1
|
Geohring IC, Chai P, Iyer BR, Ton WD, Yang J, Ide AH, George SC, Bagri JS, Baird SV, Zhang K, Markus SM. A nucleotide code governs Lis1's ability to relieve dynein autoinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630615. [PMID: 39803478 PMCID: PMC11722441 DOI: 10.1101/2024.12.30.630615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Dynein-1 is a microtubule motor responsible for the transport of cytoplasmic cargoes. Activation of motility requires it first overcome an autoinhibited state prior to its assembly with dynactin and a cargo adaptor. Studies suggest that Lis1 may relieve dynein's autoinhibited state. However, evidence for this mechanism is lacking. We first set out to determine the rules governing dynein-Lis1 binding, which reveals that their binding affinity is regulated by the nucleotide-bound states of each of three nucleotide-binding pockets within the dynein motor domain. We also find that distinct nucleotide 'codes' coordinate dynein-Lis1 binding stoichiometry by impacting binding affinity at two different sites within the dynein motor domain. Electron microscopy reveals that a 1 Lis1:1 dynein complex directly promotes an open, uninhibited conformational state of dynein, whereas a 2:1 complex resembles the autoinhibited state. Cryo-EM analysis reveals the structural basis for Lis1 opening dynein relies on interactions with the linker domain.
Collapse
|
2
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Marzo MG, Griswold JM, Markus SM. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat Cell Biol 2020; 22:559-569. [PMID: 32341548 DOI: 10.1038/s41556-020-0492-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Dynein is a microtubule motor that transports many different cargos in various cell types and contexts. How dynein is regulated to perform these activities with spatial and temporal precision remains unclear. Human dynein is regulated by autoinhibition, whereby intermolecular contacts limit motor activity. Whether this mechanism is conserved throughout evolution, whether it can be affected by extrinsic factors, and its role in regulating dynein function remain unclear. Here, we use a combination of negative stain electron microscopy, single-molecule assays, genetic, and cell biological techniques to show that autoinhibition is conserved in budding yeast, and plays a key role in coordinating in vivo dynein function. Moreover, we find that the Lissencephaly-related protein, LIS1 (Pac1 in yeast), plays an important role in regulating dynein autoinhibition. Our studies demonstrate that, rather than inhibiting dynein motility, Pac1/LIS1 promotes dynein activity by stabilizing the uninhibited conformation, which ensures appropriate dynein localization and activity in cells.
Collapse
Affiliation(s)
- Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jacqueline M Griswold
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Kinesin-5 Is Dispensable for Bipolar Spindle Formation and Elongation in Candida albicans, but Simultaneous Loss of Kinesin-14 Activity Is Lethal. mSphere 2019; 4:4/6/e00610-19. [PMID: 31722992 PMCID: PMC6854041 DOI: 10.1128/msphere.00610-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic spindles assume a bipolar architecture through the concerted actions of microtubules, motors, and cross-linking proteins. In most eukaryotes, kinesin-5 motors are essential to this process, and cells will fail to form a bipolar spindle without kinesin-5 activity. Remarkably, inactivation of kinesin-14 motors can rescue this kinesin-5 deficiency by reestablishing the balance of antagonistic forces needed to drive spindle pole separation and spindle assembly. We show that the yeast form of the opportunistic fungus Candida albicans assembles bipolar spindles in the absence of its sole kinesin-5, CaKip1, even though this motor exhibits stereotypical cell-cycle-dependent localization patterns within the mitotic spindle. However, cells lacking CaKip1 function have shorter metaphase spindles and longer and more numerous astral microtubules. They also show defective hyphal development. Interestingly, a small population of CaKip1-deficient spindles break apart and reform two bipolar spindles in a single nucleus. These spindles then separate, dividing the nucleus, and then elongate simultaneously in the mother and bud or across the bud neck, resulting in multinucleate cells. These data suggest that kinesin-5-independent mechanisms drive assembly and elongation of the mitotic spindle in C. albicans and that CaKip1 is important for bipolar spindle integrity. We also found that simultaneous loss of kinesin-5 and kinesin-14 (CaKar3Cik1) activity is lethal. This implies a divergence from the antagonistic force paradigm that has been ascribed to these motors, which could be linked to the high mitotic error rate that C. albicans experiences and often exploits as a generator of diversity.IMPORTANCE Candida albicans is one of the most prevalent fungal pathogens of humans and can infect a broad range of niches within its host. This organism frequently acquires resistance to antifungal agents through rapid generation of genetic diversity, with aneuploidy serving as a particularly important adaptive mechanism. This paper describes an investigation of the sole kinesin-5 in C. albicans, which is a major regulator of chromosome segregation. Contrary to other eukaryotes studied thus far, C. albicans does not require kinesin-5 function for bipolar spindle assembly or spindle elongation. Rather, this motor protein associates with the spindle throughout mitosis to maintain spindle integrity. Furthermore, kinesin-5 loss is synthetically lethal with loss of kinesin-14-canonically an opposing force producer to kinesin-5 in spindle assembly and anaphase. These results suggest a significant evolutionary rewiring of microtubule motor functions in the C. albicans mitotic spindle, which may have implications in the genetic instability of this pathogen.
