1
|
Magi A, Mattei G, Mingrino A, Caprioli C, Ronchini C, Frigè G, Semeraro R, Bolognini D, Rambaldi A, Candoni A, Colombo E, Mazzarella L, Pelicci PG. High-resolution Nanopore methylome-maps reveal random hyper-methylation at CpG-poor regions as driver of chemoresistance in leukemias. Commun Biol 2023; 6:382. [PMID: 37031307 PMCID: PMC10082806 DOI: 10.1038/s42003-023-04756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with the emergence of resistance to anti cancer treatment, though molecular mechanisms and biological significance remain elusive. Genome scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG rich regions (CpG islands). We report the first high coverage whole-genome map in cancer using the long read nanopore technology, which allows simultaneous DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, after chemotherapy. Long read sequencing coupled to a novel computational method allowed definition of differential methylation at unprecedented resolution, and showed that the relapse methylome is characterized by hypermethylation at both CpG islands and sparse CpGs regions. Most differentially methylated genes, however, were not differentially expressed nor enriched for chemoresistance genes. A small fraction of under-expressed and hyper-methylated genes at sparse CpGs, in the gene body, was significantly enriched in transcription factors (TFs). Remarkably, these few TFs supported large gene-regulatory networks including 50% of all differentially expressed genes in the relapsed AMLs and highly-enriched in chemoresistance genes. Notably, hypermethylated regions at sparse CpGs were poorly conserved in the relapsed AMLs, under-represented at their genomic positions and showed higher methylation entropy, as compared to CpG islands. Analyses of available datasets confirmed TF binding to their target genes and conservation of the same gene-regulatory networks in large patient cohorts. Relapsed AMLs carried few patient specific structural variants and DNA mutations, apparently not involved in drug resistance. Thus, drug resistance in AMLs can be mainly ascribed to the selection of random epigenetic alterations at sparse CpGs of a few transcription factors, which then induce reprogramming of the relapsing phenotype, independently of clonal genomic evolution.
Collapse
Affiliation(s)
- Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy.
- Institute for Biomedical Technologies, National Research Council, Segrate, Milano, Italy.
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandra Mingrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Caprioli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Ronchini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - GianMaria Frigè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Candoni
- Clinica Ematologica, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Emanuela Colombo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milano, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Zhou H, Huang S, Lv X, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Reverter A, Sun W. Effect of CUX1 on the Proliferation of Hu Sheep Dermal Papilla Cells and on the Wnt/β-Catenin Signaling Pathway. Genes (Basel) 2023; 14:423. [PMID: 36833350 PMCID: PMC9956264 DOI: 10.3390/genes14020423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
CUT-like homeobox 1 protein (CUX1), also called CUX, CUTL1, and CDP, is a member of the DNA-binding protein homology family. Studies have shown that CUX1 is a transcription factor that plays an important role in the growth and development of hair follicles. The aim of this study was to investigate the effect of CUX1 on the proliferation of Hu sheep dermal papilla cells (DPCs) to reveal the role of CUX1 in hair follicle growth and development. First, the coding sequence (CDS) of CUX1 was amplified by PCR, and then CUX1 was overexpressed and knocked down in DPCs. A Cell Counting Kit-8 (CCK8), 5-ethynyl-2-deoxyuridine (EdU), and cell cycle assays were used to detect the changes in the proliferation and cell cycle of DPCs. Finally, the effects of overexpression and knockdown of CUX1 in DPCs on the expression of WNT10, MMP7, C-JUN, and other key genes in the Wnt/β-catenin signaling pathway were detected by RT-qPCR. The results showed that the 2034-bp CDS of CUX1 was successfully amplified. Overexpression of CUX1 enhanced the proliferative state of DPCs, significantly increased the number of S-phase cells, and decreased the number of G0/G1-phase cells (p < 0.05). CUX1 knockdown had the opposite effects. It was found that the expression of MMP7, CCND1 (both p < 0.05), PPARD, and FOSL1 (both p < 0.01) increased significantly after overexpression of CUX1 in DPCs, while the expression of CTNNB1 (p < 0.05), C-JUN, PPARD, CCND1, and FOSL1 (all p < 0.01) decreased significantly. In conclusion, CUX1 promotes proliferation of DPCs and affects the expression of key genes of the Wnt/β-catenin signaling pathway. The present study provides a theoretical basis to elucidate the mechanism underlying hair follicle development and lambskin curl pattern formation in Hu sheep.
Collapse
Affiliation(s)
- Hui Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Sainan Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou 450046, China
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Antonio Reverter
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Reserarch Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Gentic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
3
|
Huang ZL, Zhang PB, Zhang JT, Li F, Li TT, Huang XY. Comprehensive Genomic Profiling Identifies FAT1 as a Negative Regulator of EMT, CTCs, and Metastasis of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:369-382. [PMID: 36915393 PMCID: PMC10007982 DOI: 10.2147/jhc.s398573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Background FAT atypical cadherin 1 (FAT1) acts as a tumor suppressor or oncogene, which regulates cell adherence, proliferation, motility, and actin kinetics. FAT1 gene expression is closely related to hepatocarcinogenesis; however, the function and mechanism of FAT1 in hepatocellular carcinoma (HCC) remain unclear. Methods Here, we screened for the FAT1, which is intimately linked to the development and progression of HCC, both in circulating tumor cells (CTCs) and tumor tissues using next generation sequencing (NGS). Immunohistochemical staining was performed to detect FAT1 protein expression. To determine the impact of FAT1 on epithelial-mesenchymal transition (EMT), migration and invasion of HCC, an in vitro transwell assay and Western blot were performed. Moreover, Gene Set Enrichment Analysis was carried out to discover the underlying mechanism. Finally, animal experiments were conducted to confirm the effects of FAT1 on HCC metastasis and tumorigenicity. Results Our results showed that FAT1 expression was decreased in HCC tissues, while in vitro and in vivo, the FAT1 knockdown facilitated invasion, cell motility, colony formation, and proliferation. FAT1 knockdown also resulted in decreased expression of E-cadherin and markedly elevated expression of N-cadherin, vimentin, and snail. We also confirmed our hypothesis from the analysis of group differences in the CTC phenotype and lung metastasis in nude mice. Conclusion Our findings illustrated that FAT1 played a negative regulatory role in the HCC EMT and metastasis, providing further evidence for the role played by FAT1 in the formation and progression of HCC.
Collapse
Affiliation(s)
- Zi-Li Huang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.,Department of Radiology, Xuhui District Central Hospital of Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ping-Bao Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jun-Tao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Feng Li
- School of Materials of Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting-Ting Li
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xiu-Yan Huang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Xu A, Wang X, Luo J, Zhou M, Yi R, Huang T, Lin J, Wu Z, Xie C, Ding S, Zeng Y, Song Y. Overexpressed P75CUX1 promotes EMT in glioma infiltration by activating β-catenin. Cell Death Dis 2021; 12:157. [PMID: 33542188 PMCID: PMC7862635 DOI: 10.1038/s41419-021-03424-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
The homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan-Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial-mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.
Collapse
Affiliation(s)
- Anqi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xizhao Wang
- Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, PR China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Tengyue Huang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Zhiyong Wu
- Department of Neurosurgery, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, 518116, PR China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, PR China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China.
| |
Collapse
|
5
|
Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, Wu H. CUX1, A Controversial Player in Tumor Development. Front Oncol 2020; 10:738. [PMID: 32547943 PMCID: PMC7272708 DOI: 10.3389/fonc.2020.00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023] Open
Abstract
CUX1 belongs to the homeodomain transcription factor family and is evolutionarily and functionally conserved from Drosophila to humans. In addition to the involvement in various physiological events including tissue development, cell proliferation, differentiation and migration, and DNA damage response, CUX1 has been implicated in tumorigenesis. Interestingly, CUX1 has been recently recognized as a haploinsufficient tumor suppressor, which is paradoxically overexpressed in tumor cells. While loss of heterozygosity and/or mutations of CUX1 have been frequently detected in many types of cancers, genomic amplification, and overexpression of CUX1 have also been reported in cancer tissues and are correlated with higher tumor grade and poor prognosis. Therefore, deciphering the roles of different CUX1 isoforms and in different tumor stages is required to establish a CUX1-based therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Qiliang Sun
- Department of Respiratory Medicine, Taian City Central Hospital, Tai'an, China
| | - