Collapse
Affiliation(s)
- Ye Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Emmanuel Osei Mensah
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Eric Fordjour
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Bai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
26
|
Schwarz C, Mathieu J, Laverde Gomez JA, Yu P, Alvarez PJJ. Renaissance for Phage-Based Bacterial Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4691-4701. [PMID: 34793127 DOI: 10.1021/acs.est.1c06232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacteriophages (phages) are an underutilized biological resource with vast potential for pathogen control and microbiome editing. Phage research and commercialization have increased rapidly in biomedical and agricultural industries, but adoption has been limited elsewhere. Nevertheless, converging advances in DNA sequencing, bioinformatics, microbial ecology, and synthetic biology are now poised to broaden phage applications beyond pathogen control toward the manipulation of microbial communities for defined functional improvements. Enhancements in sequencing combined with network analysis make it now feasible to identify and disrupt microbial associations to elicit desirable shifts in community structure or function, indirectly modulate species abundance, and target hub or keystone species to achieve broad functional shifts. Sequencing and bioinformatic advancements are also facilitating the use of temperate phages for safe gene delivery applications. Finally, integration of synthetic biology stands to create novel phage chassis and modular genetic components. While some fundamental, regulatory, and commercialization barriers to widespread phage use remain, many major challenges that have impeded the field now have workable solutions. Thus, a new dawn for phage-based (chemical-free) precise biocontrol and microbiome editing is on the horizon to enhance, suppress, or modulate microbial activities important for public health, food security, and more sustainable energy production and water reuse.
Collapse
Affiliation(s)
- Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Jenny A Laverde Gomez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| |
Collapse
|
27
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
28
|
Özal D, Arndt A, Thomé M. Bacteriophages and related endolysins for reduction of microorganisms in the human body - a systematic review. GMS HYGIENE AND INFECTION CONTROL 2022; 17:Doc01. [PMID: 35111563 PMCID: PMC8780682 DOI: 10.3205/dgkh000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: In recent years, resistance to antibiotics has become a global threat, and alternatives to antibiotics have become an area of research. The main alternative methods are briefly described in this review. However, the main focus is bacteriophage-related therapy. Bacteriophages are viruses which, due to the production of the enzyme endolysin, are able to kill bacterial host cells. Bacteriophage therapies have a long tradition. Their potential to function as antibiotics lies in their bactericidal activity and specificity in killing bacteria without infecting or affecting eukaryotic cells. Objective: To systematically review the outcomes of bacteriophage therapy in patients with bacterial infections. Methods: The MEDLINE, EMBASE, Web of Science and CENTRAL databases were searched electronically using search terms referring to bacteriophages, endolysins and antimicrobial resistance. After the literature was screened for their titles and abstracts, full-text reviews considering inclusion/exclusion criteria were performed. Data concerning patients with bacterial infections, treatment with either bacteriophages or its enzyme endolysin and their outcomes were extracted and analysed. Results: Thirteen publications were identified that met all inclusion criteria. Data extraction shows that bacteriophages or endolysins have the potential to combat bacterial infections and significantly reduce inflammatory mediators. However, 3 out of 4 randomized controlled trials revealed that there was no significant difference between phage/endolysin treated patients and control group. Significant clinical improvements were seen in cohort and case studies. A few minor side effects were reported. Conclusions: Although there are countries in which bacteriophages are prescribed as an alternative to established antibiotics, this valuable experience has yet to be examined sufficiently in clinical trials conducted to modern standards. Despite improvements in symptoms shown in the reviewed clinical trials, the infection and the bacteria themselves were rarely completely eradicated. Therefore, no definite answer can be given as to effectiveness, and further clinical trials are necessary.
