1
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Rahimi B, Behroozi Z, Motamednezhad A, Jafarpour M, Hamblin MR, Moshiri A, Janzadeh A, Ramezani F. Study of nerve cell regeneration on nanofibers containing cerium oxide nanoparticles in a spinal cord injury model in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:9. [PMID: 36809518 PMCID: PMC9944598 DOI: 10.1007/s10856-023-06711-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/15/2023] [Indexed: 05/17/2023]
Abstract
Since the CNS is unable to repair itself via neuronal regeneration in adult mammals, alternative therapies need to be found. The use of cerium oxide nanoparticles to repair nerve damage could be a promising approach for spinal cord reconstruction. In this study, we constructed a scaffold containing cerium oxide nanoparticles (Scaffold-CeO2) and investigated the rate of nerve cell regeneration in a rat model of spinal cord injury. The scaffold of gelatin and polycaprolactone was synthesized, and a gelatin solution containing cerium oxide nanoparticles was attached to the scaffold. For the animal study, 40 male Wistar rats were randomly divided into 4 groups (n = 10): (a) Control; (b) Spinal cord injury (SCI); (c) Scaffold (SCI + scaffold without CeO2 nanoparticles); (d) Scaffold-CeO2 (SCI + scaffold containing CeO2 nanoparticles). After creation of a hemisection SCI, scaffolds were placed at the site of injury in groups c and d, and after 7 weeks the rats were subjected to behavioral tests and then sacrificed for preparation of the spinal cord tissue to measure the expression of G-CSF, Tau and Mag proteins by Western blotting and Iba-1 protein by immunohistochemistry. The result of behavioral tests confirmed motor improvement and pain reduction in the Scaffold-CeO2 group compared to the SCI group. Decreased expression of Iba-1 and higher expression of Tau and Mag in the Scaffold-CeO2 group compared to the SCI group could be the result of nerve regeneration caused by the scaffold containing CeONPs as well as relief of pain symptoms.
Collapse
Affiliation(s)
- Behnaz Rahimi
- Department of basic sciences, Saveh University of Medical Sciences, Saveh, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Ali Motamednezhad
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Jafarpour
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Petrović A, Ban J, Ivaničić M, Tomljanović I, Mladinic M. The Role of ATF3 in Neuronal Differentiation and Development of Neuronal Networks in Opossum Postnatal Cortical Cultures. Int J Mol Sci 2022; 23:ijms23094964. [PMID: 35563354 PMCID: PMC9100162 DOI: 10.3390/ijms23094964] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Activating transcription factor 3 (ATF3), a member of the ATF/cAMP response element-binding (CREB) family, is upregulated by various intracellular and extracellular signals such as injury and signals related to cell proliferation. ATF3 also belongs to the regeneration-associated genes (RAG) group of transcription factors. RAG and ATF/CREB transcription factors that play an important role in embryonic neuronal development and PNS regeneration may also be involved in postnatal neuronal differentiation and development, as well as in the regeneration of the injured CNS. Here we investigated the effect of ATF3 in differentiation, neural outgrowth, network formation, and regeneration after injury using postnatal dissociated cortical neurons derived from neonatal opossums (Monodelphis domestica). Our results show that RAG and ATF genes are differentially expressed in early differentiated neurons versus undifferentiated neurospheres and that many members of those families, ATF3 in particular, are upregulated in cortical cultures obtained from younger animals that have the ability to fully functionally regenerate spinal cord after injury. In addition, we observed different intracellular localization of ATF3 that shifts from nuclear (in neuronal progenitors) to cytoplasmic (in more mature neurons) during neuronal differentiation. The ATF3 inhibition, pharmacological or by specific antibody, reduced the neurite outgrowth and differentiation and caused increased cell death in early differentiating cortical neuronal cultures, suggesting the importance of ATF3 in the CNS development of neonatal opossums. Finally, we investigated the regeneration capacity of primary cortical cultures after mechanical injury using the scratch assay. Remarkably, neonatal opossum-derived cultures retain their capacity to regenerate for up to 1 month in vitro. Inhibition of ATF3 correlates with reduced neurite outgrowth and regeneration after injury. These results indicate that ATF3, and possibly other members of RAG and ATF/CREB family of transcription factors, have an important role both during cortical postnatal development and in response after injury.
