1
|
Takahashi S, Maehara M, Nishihara C, Iwata H, Shibutani S. A genome-wide CRISPR-Cas9 knockout screen using dynamin knockout cells identifies Nf2 and Traf3 as genes involved in dynamin-independent endocytosis. Exp Cell Res 2025; 446:114470. [PMID: 39978713 DOI: 10.1016/j.yexcr.2025.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Endocytosis is a fundamental process by which cells take up extracellular materials, including nutrients, growth factors, and pathogens. Although several endocytic pathways, such as clathrin-mediated and caveolin-mediated endocytosis, are well-characterized, other endocytic pathways remain poorly understood. Therefore, in this study, we performed a genome-wide CRISPR-Cas9 screen to elucidate new endocytic pathways using dynamin conditional knockout cells. We identified genes that significantly reduced the cell numbers when knocked out simultaneously with dynamin. Among these, neurofibromin 2 (Nf2) and tumor necrosis factor receptor-associated factor 3 (Traf3), whose relationship with endocytosis was not well understood, were investigated for their roles in endocytosis activity. Nf2 and Traf3 knockout cells exhibited reduced non-specific fluid endocytosis in a dynamin-independent manner. However, Nf2 or Traf3 knockout did not affect the transferrin receptor-mediated endocytosis that depends on clathrin and dynamin. Moreover, Nf2 knockout cells showed reduced cholera toxin uptake in a dynamin-independent manner. Overall, this study highlights the roles of Nf2 and Traf3 in endocytosis.
Collapse
Affiliation(s)
- Sho Takahashi
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Mizuho Maehara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Chihiro Nishihara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Hiroyuki Iwata
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Chinnathambi S. α-Linolenic Acid Vesicles-Mediated Tau Internalization in Microglia. Methods Mol Biol 2024; 2816:117-128. [PMID: 38977593 DOI: 10.1007/978-1-0716-3902-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In Alzheimer's disease, the synaptic loss is prominent due to the accumulation of Amyloid βeta (Aβ) protein in synapses, which affect neurotransmission, and thus ultimately causes neuronal loss. Tau, a microtubule-associated protein, is a vital protein of intracellular neurofibrillary tangles (NFTs) in AD. Along with the accumulation of aberrant proteins, glial cells, mainly astrocytes and microglia, play a major role in impairing neuronal network. Microglia have the ability to phagocytose Tau and rerelease in exosomes, which causes further spreading of Tau. Reduction in exosome synthesis can reduce spreading of Tau. Modulating microglia to clear the extracellular Tau seeds by its imported degradation would resolve the disease condition in Alzheimer's disease. In this study, we have shown the ability of α-linolenic acid (ALA) to inhibit the Tau aggregation and modulate their internalization property in microglial cells.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
3
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
4
|
Connecting the dots: combined control of endocytic recycling and degradation. Biochem Soc Trans 2021; 48:2377-2386. [PMID: 33300959 PMCID: PMC7752043 DOI: 10.1042/bst20180255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Endocytosis is an essential process where proteins and lipids are internalised from the plasma membrane in membrane-bound carriers, such as clathrin-coated vesicles. Once internalised into the cell these vesicles fuse with the endocytic network where their contents are sorted towards degradation in the lysosome or recycling to their origin. Initially, it was thought that cargo recycling is a passive process, but in recent years the identification and characterisation of specialised recycling complexes has established a hitherto unthought-of level of complexity that actively opposes degradation. This review will summarise recent developments regarding the composition and regulation of the recycling machineries and their relationship with the degradative pathways of the endosome.
Collapse
|
5
|
Grikscheit K, Dolnik O, Takamatsu Y, Pereira AR, Becker S. Ebola Virus Nucleocapsid-Like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells 2020; 9:cells9071728. [PMID: 32707734 PMCID: PMC7407605 DOI: 10.3390/cells9071728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
The intracellular transport of nucleocapsids of the highly pathogenic Marburg, as well as Ebola virus (MARV, EBOV), represents a critical step during the viral life cycle. Intriguingly, a population of these nucleocapsids is distributed over long distances in a directed and polar fashion. Recently, it has been demonstrated that the intracellular transport of filoviral nucleocapsids depends on actin polymerization. While it was shown that EBOV requires Arp2/3-dependent actin dynamics, the details of how the virus exploits host actin signaling during intracellular transport are largely unknown. Here, we apply a minimalistic transfection system to follow the nucleocapsid-like structures (NCLS) in living cells, which can be used to robustly quantify NCLS transport in live cell imaging experiments. Furthermore, in cells co-expressing LifeAct, a marker for actin dynamics, NCLS transport is accompanied by pulsative actin tails appearing on the rear end of NCLS. These actin tails can also be preserved in fixed cells, and can be visualized via high resolution imaging using STORM in transfected, as well as EBOV infected, cells. The application of inhibitory drugs and siRNA depletion against actin regulators indicated that EBOV NCLS utilize the canonical Arp2/3-Wave1-Rac1 pathway for long-distance transport in cells. These findings highlight the relevance of the regulation of actin polymerization during directed EBOV nucleocapsid transport in human cells.