Collapse
Affiliation(s)
- Dilara Özal
- Kassel School of Medicine, University of Southampton, Southampton, UK,*To whom correspondence should be addressed: Dilara Özal, Kassel School of Medicine, University of Southampton, Southampton, UK, E-mail:
| | | | - Marcus Thomé
- Kassel School of Medicine, University of Southampton, Southampton, UK,Department of Microbiology, Klinikum Kassel, Kassel, Germany
| |
Collapse
|
29
|
Paramasivam K, Shen Y, Yuan J, Waheed I, Mao C, Zhou X. Advances in the Development of Phage-Based Probes for Detection of Bio-Species. BIOSENSORS 2022; 12:30. [PMID: 35049658 PMCID: PMC8773867 DOI: 10.3390/bios12010030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 05/10/2023]
Abstract
Bacteriophages, abbreviated as "phages", have been developed as emerging nanoprobes for the detection of a wide variety of biological species, such as biomarker molecules and pathogens. Nanosized phages can display a certain length of exogenous peptides of arbitrary sequence or single-chain variable fragments (scFv) of antibodies that specifically bind to the targets of interest, such as animal cells, bacteria, viruses, and protein molecules. Metal nanoparticles generally have unique plasmon resonance effects. Metal nanoparticles such as gold, silver, and magnetism are widely used in the field of visual detection. A phage can be assembled with metal nanoparticles to form an organic-inorganic hybrid probe due to its nanometer-scale size and excellent modifiability. Due to the unique plasmon resonance effect of this composite probe, this technology can be used to visually detect objects of interest under a dark-field microscope. In summary, this review summarizes the recent advances in the development of phage-based probes for ultra-sensitive detection of various bio-species, outlining the advantages and limitations of detection technology of phage-based assays, and highlighting the commonly used editing technologies of phage genomes such as homologous recombination and clustered regularly interspaced palindromic repeats/CRISPR-associated proteins system (CRISPR-Cas). Finally, we discuss the possible scenarios for clinical application of phage-probe-based detection methods.
Collapse
Affiliation(s)
- Kameshpandian Paramasivam
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuanzhao Shen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Jiasheng Yuan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Chuanbin Mao
- Stephenson Life Sciences Research Center, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5300, USA;
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Mallick B, Mondal P, Dutta M. Morphological, biological, and genomic characterization of a newly isolated lytic phage Sfk20 infecting Shigella flexneri, Shigella sonnei, and Shigella dysenteriae1. Sci Rep 2021; 11:19313. [PMID: 34588569 PMCID: PMC8481304 DOI: 10.1038/s41598-021-98910-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
Shigellosis, caused by Shigella bacterial spp., is one of the leading causes of diarrheal morbidity and mortality. An increasing prevalence of multidrug-resistant Shigella species has revived the importance of bacteriophages as an alternative therapy to antibiotics. In this study, a novel bacteriophage, Sfk20, has been isolated from water bodies of a diarrheal outbreak area in Kolkata (India) with lytic activity against many Shigella spp. Phage Sfk20 showed a latent period of 20 min and a large burst size of 123 pfu per infected cell in a one-step growth analysis. Phage-host interaction and lytic activity confirmed by phage attachment, intracellular phage development, and bacterial cell burst using ultrathin sectioning and TEM analysis. The genomic analysis revealed that the double-stranded DNA genome of Sfk20 contains 164,878 bp with 35.62% G + C content and 241 ORFs. Results suggested phage Sfk20 to include as a member of the T4 myoviridae bacteriophage group. Phage Sfk20 has shown anti-biofilm potential against Shigella species. The results of this study imply that Sfk20 has good possibilities to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India
| | - Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India.
| |
Collapse
|
32
|
Hatfull GF. Wildy Prize Lecture, 2020-2021: Who wouldn't want to discover a new virus? MICROBIOLOGY-SGM 2021; 167. [PMID: 34468308 PMCID: PMC8549241 DOI: 10.1099/mic.0.001094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innovations in science education are desperately needed to find ways to engage and interest students early in their undergraduate careers. Exposing students to authentic research experiences is highly beneficial, but finding ways to include all types of students and to do this at large scale is especially challenging. An attractive solution is the concept of an inclusive research education community (iREC) in which centralized research leadership and administration supports multiple institutions, including diverse groups of schools and universities, faculty and students. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) programme is an excellent example of an iREC, in which students explore viral diversity and evolution through discovery and genomic analysis of novel bacteriophages. The SEA-PHAGES programme has proven to be sustainable, to be implemented at large scale, and to enhance student persistence in science, as well as to produce substantial research advances. Discovering a new virus with the potential for new biological insights and clinical applications is inherently exciting. Who wouldn't want to discover a new virus?