Collapse
|
6
|
Marzo MG, Griswold JM, Ruff KM, Buchmeier RE, Fees CP, Markus SM. Molecular basis for dyneinopathies reveals insight into dynein regulation and dysfunction. eLife 2019; 8:47246. [PMID: 31364990 PMCID: PMC6733598 DOI: 10.7554/elife.47246] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic dynein plays critical roles within the developing and mature nervous systems, including effecting nuclear migration, and retrograde transport of various cargos. Unsurprisingly, mutations in dynein are causative of various developmental neuropathies and motor neuron diseases. These ‘dyneinopathies’ define a broad spectrum of diseases with no known correlation between mutation identity and disease state. To circumvent complications associated with dynein studies in human cells, we employed budding yeast as a screening platform to characterize the motility properties of seventeen disease-correlated dynein mutants. Using this system, we determined the molecular basis for several classes of etiologically related diseases. Moreover, by engineering compensatory mutations, we alleviated the mutant phenotypes in two of these cases, one of which we confirmed with recombinant human dynein. In addition to revealing molecular insight into dynein regulation, our data provide additional evidence that the type of disease may in fact be dictated by the degree of dynein dysfunction. Motor proteins maintain order by transporting biomolecules and various structures within living cells. Dynein is one such motor that moves many types of cargoes along tracks called microtubules, which are spread across the cell’s interior. This motor is particularly important in nerve cells, which can be very long and thus depend heavily on motor proteins to ensure cargoes end up where they are needed. This becomes especially apparent in human diseases that arise as a consequence of mutations in the genes that produce components of the dynein motor. It is assumed that these genetic changes simply prevent dynein from working properly, which ultimately affects the health and survival of cells. However, it is currently unknown what specific effect these mutations have on dynein’s role within the cell, and how these changes lead to particular diseases. Marzo et al. have now used dynein from a budding yeast to closely examine 17 mutations in the dynein gene that are associated with developmental and/or motor neuron diseases in humans. For each mutation, various aspects of how dynein moves (e.g. average speed, distance travelled) were measured and quantitatively compared. The results show that the severity of the effect of each mutation can be directly correlated with the type of disease caused by the mutation. In particular, mutations that lead to less severe defects are found in patients that suffer from various motor neuron diseases, while more severe dynein mutations are found in patients with developmental brain disorders. Marzo et al. confirmed the likely structural changes that caused the defects in dynein’s activity in two of the 17 cases, by engineering additional, restorative mutations that lessened the effects of the primary mutation. These findings reveal links between the molecular impact of defects in the dynein gene and human health. They also confirm that budding yeast is a powerful tool for investigating newly discovered dynein mutations that correlate with disease. This study provides a potential system that could be used to screen drugs that might lessen the effects of specific dynein mutations. However, further work is needed to determine how effective this system will be for drug discovery.