Collapse
Affiliation(s)
- Katharina Grikscheit
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
| | - Yuki Takamatsu
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
6
|
Valdembri D, Serini G. Angiogenesis: The Importance of RHOJ-Mediated Trafficking of Active Integrins. Curr Biol 2020; 30:R652-R654. [PMID: 32516616 DOI: 10.1016/j.cub.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In endothelial cells, trafficking of active α5β1 integrins and polarized fibronectin secretion are important for vascular morphogenesis. A new study unveils how the endothelial small GTPase RHOJ, by repressing trafficking of active α5β1 integrins, controls fibronectin polymerization and in vivo angiogenesis.
Collapse
Affiliation(s)
- Donatella Valdembri
- Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo (TO), Italy; Department of Oncology, University of Torino School of Medicine, 10060 Candiolo (TO), Italy.
| | - Guido Serini
- Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo (TO), Italy; Department of Oncology, University of Torino School of Medicine, 10060 Candiolo (TO), Italy.
| |
Collapse
|
7
|
Qin EC, Kandel ME, Liamas E, Shah TB, Kim C, Kaufman CD, Zhang ZJ, Popescu G, Gillette MU, Leckband DE, Kong H. Graphene oxide substrates with N-cadherin stimulates neuronal growth and intracellular transport. Acta Biomater 2019; 90:412-423. [PMID: 30951897 DOI: 10.1016/j.actbio.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Intracellular transport is fundamental for neuronal function and development and is dependent on the formation of stable actin filaments. N-cadherin, a cell-cell adhesion protein, is actively involved in neuronal growth and actin cytoskeleton organization. Various groups have explored how neurons behaved on substrates engineered to present N-cadherin; however, few efforts have been made to examine how these surfaces modulate neuronal intracellular transport. To address this issue, we assembled a substrate to which recombinant N-cadherin molecules are physiosorbed using graphene oxide (GO) or reduced graphene oxide (rGO). N-cadherin physisorbed on GO and rGO led to a substantial enhancement of intracellular mass transport along neurites relative to N-cadherin on glass, due to increased neuronal adhesion, neurite extensions, dendritic arborization and glial cell adhesion. This study will be broadly useful for recreating active neural tissues in vitro and for improving our understanding of the development, homeostasis, and physiology of neurons. STATEMENT OF SIGNIFICANCE: Intracellular transport of proteins and chemical cues is extremely important for culturing neurons in vitro, as they replenish materials within and facilitate communication between neurons. Various studies have shown that intracellular transport is dependent on the formation of stable actin filaments. However, the extent to which cadherin-mediated cell-cell adhesion modulates intracellular transport is not heavily explored. In this study, N-cadherin was adsorbed onto graphene oxide-based substrates to understand the role of cadherin at a molecular level and the intracellular transport within cells was examined using spatial light interference microscopy. As such, the results of this study will serve to better understand and harness the role of cell-cell adhesion in neuron development and regeneration.
Collapse
|
8
|
Simonetti B, Cullen PJ. Actin-dependent endosomal receptor recycling. Curr Opin Cell Biol 2018; 56:22-33. [PMID: 30227382 DOI: 10.1016/j.ceb.2018.08.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Endosomes constitute major sorting compartments within the cell. There, a myriad of transmembrane proteins (cargoes) are delivered to the lysosome for degradation or retrieved from this fate and recycled through tubulo-vesicular transport carriers to different cellular destinations. Retrieval and recycling are orchestrated by multi-protein assemblies that include retromer and retriever, sorting nexins, and the Arp2/3 activating WASH complex. Fine-tuned control of actin polymerization on endosomes is fundamental for the retrieval and recycling of cargoes. Recent advances in the field have highlighted several roles that actin plays in this process including the binding to cargoes, stabilization of endosomal subdomains, generation of the remodeling forces required for the biogenesis of cargo-enriched transport carriers and short-range motility of the transport carriers.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
9
|
MacDonald E, Brown L, Selvais A, Liu H, Waring T, Newman D, Bithell J, Grimes D, Urbé S, Clague MJ, Zech T. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J Cell Biol 2018; 217:2549-2564. [PMID: 29891722 PMCID: PMC6028553 DOI: 10.1083/jcb.201710051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Transmembrane proteins in the sorting endosome are either recycled to their point of origin or destined for lysosomal degradation. Lysosomal sorting is mediated by interaction of ubiquitylated transmembrane proteins with the endosomal sorting complex required for transport (ESCRT) machinery. In this study, we uncover an alternative role for the ESCRT-0 component hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) in promoting the constitutive recycling of transmembrane proteins. We find that endosomal localization of the actin nucleating factor Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) requires HRS, which occupies adjacent endosomal subdomains. Depletion of HRS results in defective constitutive recycling of epidermal growth factor receptor and the matrix metalloproteinase MT1-MMP, leading to their accumulation in internal compartments. We show that direct interactions with endosomal actin are required for efficient recycling and use a model system of chimeric transferrin receptor trafficking to show that an actin-binding motif can counteract an ubiquitin signal for lysosomal sorting. Directed receptor recycling is used by cancer cells to achieve invasive migration. Accordingly, abrogating HRS- and actin-dependent MT1-MMP recycling results in defective matrix degradation and invasion of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ewan MacDonald
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Arnaud Selvais
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Daniel Newman
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Douglas Grimes
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Sylvie Urbé
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Michael J Clague
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| |
Collapse
|
10
|
Tyrrell BJ, Woodham EF, Spence HJ, Strathdee D, Insall RH, Machesky LM. Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour. Pigment Cell Melanoma Res 2016; 29:559-71. [PMID: 27390154 PMCID: PMC5082549 DOI: 10.1111/pcmr.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/02/2016] [Indexed: 12/24/2022]
Abstract
The five-subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin.