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
33
|
Murphy KC. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis. Methods Mol Biol 2021; 2314:301-321. [PMID: 34235660 DOI: 10.1007/978-1-0716-1460-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phage recombination systems have been instrumental in the development of gene modification technologies for bacterial pathogens. In particular, the Che9 phage RecET system has been used successfully for over 10 years for making gene knockouts and fusions in Mycobacterium tuberculosis. This "recombineering" technology typically uses linear dsDNA substrates that contain a drug-resistance marker flanked by (up to) 500 base pairs of DNA homologous to the target site. Less often employed in mycobacterial recombineering is the use of oligonucleotides, which require only the action of the RecT annealase to align oligos to ssDNA regions of the replication fork, for subsequent incorporation into the chromosome. Despite the higher frequency of such events relative to dsDNA-promoted recombineering, oligo-mediated changes generally suffer from the disadvantage of not being selectable, thus making them harder to isolate. This chapter discusses steps and methodologies that increase the frequencies of finding oligo-mediated events, including the transfer of single nucleotide polymorphisms (SNPs) to mycobacterial chromosomes, and the use of oligos in conjunction with the mycobacterial phage Bxb1 site-specific recombination system for the easy generation of knockouts, insertion, and fusions, in a protocol known as ORBIT.
Collapse
Affiliation(s)
- Kenan C Murphy
- Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Šimoliūnienė M, Kazlauskas D, Zajančkauskaitė A, Meškys R, Truncaitė L. Escherichia coli trxAgene as a molecular marker for genome engineering of felixounoviruses. Biochim Biophys Acta Gen Subj 2021; 1865:129967. [PMID: 34324954 DOI: 10.1016/j.bbagen.2021.129967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bacterial viruses (bacteriophages or phages) have a lot of uncharacterized genes, which hinders the progress of their applied research. Functional characterization of these genes is often hampered by a lack of suitable methods for engineering of phage genomes. METHODS Phages vB_EcoM_Alf5 (Alf5) and VB_EcoM_VpaE1 (VpaE1) were used as the model phages of Felixounovirus genus. The phage-coded properties were predicted by bioinformatics analysis. The 'pull-down' assay was used for detection of protein-protein interactions. Primer extension analysis was used for the DNA polymerase (DNAP) activity testing. Bacteriophage lambda Redγβα-assisted homologous recombination was used for construction of phage mutants. RESULTS Bioinformatics analysis showed that felixounoviruses encode DNA polymerase, which is homologous to the T7 DNAP. We found that the Escherichia coli thioredoxin A (TrxA) in vitro interacts with the predicted DNAP of Alf5 phage (gp096) and enhances its activity. Phages Alf5 and VpaE1 do not grow on E. coli strains lacking trxA gene unless it is provided in trans. This feature was used for construction of the deletion/insertion mutants of non-essential genes of felixounoviruses. CONCLUSION DNA replication of phages from Felixonuvirus genus depends on the host trxA, which therefore may be used as a molecular marker for their genome engineering. GENERAL SIGNIFICANCE We present a proof-of-principle of a strategy for targeted engineering of bacteriophages of Felixounovirus genus. The method developed here will facilitate the basic and applied research of this unexplored phage group. Furthermore, detected functional interactions between the phage and host proteins will be significant for basic research of DNA replication.
Collapse
Affiliation(s)
- Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 7 Saulėtekio av., LT-10257 Vilnius, Lithuania.
| | - Darius Kazlauskas
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, 7 Saulėtekio av., LT-10257 Vilnius, Lithuania.
| | - Aurelija Zajančkauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 7 Saulėtekio av., LT-10257 Vilnius, Lithuania.
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 7 Saulėtekio av., LT-10257 Vilnius, Lithuania.