Collapse
Affiliation(s)
- Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Jacqueline M Griswold
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Kristina M Ruff
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Rachel E Buchmeier
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Colby P Fees
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| |
Collapse
|
7
|
Sanchez E, Liu X, Huse M. Actin clearance promotes polarized dynein accumulation at the immunological synapse. PLoS One 2019; 14:e0210377. [PMID: 31269031 PMCID: PMC6608937 DOI: 10.1371/journal.pone.0210377] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Immunological synapse (IS) formation between a T cell and an antigen-presenting cell is accompanied by the reorientation of the T cell centrosome toward the interface. This polarization response is thought to enhance the specificity of T cell effector function by enabling the directional secretion of cytokines and cytotoxic factors toward the antigen-presenting cell. Centrosome reorientation is controlled by polarized signaling through diacylglycerol (DAG) and protein kinase C (PKC). This drives the recruitment of the motor protein dynein to the IS, where it pulls on microtubules to reorient the centrosome. Here, we used T cell receptor photoactivation and imaging methodology to investigate the mechanisms controlling dynein accumulation at the synapse. Our results revealed a remarkable spatiotemporal correlation between dynein recruitment to the synaptic membrane and the depletion of cortical filamentous actin (F-actin) from the same region, suggesting that the two events were causally related. Consistent with this hypothesis, we found that pharmacological disruption of F-actin dynamics in T cells impaired both dynein accumulation and centrosome reorientation. DAG and PKC signaling were necessary for synaptic F-actin clearance and dynein accumulation, while calcium signaling and microtubules were dispensable for both responses. Taken together, these data provide mechanistic insight into the polarization of cytoskeletal regulators and highlight the close coordination between microtubule and F-actin architecture at the IS.
Collapse
Affiliation(s)
- Elisa Sanchez
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Xin Liu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
8
|
Rodriguez-Garcia R, Chesneau L, Pastezeur S, Roul J, Tramier M, Pécréaux J. The polarity-induced force imbalance in Caenorhabditis elegans embryos is caused by asymmetric binding rates of dynein to the cortex. Mol Biol Cell 2018; 29:3093-3104. [PMID: 30332325 PMCID: PMC6340208 DOI: 10.1091/mbc.e17-11-0653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
During asymmetric cell division, the molecular motor dynein generates cortical pulling forces that position the spindle to reflect polarity and adequately distribute cell fate determinants. In Caenorhabditis elegans embryos, despite a measured anteroposterior force imbalance, antibody staining failed to reveal dynein enrichment at the posterior cortex, suggesting a transient localization there. Dynein accumulates at the microtubule plus ends, in an EBP-2EB-dependent manner. This accumulation, although not transporting dynein, contributes modestly to cortical forces. Most dyneins may instead diffuse to the cortex. Tracking of cortical dynein revealed two motions: one directed and the other diffusive-like, corresponding to force-generating events. Surprisingly, while dynein is not polarized at the plus ends or in the cytoplasm, diffusive-like tracks were more frequently found at the embryo posterior tip, where the forces are higher. This asymmetry depends on GPR-1/2LGN and LIN-5NuMA, which are enriched there. In csnk-1(RNAi) embryos, the inverse distribution of these proteins coincides with an increased frequency of diffusive-like tracks anteriorly. Importantly, dynein cortical residence time is always symmetric. We propose that the dynein-binding rate at the posterior cortex is increased, causing the polarity-reflecting force imbalance. This mechanism of control supplements the regulation of mitotic progression through the nonpolarized dynein detachment rate.