Collapse
Affiliation(s)
- Benjamin J Tyrrell
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma F Woodham
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Heather J Spence
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert H Insall
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
11
|
Ma W, Lin M, Ding H, Lin G, Zhang Z. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis. PLoS One 2016; 11:e0151767. [PMID: 26986486 PMCID: PMC4795675 DOI: 10.1371/journal.pone.0151767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media.
Collapse
Affiliation(s)
- Weilie Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Margarita Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Guorong Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- * E-mail: (GL); (ZZ)
| | - Zhizhen Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- * E-mail: (GL); (ZZ)
| |
Collapse
|
12
|
Wang Y, Arjonen A, Pouwels J, Ta H, Pausch P, Bange G, Engel U, Pan X, Fackler OT, Ivaska J, Grosse R. Formin-like 2 Promotes β1-Integrin Trafficking and Invasive Motility Downstream of PKCα. Dev Cell 2015; 34:475-83. [PMID: 26256210 DOI: 10.1016/j.devcel.2015.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/01/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
Abstract
Regulated turnover of integrin receptors is essential for cell adhesion and migration. Pathways selectively regulating β1-integrin recycling are implicated in cancer invasion and metastasis, yet proteins required for the internalization of this pro-invasive integrin remain to be identified. Here, we uncover formin-like 2 (FMNL2) as a critical regulator of β1-integrin internalization downstream of protein kinase C (PKC). PKCα associates with and phosphorylates FMNL2 at S1072 within its Diaphanous autoregulatory region, leading to the release of formin autoinhibition. Phosphorylation of FMNL2 triggers its rapid relocation and promotes its interaction with the cytoplasmic tails of the α-integrin subunits for β1-integrin endocytosis. FMNL2 drives β1-integrin internalization and invasive motility in a phosphorylation-dependent manner, while a FMNL2 mutant defective in actin assembly interferes with β1-integrin endocytosis and cancer cell invasion. Our data establish a role for FMNL2 in the regulation of β1-integrin and provide a mechanistic understanding of the function of FMNL2 in cancer invasiveness.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pharmacology, University of Marburg, 35043 Marburg, Germany
| | - Antti Arjonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Haisen Ta
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Pausch
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, 35043 Marburg, Germany
| | - Ulrike Engel
- Nikon Imaging Center and COS, University of Heidelberg, 69120 Heidelberg, Germany
| | - Xiaoyu Pan
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, Finland; Department of Biochemistry and Food Chemistry, University of Turku, 20520 Turku, Finland
| | - Robert Grosse
- Institute of Pharmacology, University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
13
|
Tropomyosin Tm5NM1 spatially restricts src kinase activity through perturbation of Rab11 vesicle trafficking. Mol Cell Biol 2014; 34:4436-46. [PMID: 25288639 DOI: 10.1128/mcb.00796-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules.
Collapse
|
14
|
Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 2014; 5:3891. [PMID: 24852344 PMCID: PMC4050264 DOI: 10.1038/ncomms4891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023] Open
Abstract
The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin–actin interactions needed for recycling by G-clathrin during migration. Clathrin light chain (CLC) subunits are dispensable for clathrin-mediated endocytosis of a number of cargoes. Majeed et al. report that CLCs are however required for gyrating-clathrin-dependent recycling of inactive β1-integrins, the absence of which impairs cell migration.
Collapse
|
15
|
Abstract
Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energy barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energy costs and drivers involved in membrane curvature, and draw a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems such as viral egress.
Collapse
|