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 7 Saulėtekio av., LT-10257 Vilnius, Lithuania.
| |
Collapse
|
35
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
36
|
Figueiredo CM, Malvezzi Karwowski MS, da Silva Ramos RCP, de Oliveira NS, Peña LC, Carneiro E, Freitas de Macedo RE, Rosa EAR. Bacteriophages as tools for biofilm biocontrol in different fields. BIOFOULING 2021; 37:689-709. [PMID: 34304662 DOI: 10.1080/08927014.2021.1955866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial biofilms are difficult to control due to the limited accessibility that antimicrobial drugs and chemicals have to the entrapped inner cells. The extracellular matrix, binds water, contributes to altered cell physiology within biofilms and act as a barrier for most antiproliferative molecules. Thus, new strategies need to be developed to overcome biofilm vitality. In this review, based on 223 documents, the advantages, recommendations, and limitations of using bacteriophages as 'biofilm predators' are presented. The plausibility of using phages (bacteriophages and mycoviruses) to control biofilms grown in different environments is also discussed. The topics covered here include recent historical experiences in biofilm control/eradication using phages in medicine, dentistry, veterinary, and food industries, the pros and cons of their use, and the development of microbial resistance/immunity to such viruses.
Collapse
Affiliation(s)
| | | | | | | | - Lorena Caroline Peña
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Everdan Carneiro
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Graduate Program in Animal Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
37
|
Gibb B, Hyman P, Schneider CL. The Many Applications of Engineered Bacteriophages-An Overview. Pharmaceuticals (Basel) 2021; 14:ph14070634. [PMID: 34208847 PMCID: PMC8308837 DOI: 10.3390/ph14070634] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Since their independent discovery by Frederick Twort in 1915 and Felix d’Herelle in 1917, bacteriophages have captured the attention of scientists for more than a century. They are the most abundant organisms on the planet, often outnumbering their bacterial hosts by tenfold in a given environment, and they constitute a vast reservoir of unexplored genetic information. The increased prevalence of antibiotic resistant pathogens has renewed interest in the use of naturally obtained phages to combat bacterial infections, aka phage therapy. The development of tools to modify phages, genetically or chemically, combined with their structural flexibility, cargo capacity, ease of propagation, and overall safety in humans has opened the door to a myriad of applications. This review article will introduce readers to many of the varied and ingenious ways in which researchers are modifying phages to move them well beyond their innate ability to target and kill bacteria.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biological and Chemical Sciences, Theobald Science Center, Room 423, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
- Correspondence: (B.G.); (C.L.S.)
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, 401 College Ave., Ashland, OH 44805, USA;
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, 100 North East Ave., Waukesha, WI 53186, USA
- Correspondence: (B.G.); (C.L.S.)
| |
Collapse
|
38
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
39
|
Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol 2021; 68:151-159. [PMID: 33310655 PMCID: PMC11996084 DOI: 10.1016/j.copbio.2020.11.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
The antimicrobial and therapeutic efficacy of bacteriophages is currently limited, mostly due to rapid emergence of phage-resistance and the inability of most phage isolates to bind and infect a broad range of clinical strains. Here, we discuss how phage therapy can be improved through recent advances in genetic engineering. First, we outline how receptor-binding proteins and their relevant structural domains are engineered to redirect phage specificity and to avoid resistance. Next, we summarize how phages are reprogrammed as prokaryotic gene therapy vectors that deliver antimicrobial 'payload' proteins, such as sequence-specific nucleases, to target defined cells within complex microbiomes. Finally, we delineate big data- and novel artificial intelligence-driven approaches that may guide the design of improved synthetic phage in the future.
Collapse
Affiliation(s)
- Bryan R Lenneman
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, Cambridge, MA 02139, USA
| | - Jonas Fernbach
- Institute of Food, Nutrition, and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition, and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Timothy K Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Samuel Kilcher
- Institute of Food, Nutrition, and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| |
Collapse
|
40
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
41
|
Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses 2020; 12:v12090944. [PMID: 32858938 PMCID: PMC7552063 DOI: 10.3390/v12090944] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fast and reliable detection of bacterial pathogens in clinical samples, contaminated food products, and water supplies can drastically improve clinical outcomes and reduce the socio-economic impact of disease. As natural predators of bacteria, bacteriophages (phages) have evolved to bind their hosts with unparalleled specificity and to rapidly deliver and replicate their viral genome. Not surprisingly, phages and phage-encoded proteins have been used to develop a vast repertoire of diagnostic assays, many of which outperform conventional culture-based and molecular detection methods. While intact phages or phage-encoded affinity proteins can be used to capture bacteria, most phage-inspired detection systems harness viral genome delivery and amplification: to this end, suitable phages are genetically reprogrammed to deliver heterologous reporter genes, whose activity is typically detected through enzymatic substrate conversion to indicate the presence of a viable host cell. Infection with such engineered reporter phages typically leads to a rapid burst of reporter protein production that enables highly sensitive detection. In this review, we highlight recent advances in infection-based detection methods, present guidelines for reporter phage construction, outline technical aspects of reporter phage engineering, and discuss some of the advantages and pitfalls of phage-based pathogen detection. Recent improvements in reporter phage construction and engineering further substantiate the potential of these highly evolved nanomachines as rapid and inexpensive detection systems to replace or complement traditional diagnostic approaches.