Collapse
|
4
|
Staufer O, Schröter M, Platzman I, Spatz JP. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906424. [PMID: 32078238 DOI: 10.1002/smll.201906424] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Bottom-up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom-up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle-like architectures is explored by droplet-based microfluidics. Three types of giant unilamellar vesicles (GUVs)-based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress-management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light-responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high-throughput generation of versatile intracellular structures implantable into living cells. This in-droplet SO design may support or expand cellular functionalities in translational nanomedicine.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Martin Schröter
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, D-69120, Heidelberg, Germany
| |
Collapse
|
5
|
Stepanova OV, Voronova AD, Chadin AV, Valikhov MP, Semkina AS, Karsuntseva EK, Chekhonin IV, Shishkina VS, Reshetov IV, Chekhonin VP. Efficiency of Human Olfactory Ensheathing Cell Transplantation into Spinal Cysts to Improve Mobility of the Hind Limbs. Stem Cells Dev 2019; 28:1253-1263. [PMID: 31310179 DOI: 10.1089/scd.2019.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathological processes developing after spinal cord injuries often lead to formation of cysts. Existing surgical and medical methods are insufficient for treatment of post-traumatic spinal cord cysts. One of the emerging tools is cell therapy. Olfactory ensheathing cells (OECs) are perspective cells for cell therapy. In this study, we demonstrated that human OEC transplantation is effective in experimental spinal cysts. For our experiments, we selected animals only at the intermediate stage of recovery with scores from 8 to 13 according to the Basso, Beattie, and Bresnahan (BBB) scale. Cells were transplanted in different quantities (0.75 and 1.5 million) into the fully formed cysts and in the areas of injury without cysts. Improvement of limb mobility after human OEC transplantation into post-traumatic cysts was shown. In the group of rats with cysts, time-dependent increase in the BBB score was observed in subgroups treated with 0.75 and 1.5 million OECs with no statistically significant time-dependent dynamics of BBB values in the control group. When all three subgroups (control and two OEC doses) were compared, the Kruskal-Wallis test showed the presence of differences between subgroups after 1, 3, and 4 weeks of treatment with evidence of divergence increase. There was no statistically significant difference between the two doses of OEC treatment. The human OECs in the experiments without cysts were not effective. It was also shown that PKH26-labeled human OECs survive throughout the experiment and migrate to nearby areas of the cyst. Therefore, it was found that it is effective to transplant human OECs into fully formed cysts. In the future, autologous OECs can be used to personalize the treatment of patients with spinal cysts.
Collapse
Affiliation(s)
- Olga V Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Anastasia D Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey V Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Marat P Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Alevtina S Semkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Ivan V Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Igor V Reshetov
- Department of Plastic Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Manzhulo O, Tyrtyshnaia A, Kipryushina Y, Dyuizen I, Manzhulo I. Docosahexaenoic acid induces changes in microglia/macrophage polarization after spinal cord injury in rats. Acta Histochem 2018; 120:741-747. [PMID: 30170694 DOI: 10.1016/j.acthis.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6 (n-3)) leads to recovery of locomotor functions observed of spinal cord injury (SCI) in rats. In present study, we characterized the expression of iba-1, CD86, CD163 in microglia/macrophages, to assess activation state and M1 (pro-inflammatory)/M2 (anti-inflammatory) phenotypes respectively, in the rostral, central and caudal segment of the spinal cord on 7 and 35 days after SCI. We found that DHA treatment leads to: (1) an increased activation and proliferation of microglial cells; (2) an alteration in the dynamics between M1 and M2 microglia/macrophages phenotypes (3) and increased production of an antioxidant enzymes. Overall, our data demonstrates that DHA has a complex effect in post-traumatic process within the central nervous system, and supports the therapeutic potential of DHA-based drugs.