Collapse
Affiliation(s)
- Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Julien Roul
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Marc Tramier
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| |
Collapse
|
9
|
Lengefeld J, Yen E, Chen X, Leary A, Vogel J, Barral Y. Spatial cues and not spindle pole maturation drive the asymmetry of astral microtubules between new and preexisting spindle poles. Mol Biol Cell 2017; 29:10-28. [PMID: 29142076 PMCID: PMC5746063 DOI: 10.1091/mbc.e16-10-0725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
The distinct behavior of the spindle pole bodies (SPBs) during spindle orientation in yeast metaphase does not result from them being differently mature, but astral microtubule organization correlates with the subcellular position rather than the age of the SPBs. In many asymmetrically dividing cells, the microtubule-organizing centers (MTOCs; mammalian centrosome and yeast spindle pole body [SPB]) nucleate more astral microtubules on one of the two spindle poles than the other. This differential activity generally correlates with the age of MTOCs and contributes to orienting the mitotic spindle within the cell. The asymmetry might result from the two MTOCs being in distinctive maturation states. We investigated this model in budding yeast. Using fluorophores with different maturation kinetics to label the outer plaque components of the SPB, we found that the Cnm67 protein is mobile, whereas Spc72 is not. However, these two proteins were rapidly as abundant on both SPBs, indicating that SPBs mature more rapidly than anticipated. Superresolution microscopy confirmed this finding for Spc72 and for the γ-tubulin complex. Moreover, astral microtubule number and length correlated with the subcellular localization of SPBs rather than their age. Kar9-dependent orientation of the spindle drove the differential activity of the SPBs in astral microtubule organization rather than intrinsic differences between the spindle poles. Together, our data establish that Kar9 and spatial cues, rather than the kinetics of SPB maturation, control the asymmetry of astral microtubule organization between the preexisting and new SPBs.
Collapse
Affiliation(s)
- Jette Lengefeld
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Eric Yen
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Xiuzhen Chen
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Allen Leary
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Jackie Vogel
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Barbosa DJ, Duro J, Prevo B, Cheerambathur DK, Carvalho AX, Gassmann R. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport. PLoS Genet 2017; 13:e1006941. [PMID: 28759579 PMCID: PMC5552355 DOI: 10.1371/journal.pgen.1006941] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 07/25/2017] [Indexed: 12/01/2022] Open
Abstract
The microtubule-based motor dynein generates pulling forces for centrosome centration and mitotic spindle positioning in animal cells. How the essential dynein activator dynactin regulates these functions of the motor is incompletely understood. Here, we dissect the role of dynactin's microtubule binding activity, located in the p150 CAP-Gly domain and an adjacent basic patch, in the C. elegans zygote. Analysis of p150 mutants engineered by genome editing suggests that microtubule tip tracking of dynein-dynactin is dispensable for targeting the motor to the cell cortex and for generating robust cortical pulling forces. Instead, mutations in p150's CAP-Gly domain inhibit cytoplasmic pulling forces responsible for centration of centrosomes and attached pronuclei. The centration defects are mimicked by mutations of α-tubulin's C-terminal tyrosine, and both p150 CAP-Gly and tubulin tyrosine mutants decrease the frequency of early endosome transport from the cell periphery towards centrosomes during centration. Our results suggest that p150 GAP-Gly domain binding to tyrosinated microtubules promotes initiation of dynein-mediated organelle transport in the dividing one-cell embryo, and that this function of p150 is critical for generating cytoplasmic pulling forces for centrosome centration.
Collapse
Affiliation(s)
- Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Joana Duro
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Bram Prevo
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Dhanya K. Cheerambathur
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Baumbach J, Murthy A, McClintock MA, Dix CI, Zalyte R, Hoang HT, Bullock SL. Lissencephaly-1 is a context-dependent regulator of the human dynein complex. eLife 2017; 6. [PMID: 28406398 PMCID: PMC5413349 DOI: 10.7554/elife.21768] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 01/19/2023] Open
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a central role in microtubule organisation and cargo transport. These functions are spatially regulated by association of dynein and its accessory complex dynactin with dynamic microtubule plus ends. Here, we elucidate in vitro the roles of dynactin, end-binding protein-1 (EB1) and Lissencephaly-1 (LIS1) in the interaction of end tracking and minus end-directed human dynein complexes with these sites. LIS1 promotes dynactin-dependent tracking of dynein on both growing and shrinking plus ends. LIS1 also increases the frequency and velocity of processive dynein movements that are activated by complex formation with dynactin and a cargo adaptor. This stimulatory effect of LIS1 contrasts sharply with its documented ability to inhibit the activity of isolated dyneins. Collectively, our findings shed light on how mammalian dynein complexes associate with dynamic microtubules and help clarify how LIS1 promotes the plus-end localisation and cargo transport functions of dynein in vivo. DOI:http://dx.doi.org/10.7554/eLife.21768.001