Collapse
|
42
|
Suarez CA, Franceschelli JJ, Tasselli SE, Morbidoni HR. Weirdo19ES is a novel singleton mycobacteriophage that selects for glycolipid deficient phage-resistant M. smegmatis mutants. PLoS One 2020; 15:e0231881. [PMID: 32357186 PMCID: PMC7194413 DOI: 10.1371/journal.pone.0231881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
The sequencing and bioinformatics analysis of bacteriophages infecting mycobacteria has yielded a large amount of information on their evolution, including that on their environmental propagation on other genera such as Gordonia, closely related to Mycobacterium. However, little is known on mycobacteriophages cell biology such as the nature of their receptor(s) or their replication cycle. As part of our on-going screening for novel mycobacteriophages, we herein report the isolation and genome bioinformatics analysis of Weirdo19ES, a singleton Siphoviridae temperate mycobacteriophage with a 70.19% GC content. Nucleotide and protein sequence comparison to actinobacteriophage databases revealed that Weirdo19ES shows low homology to Gordonia phage Ruthy and mycobacteriophages falling in clusters Q and G and to singleton DS6A.Weirdo19ES also displays uncommon features such as a very short Lysin A gene (with only one enzymatic domain) and two putative HNH endonucleases. Mycobacterium smegmatis mutants resistant to Weirdo19ES are cross- resistant to I3. In agreement with that phenotype, analysis of cell envelope of those mutants showed that Weirdo19ES shares receptors with the transducing mycobacteriophage I3.This singleton mycobacteriophage adds up to the uncommonness of local mycobacteriophages previously isolated by our group and helps understanding the nature of mycobacteriophage receptors.
Collapse
Affiliation(s)
- Cristian Alejandro Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Judith Franceschelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sabrina Emilse Tasselli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
43
|
Reuter M, Kruger DH. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections. Virus Genes 2020; 56:136-149. [PMID: 32036540 PMCID: PMC7223754 DOI: 10.1007/s11262-020-01735-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The emerging occurrence of antibiotic-resistant bacterial pathogens leads to a recollection of bacteriophage as antimicrobial therapeutics. This article presents a short overview of the clinical phage application including their use in military medicine and discusses the genotypic and phenotypic properties of a potential "ideal" therapeutic phage. We describe current efforts to engineer phage for their improved usability in pathogen treatment. In addition, phage can be applied for pathogen detection, selective drug delivery, vaccine development, or food and surface decontamination. Instead of viable phage, (engineered) phage-derived enzymes, such as polysaccharide depolymerases or peptidoglycan-degrading enzymes, are considered as promising therapeutic candidates. Finally, we briefly summarize the use of phage for the detection and treatment of "Category A priority pathogens".
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Detlev H. Kruger
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
44
|
Grigonyte AM, Harrison C, MacDonald PR, Montero-Blay A, Tridgett M, Duncan J, Sagona AP, Constantinidou C, Jaramillo A, Millard A. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7. Viruses 2020; 12:E193. [PMID: 32050613 PMCID: PMC7077284 DOI: 10.3390/v12020193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/29/2022] Open
Abstract
With the recent rise in interest in using lytic bacteriophages as therapeutic agents, there is an urgent requirement to understand their fundamental biology to enable the engineering of their genomes. Current methods of phage engineering rely on homologous recombination, followed by a system of selection to identify recombinant phages. For bacteriophage T7, the host genes cmk or trxA have been used as a selection mechanism along with both type I and II CRISPR systems to select against wild-type phage and enrich for the desired mutant. Here, we systematically compare all three systems; we show that the use of marker-based selection is the most efficient method and we use this to generate multiple T7 tail fibre mutants. Furthermore, we found the type II CRISPR-Cas system is easier to use and generally more efficient than a type I system in the engineering of phage T7. These results provide a foundation for the future, more efficient engineering of bacteriophage T7.