Collapse
Affiliation(s)
- Olga Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Anna Tyrtyshnaia
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia
| | - Yulia Kipryushina
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Inessa Dyuizen
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Igor Manzhulo
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia.
| |
Collapse
|
7
|
Patil N, Truong V, Holmberg MH, Lavoie NS, McCoy MR, Dutton JR, Holmberg EG, Parr AM. Safety and Efficacy of Rose Bengal Derivatives for Glial Scar Ablation in Chronic Spinal Cord Injury. J Neurotrauma 2018; 35:1745-1754. [PMID: 29373946 PMCID: PMC6033306 DOI: 10.1089/neu.2017.5398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are no effective therapies available currently to ameliorate loss of function for patients with spinal cord injuries (SCIs). In addition, proposed treatments that demonstrated functional recovery in animal models of acute SCI have failed almost invariably when applied to chronic injury models. Glial scar formation in chronic injury is a likely contributor to limitation on regeneration. We have removed existing scar tissue in chronically contused rat spinal cord using a rose Bengal-based photo ablation approach. In this study, we compared two chemically modified rose bengal derivatives to unmodified rose bengal, both confirming and expanding on our previously published report. Rats were treated with unmodified rose bengal (RB1) or rose bengal modified with hydrocarbon (RB2) or polyethylene glycol (RB3), to determine the effects on scar components and spared tissue post-treatment. Our results showed that RB1 was more efficacious than RB2, while still maintaining minimal collateral effects on spared tissue. RB3 was not taken up by the cells, likely because of its size, and therefore had no effect. Treatment with RB1 also resulted in an increase in serotonin eight days post-treatment in chronically injured spinal cords. Thus, we suggest that unmodified rose Bengal is a potent candidate agent for the development of a therapeutic strategy for scar ablation in chronic SCI.
Collapse
Affiliation(s)
- Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Vincent Truong
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Mackenzie H. Holmberg
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
- University of Washington School of Medicine, Seattle, Washington
| | - Nicolas S. Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Mark R. McCoy
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - James R. Dutton
- Department of Genetics, Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Eric G. Holmberg
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Scholpa NE, Schnellmann RG. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J Pharmacol Exp Ther 2017; 363:303-313. [PMID: 28935700 PMCID: PMC5676296 DOI: 10.1124/jpet.117.244806] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
9
|
Methotrexate and Valproic Acid Affect Early Neurogenesis of Human Amniotic Fluid Stem Cells from Myelomeningocele. Stem Cells Int 2017; 2017:6101609. [PMID: 29056972 PMCID: PMC5615990 DOI: 10.1155/2017/6101609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Myelomeningocele (MMC) is a severe type of neural tube defect (NTD), in which the backbone and spinal canal do not close completely during early embryonic development. This condition results in serious morbidity and increased mortality after birth. Folic acid significantly reduces, and conversely, folate antagonist methotrexate (MTX) and valproic acid (VPA) increase the occurrence of NTDs, including MMC. How these pharmacological agents exactly influence the early neurulation process is still largely unclear. Here, we characterized human amniotic fluid-derived stem cells (AFSCs) from prenatally diagnosed MMC and observed an effect of MTX and VPA administration on the early neural differentiation process. We found that MMC-derived AFSCs highly expressed early neural and radial glial genes that were negatively affected by MTX and VPA exposure. In conclusion, we setup a human cell model of MMC to study early neurogenesis and for drug screening purposes. We also proposed the detection of early neural gene expression in AFSCs as an additional MMC diagnostic tool.