Collapse
Affiliation(s)
- Janina Baumbach
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andal Murthy
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Carly I Dix
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ruta Zalyte
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ha Thi Hoang
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
12
|
Mahale S, Kumar M, Sharma A, Babu A, Ranjan S, Sachidanandan C, Mylavarapu SVS. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation. Sci Rep 2016; 6:22. [PMID: 28003657 PMCID: PMC5431351 DOI: 10.1038/s41598-016-0030-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic dynein 1 is a multi-protein intracellular motor essential for mediating several mitotic functions, including the establishment of proper spindle orientation. The functional relevance and mechanistic distinctions between two discrete dynein subpopulations distinguished only by Light Intermediate Chain (LIC) homologues, LIC1 and LIC2 is unknown during mitosis. Here, we identify LIC2-dynein as the major mediator of proper spindle orientation and uncover its underlying molecular mechanism. Cortically localized dynein, essential for maintaining correct spindle orientation, consists majorly of LIC2-dynein, which interacts with cortical 14-3-3 ε- ζ and Par3, conserved proteins required for orienting the spindle. LIC2-dynein is also responsible for the majority of dynein-mediated asymmetric poleward transport of NuMA, helping focus microtubule minus ends. In addition, LIC2-dynein dominates in equatorially aligning chromosomes at metaphase and in regulating mitotic spindle length. Key mitotic functions of LIC2 were remarkably conserved in and essential for early embryonic divisions and development in zebrafish. Thus LIC2-dynein exclusively engages with two major cortical pathways to govern spindle orientation. Overall, we identify a novel selectivity of molecular interactions between the two LICs in mitosis as the underlying basis for their uneven distribution of labour in ensuring proper spindle orientation.
Collapse
Affiliation(s)
- Sagar Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.,Affiliated to Manipal University, Manipal, Karnataka, 576104, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.,Affiliated to Manipal University, Manipal, Karnataka, 576104, India
| | - Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India. .,Affiliated to Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
13
|
Sharif SR, Islam A, Moon IS. N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division. Mol Cells 2016; 39:669-79. [PMID: 27646688 PMCID: PMC5050531 DOI: 10.14348/molcells.2016.0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| |
Collapse
|
14
|
di Pietro F, Echard A, Morin X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 2016; 17:1106-30. [PMID: 27432284 DOI: 10.15252/embr.201642292] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France Institute of Doctoral Studies (IFD), Sorbonne Universités Université Pierre et Marie Curie-Université Paris 6, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Cell Biology and Infection Department, Institut Pasteur, Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3691, Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France
| |
Collapse
|
15
|
Ananthanarayanan V. Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation. Bioessays 2016; 38:514-25. [PMID: 27143631 DOI: 10.1002/bies.201600002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytoplasmic dynein is the major minus-end-directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non-motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise the nuclear material. Anchor proteins of dynein assume diverse structures and functions and differ in their interaction with the membrane. In yeast, the anchor protein has come to the fore as one of the key mediators of dynein activity. In other systems, much is yet to be discovered about the anchors, but future work in this area will prove invaluable in understanding dynein regulation in the cell.
Collapse
|
16
|
Tuncay H, Ebnet K. Cell adhesion molecule control of planar spindle orientation. Cell Mol Life Sci 2016; 73:1195-207. [PMID: 26698907 PMCID: PMC11108431 DOI: 10.1007/s00018-015-2116-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet.
Collapse
Affiliation(s)
- Hüseyin Tuncay
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48419, Muenster, Germany.
| |
Collapse
|
17
|
Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL. Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 2015; 31:83-108. [PMID: 26436706 DOI: 10.1146/annurev-cellbio-100814-125438] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.
Collapse
Affiliation(s)
- Michael A Cianfrocco
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| |
Collapse
|
18
|
Sutradhar S, Yadav V, Sridhar S, Sreekumar L, Bhattacharyya D, Ghosh SK, Paul R, Sanyal K. A comprehensive model to predict mitotic division in budding yeasts. Mol Biol Cell 2015; 26:3954-65. [PMID: 26310442 PMCID: PMC4710229 DOI: 10.1091/mbc.e15-04-0236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/14/2015] [Indexed: 12/26/2022] Open
Abstract
A mechanistic in silico model predicts mitotic events and effects of perturbation in budding yeasts belonging to Ascomycota and Basidiomycota. The model identifies distinct pathways based on the population of cytoplasmic microtubules and cortical dyneins as determinants of nuclear and spindle positioning in these phyla. High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division.