Collapse
Affiliation(s)
- Aurelija M. Grigonyte
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | - Christian Harrison
- Department Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| | - Paul R. MacDonald
- MOAC DTC, Senate House, University of Warwick, Coventry CV4 7AL, UK;
| | - Ariadna Montero-Blay
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain;
| | - Matthew Tridgett
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | - John Duncan
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | - Antonia P. Sagona
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
| | | | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; (A.M.G.); (M.T.); (J.D.); (A.P.S.)
- Institute of Systems and Synthetic Biology (ISSB), CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Andrew Millard
- Department Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
45
|
Liu Y, Huang H, Wang H, Zhang Y. A novel approach for T7 bacteriophage genome integration of exogenous DNA. J Biol Eng 2020; 14:2. [PMID: 31988659 PMCID: PMC6966851 DOI: 10.1186/s13036-019-0224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background The comparatively small genome, well elucidated functional genomics and rapid life cycle confer T7 bacteriophage with great advantages for bio-application. Genetic manipulation of T7 genome plays a key role in T7 related applications. As one of the important aspects in T7 phage genetic modification, gene knock-in refers to two main approaches including direct genetic manipulation in vitro and recombineering. Neither of these available methods are efficient enough to support the development of innovative applications capitalizing on T7 bio-system and thus there is room for novel strategies that address this issue. Integration mediated by the ΦC31 integrase is one of the most robust site-specific recombination systems. ΦC31 integrases with enhanced activity and specificity have been developed such that it is ideal to effectuate exogenous DNA knock-in of T7 phage with advanced ΦC31 integrase. Methods Plasmid construction was conducted by routine molecular cloning technology. The engineered T7 bacteriophages were constructed through homologous recombination with corresponding plasmids and the functional T7 phage was designated as T7∆G10G11-attB. In the integration reaction, hosts with both executive plasmids (pEXM4) and donor plasmids (pMCBK) were lysed by T7∆G10G11-attB. Progenies of T7 phages that integrated with pMCBK were isolated in restrict hosts and validated by sequencing. T7∆G10G11-attB capacity limit was explored by another integration reactions with donor plasmids that contain exogenous DNA of various lengths. Results T7∆G10G11-attB exhibits abortive growth in restrictive hosts, and a bacterial attachment site recognized by ΦC31 integrase (attB) was confirmed to be present in the T7∆G10G11-attB genome via sequencing. The integration reaction demonstrated that plasmids containing the corresponding phage attachment site (attP) could be integrated into the T7∆G10G11-attB genome. The candidate recombinant phage was isolated and validated to have integrated exogenous DNA. The maximum capacity of T7∆G10G11-attB was explored, and it’s found that insertion of exogenous DNA sequences longer than 2 kbp long can be accommodated stably. Conclusion We advanced and established a novel approach for gene knock-in into the T7 genome using ΦC31 integrase.
Collapse
Affiliation(s)
- Ying Liu
- 1State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hongxing Huang
- 1State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hua Wang
- 2Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology and Guangdong, Provincial Key Laboratory of Stomatology, SunYat-sen University, Guangzhou, 510055 People's Republic of China
| | - Yan Zhang
- 1State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong People's Republic of China
| |
Collapse
|
46
|
Stoof R, Wood A, Goñi-Moreno Á. A Model for the Spatiotemporal Design of Gene Regulatory Circuits †. ACS Synth Biol 2019; 8:2007-2016. [PMID: 31429541 DOI: 10.1021/acssynbio.9b00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mathematical modeling assists the design of synthetic regulatory networks by providing a detailed mechanistic understanding of biological systems. Models that can predict the performance of a design are fundamental for synthetic biology since they minimize iterations along the design-build-test lifecycle. Such predictability depends crucially on what assumptions (i.e., biological simplifications) the model considers. Here, we challenge a common assumption when it comes to the modeling of bacterial-based gene regulation: considering negligible the effects of intracellular physical space. It is commonly assumed that molecules, such as transcription factors (TF), are homogeneously distributed inside a cell, so there is no need to model their diffusion. We describe a mathematical model that accounts for molecular diffusion and show how simulations of network performance are decisively affected by the distance between its components. Specifically, the model focuses on the search by a TF for its target promoter. The combination of local searches, via one-dimensional sliding along the chromosome, and global searches, via three-dimensional diffusion through the cytoplasm, determine TF-promoter interplay. Previous experimental results with engineered bacteria in which the distance between TF source and target was minimized or enlarged were successfully reproduced by the spatially resolved model we introduce here. This suggests that the spatial specification of the circuit alone can be exploited as a design parameter in synthetic biology to select programmable output levels.
Collapse
Affiliation(s)
- Ruud Stoof
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| | - Alexander Wood
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| | - Ángel Goñi-Moreno
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| |
Collapse
|
47
|
Borgers K, Vandewalle K, Festjens N, Callewaert N. A guide to Mycobacterium mutagenesis. FEBS J 2019; 286:3757-3774. [PMID: 31419030 DOI: 10.1111/febs.15041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/05/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
The genus Mycobacterium includes several pathogens that cause severe disease in humans, like Mycobacterium tuberculosis (M. tb), the infectious agent causing tuberculosis. Genetic tools to engineer mycobacterial genomes, in a targeted or random fashion, have provided opportunities to investigate M. tb infection and pathogenesis. Furthermore, they have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. This review describes the various methods that are available for the generation of mutants in Mycobacterium species, focusing specifically on tools for altering slow-growing mycobacteria from the M. tb complex. Among others, it incorporates the recent new molecular biological technologies (e.g. ORBIT) to rapidly and/or genome-wide comprehensively obtain targeted mutants in mycobacteria. As such, this review can be used as a guide to select the appropriate genetic tools to generate mycobacterial mutants of interest, which can be used as tools to aid understanding of M. tb infection or to help developing TB intervention strategies.
Collapse
Affiliation(s)
- Katlyn Borgers
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Kristof Vandewalle
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Nele Festjens
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Nico Callewaert
- VIB-UGhent Center for Medical Biotechnology, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|
48
|
Chen Y, Batra H, Dong J, Chen C, Rao VB, Tao P. Genetic Engineering of Bacteriophages Against Infectious Diseases. Front Microbiol 2019; 10:954. [PMID: 31130936 PMCID: PMC6509161 DOI: 10.3389/fmicb.2019.00954] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and widely distributed organisms on Earth, constituting a virtually unlimited resource to explore the development of biomedical therapies. The therapeutic use of phages to treat bacterial infections (“phage therapy”) was conceived by Felix d’Herelle nearly a century ago. However, its power has been realized only recently, largely due to the emergence of multi-antibiotic resistant bacterial pathogens. Progress in technologies, such as high-throughput sequencing, genome editing, and synthetic biology, further opened doors to explore this vast treasure trove. Here, we review some of the emerging themes on the use of phages against infectious diseases. In addition to phage therapy, phages have also been developed as vaccine platforms to deliver antigens as part of virus-like nanoparticles that can stimulate immune responses and prevent pathogen infections. Phage engineering promises to generate phage variants with unique properties for prophylactic and therapeutic applications. These approaches have created momentum to accelerate basic as well as translational phage research and potential development of therapeutics in the near future.
Collapse
Affiliation(s)
- Yibao Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Junhua Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Cen Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Pan Tao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Department of Biology, The Catholic University of America, Washington, DC, United States
| |
Collapse
|
49
|
Engineering Bacteriophages as Versatile Biologics. Trends Microbiol 2019; 27:355-367. [DOI: 10.1016/j.tim.2018.09.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 01/21/2023]
|
50
|
Monteiro R, Pires DP, Costa AR, Azeredo J. Phage Therapy: Going Temperate? Trends Microbiol 2019; 27:368-378. [DOI: 10.1016/j.tim.2018.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/29/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023]
|