Collapse
|
10
|
IKVAV-linked cell membrane-spanning peptide treatment induces neuronal reactivation following spinal cord injury. Future Sci OA 2015; 1:FSO81. [PMID: 28031930 PMCID: PMC5138012 DOI: 10.4155/fso.15.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Spinal cord regeneration following treatment with a novel membrane-spanning peptide (MSP) expressing the isoleucine-lysine-valine-alanine-valine (IKVAV) epitope was assessed in Balb-c mice. After hemilaminectomy and compression injury, mice were treated with IKVAV, IKVAV-MSP, peptide or vehicle control. Functional improvement was assessed using modified Basso, Beattie, and Bresnahan Scale (mBBB) and spinal cord segments were studied histologically 28 days after injury. IKVAV-MSP group scores increased significantly compared with control groups after 4 weeks of observation (p < 0.05). The number of protoplasmic astrocytes, neurons and muscle bundle size in the IKVAV-MSP mice were significantly increased (p < 0.001; p < 0.05 and p < 0.007; respectively). This study demonstrates that it is possible to promote functional recovery after SCI using bioactive IKVAV presenting cell membrane-spanning peptides.
Collapse
|
11
|
Bai S, Zhang W, Lu Q, Ma Q, Kaplan DL, Zhu H. Silk Nanofiber Hydrogels with Tunable Modulus to Regulate Nerve Stem Cell Fate. J Mater Chem B 2014; 2:6590-6600. [PMID: 25530851 PMCID: PMC4269376 DOI: 10.1039/c4tb00878b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. To foster improvements, the control of neural stem cell (NSC) behaviors, including migration, proliferation and differentiation are critical factors to consider. Topographical and mechanical stimulation based on the control of biomaterial features is a promising approach, which are usually studied separately. The synergy between topography and mechanical rigidity could offer new insights into the control of neural cell fate if they could be utilized concurrently in studies. To achieve this need, silk fibroin self-assembled nanofibers with a beta-sheet-enriched structure are formed into hydrogels. Stiffness is tuned using different annealing processes to enable mechanical control without impacting the nanofiber topography. Compared with nonannealed nanofibers, NSCs on methanol annealed nanofibers with stiffness similar to nerve tissues differentiate into neurons with the restraint of glial differentiation, without the influence of specific differentiation biochemical factors. These results demonstrate that combining topographic and mechanical cues provides the control of nerve cell behaviors, with potential for neurogenerative repair strategies.
Collapse
Affiliation(s)
- ShuMeng Bai
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - WenMin Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, the Second Affiliated Hospital, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006, People’s Republic of China
| | - QuanHong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, the Second Affiliated Hospital, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L. Kaplan
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - HeSun Zhu
- Research Center of Materials Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| |
Collapse
|
12
|
Pertici V, Trimaille T, Laurin J, Felix MS, Marqueste T, Pettmann B, Chauvin JP, Gigmes D, Decherchi P. Repair of the injured spinal cord by implantation of a synthetic degradable block copolymer in rat. Biomaterials 2014; 35:6248-58. [DOI: 10.1016/j.biomaterials.2014.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/04/2014] [Indexed: 12/15/2022]
|
13
|
Weightman A, Jenkins S, Pickard M, Chari D, Yang Y. Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:291-5. [DOI: 10.1016/j.nano.2013.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 08/22/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
|
14
|
Legacy J, Hanea S, Theoret J, Smith PD. Granulocyte macrophage colony-stimulating factor promotes regeneration of retinal ganglion cells in vitro through a mammalian target of rapamycin-dependent mechanism. J Neurosci Res 2013; 91:771-9. [DOI: 10.1002/jnr.23205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/22/2012] [Accepted: 12/21/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Jacqueline Legacy
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| | - Sonia Hanea
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| | - Jennifer Theoret
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| | - Patrice D. Smith
- Department of Neuroscience; Carleton University; Ottawa; Ontario; Canada
| |
Collapse
|
15
|
Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 2012; 519:103-14. [DOI: 10.1016/j.neulet.2012.02.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 12/22/2022]