Collapse
Affiliation(s)
- Sabyasachi Sutradhar
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Vikas Yadav
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shreyas Sridhar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Lakshmi Sreekumar
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dibyendu Bhattacharyya
- Tata Memorial Centre, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai 410210, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Raja Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
19
|
Qi R, Xu N, Wang G, Ren H, Li S, Lei J, Lin Q, Wang L, Gu X, Zhang H, Jiang Q, Zhang C. The lamin-A/C-LAP2α-BAF1 protein complex regulates mitotic spindle assembly and positioning. J Cell Sci 2015; 128:2830-41. [PMID: 26092935 DOI: 10.1242/jcs.164566] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/15/2015] [Indexed: 01/31/2023] Open
Abstract
Some nuclear proteins that are crucial in interphase relocate during the G2/M-phase transition in order to perform their mitotic functions. However, how they perform these functions and the underlying mechanisms remain largely unknown. Here, we report that a fraction of the nuclear periphery proteins lamin-A/C, LAP2α and BAF1 (also known as BANF1) relocate to the spindle and the cell cortex in mitosis. Knockdown of these proteins by using RNA interference (RNAi) induces short and fluffy spindle formation, and disconnection of the spindle from the cell cortex. Disrupting the microtubule assembly leads to accumulation of these proteins in the cell cortex, whereas depolymerizing the actin microfilaments results in the formation of short spindles. We further demonstrate that these proteins are part of a stable complex that links the mitotic spindle to the cell cortex and the spindle matrix by binding to spindle-associated dynein, the actin filaments in the cell cortex and the spindle matrix. Taken together, our findings unveil a unique mechanism where the nuclear periphery proteins lamin-A/C, LAP2α and BAF1 are assembled into a protein complex during mitosis in order to regulate assembly and positioning of the mitotic spindle.
Collapse
Affiliation(s)
- Ran Qi
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Nan Xu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Gang Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Si Li
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Jun Lei
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Qiaoyu Lin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Lihao Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Xin Gu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Hongyin Zhang
- Cancer Research Center, Peking University Hospital, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Beijing 100871, China
| |
Collapse
|
20
|
Xiang X, Qiu R, Yao X, Arst HN, Peñalva MA, Zhang J. Cytoplasmic dynein and early endosome transport. Cell Mol Life Sci 2015; 72:3267-80. [PMID: 26001903 DOI: 10.1007/s00018-015-1926-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022]
Abstract
Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA,
| | | | | | | | | | | |
Collapse
|
21
|
Wang M, Collins RN. A lysine deacetylase Hos3 is targeted to the bud neck and involved in the spindle position checkpoint. Mol Biol Cell 2014; 25:2720-34. [PMID: 25057019 PMCID: PMC4161508 DOI: 10.1091/mbc.e13-10-0619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Saccharomyces cerevisiae lysine deacetylase Hos3 is asymmetrically targeted to the daughter side of the neck, dependent on the morphogenesis checkpoint member Hsl7, and to the daughter spindle pole body (SPB). In the presence of spindle misalignment, Hos3 at the SPBs functions as a brake component to inhibit mitotic exit. An increasing number of cellular activities can be regulated by reversible lysine acetylation. Targeting the enzymes responsible for such posttranslational modifications is instrumental in defining their substrates and functions in vivo. Here we show that a Saccharomyces cerevisiae lysine deacetylase, Hos3, is asymmetrically targeted to the daughter side of the bud neck and to the daughter spindle pole body (SPB). The morphogenesis checkpoint member Hsl7 recruits Hos3 to the neck region. Cells with a defect in spindle orientation trigger Hos3 to load onto both SPBs. When associated symmetrically with both SPBs, Hos3 functions as a spindle position checkpoint (SPOC) component to inhibit mitotic exit. Neck localization of Hos3 is essential for its symmetric association with SPBs in cells with misaligned spindles. Our data suggest that Hos3 facilitates cross-talk between the morphogenesis checkpoint and the SPOC as a component of the intricate monitoring of spindle orientation after mitotic entry and before commitment to mitotic exit.
Collapse
Affiliation(s)
- Mengqiao Wang
- Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Ruth N Collins
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
22
|
Tame MA, Raaijmakers JA, van den Broek B, Lindqvist A, Jalink K, Medema RH. Astral microtubules control redistribution of dynein at the cell cortex to facilitate spindle positioning. Cell Cycle 2014; 13:1162-70. [PMID: 24553118 PMCID: PMC4013166 DOI: 10.4161/cc.28031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein is recruited to the cell cortex in early mitosis, where it can generate pulling forces on astral microtubules to position the mitotic spindle. Recent work has shown that dynein displays a dynamic asymmetric cortical localization, and that dynein recruitment is negatively regulated by spindle pole-proximity. This results in oscillating dynein recruitment to opposite sides of the cortex to center the mitotic spindle. However, although the centrosome-derived signal that promotes displacement of dynein has been identified, it is currently unknown how dynein is re-recruited to the cortex once it has been displaced. Here we show that re-recruitment of cortical dynein requires astral microtubules. We find that microtubules are necessary for the sustained localized enrichment of dynein at the cortex. Furthermore, we show that stabilization of astral microtubules causes spindle misorientation, followed by mispositioning of dynein at the cortex. Thus, our results demonstrate the importance of astral microtubules in the dynamic regulation of cortical dynein recruitment in mitosis.
Collapse
Affiliation(s)
- Mihoko A Tame
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - Arne Lindqvist
- Department of Cell and Molecular Biology; Karolinska Institutet; Stockholm, Sweden
| | - Kees Jalink
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology; The Netherlands Cancer Institute; Amsterdam, The Netherlands
| |
Collapse
|
23
|
Gunning P. BioArchitecture: the organization and regulation of biological space. BIOARCHITECTURE 2012; 2:200-3. [PMID: 23267413 PMCID: PMC3527313 DOI: 10.4161/bioa.22726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BioArchitecture is a term used to describe the organization and regulation of biological space. It applies to the principles which govern the structure of molecules, polymers and mutiprotein complexes, organelles, membranes and their organization in the cytoplasm and the nucleus. It also covers the integration of cells into their three dimensional environment at the level of cell-matrix, cell-cell interactions, integration into tissue/organ structure and function and finally into the structure of the organism. This review will highlight studies at all these levels which are providing a new way to think about the relationship between the organization of biological space and the function of biological systems.
Collapse
Affiliation(s)
- Peter Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
24
|
Tang X, Germain BS, Lee WL. A novel patch assembly domain in Num1 mediates dynein anchoring at the cortex during spindle positioning. ACTA ACUST UNITED AC 2012; 196:743-56. [PMID: 22431751 PMCID: PMC3308694 DOI: 10.1083/jcb.201112017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During mitosis in budding yeast, cortically anchored dynein generates pulling forces on astral microtubules to position the mitotic spindle across the mother-bud neck. The attachment molecule Num1 is required for dynein anchoring at the cell membrane, but how Num1 assembles into stationary cortical patches and interacts with dynein is unknown. We show that an N-terminal Bin/Amphiphysin/Rvs (BAR)-like domain in Num1 mediates the assembly of morphologically distinct patches and its interaction with dynein for spindle translocation into the bud. We name this domain patch assembly domain (PA; residues 1-303), as it was both necessary and sufficient for the formation of functional dynein-anchoring patches when it was attached to a pleckstrin homology domain or a CAAX motif. Distinct point mutations targeting the predicted BAR-like PA domain differentially disrupted patch assembly, dynein anchoring, and mitochondrial attachment functions of Num1. We also show that the PA domain is an elongated dimer and discuss the mechanism by which it drives patch assembly.
Collapse
Affiliation(s)
- Xianying Tang
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
25
|
Abstract
Nuclear movement often requires interactions between the cell cortex and microtubules. A new study has revealed a novel protein interaction linking microtubule plus-ends with the cortex and a role for dynein in microtubule shrinkage-coupled movement.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|