|
16
|
In vitro beneficial activation of microglial cells by mechanically-injured astrocytes enhances the synthesis and secretion of BDNF through p38MAPK. Neurochem Int 2012; 61:175-86. [PMID: 22561407 DOI: 10.1016/j.neuint.2012.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/20/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022]
Abstract
It has long been promulgated that microglial cells serve beneficial roles in the central nervous system (CNS). The beneficial role of microglial cells is considered to be linked with microglial activation and consequent up-regulation of various trophic factors. However, what triggers microglial activation and consequent elevated level of trophic factors, especially brain-derived neurotrophic factor (BDNF), following traumatic CNS injury has become a crucial but elusive issue. Furthermore, an effort still remains in understanding of the cellular and molecular mechanisms underlying the endogenous neuroprotection of activated microglial cells. In this study, we demonstrated that mechanically-injured astrocyte conditioned medium (ACM) could provoke beneficial activation of microglial cells and thus promote the transcription, synthesis and release of BDNF in cultured microglial cells. The microglia-derived BDNF can exerted a demonstrable biological role in promoting neurite outgrowth and intimate terminal contacts of dorsal root ganglion (DRG) neurons co-cultured with microglial cells. Moreover, ACM induced remarkable p38MAPK phosphorylation in cultured microglial cells that preceded the burst of BDNF. Activating p38-MAPK by anisomycin resulted in salutary effects similar to those seen with ACM, whereas specific inhibition of the p38MAPK by SB203580 abrogated all the positive effects of ACM, including BDNF promotion and subsequent neurite outgrowth of DRG neurite outgrowth of DRG neurons and their intimate terminal contacts with microglial cells. Together, our results indicated that the neuroprotection of the microglial source is mainly caused by micro-environmental soluble molecules released from injured astrocytes, and ACM-induced BDNF production and release from microglial cells may be mediated through p38-MAPK signaling pathway. Therefore, these findings may lay a foundation to further investigations on the microglial beneficial activation role in the repair of traumatic CNS injury and neurodegenerative diseases.
Collapse
|
17
|
Petit A, Sanders AD, Kennedy TE, Tetzlaff W, Glattfelder KJ, Dalley RA, Puchalski RB, Jones AR, Roskams AJ. Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 2011; 6:e24538. [PMID: 21931744 PMCID: PMC3171483 DOI: 10.1371/journal.pone.0024538] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022] Open
Abstract
Radial glia (RG) are primarily embryonic neuroglial progenitors that express Brain Lipid Binding Protein (Blbp a.k.a. Fabp7) and Glial Fibrillary Acidic Protein (Gfap). We used these transcripts to demarcate the distribution of spinal cord radial glia (SCRG) and screen for SCRG gene expression in the Allen Spinal Cord Atlas (ASCA). We reveal that neonatal and adult SCRG are anchored in a non-ventricular niche at the spinal cord (SC) pial boundary, and express a “signature” subset of 122 genes, many of which are shared with “classic” neural stem cells (NSCs) of the subventricular zone (SVZ) and SC central canal (CC). A core expressed gene set shared between SCRG and progenitors of the SVZ and CC is particularly enriched in genes associated with human disease. Visualizing SCRG in a Fabp7-EGFP reporter mouse reveals an extensive population of SCRG that extend processes around the SC boundary and inwardly (through) the SC white matter (WM), whose abundance increases in a gradient from cervical to lumbar SC. Confocal analysis of multiple NSC-enriched proteins reveals that postnatal SCRG are a discrete and heterogeneous potential progenitor population that become activated by multiple SC lesions, and that CC progenitors are also more heterogeneous than previously appreciated. Gene ontology analysis highlights potentially unique regulatory pathways that may be further manipulated in SCRG to enhance repair in the context of injury and SC disease.
Collapse
Affiliation(s)
- Audrey Petit
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashley D. Sanders
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wolfram Tetzlaff
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Katie J. Glattfelder
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Rachel A. Dalley
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Ralph B. Puchalski
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Allan R. Jones
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|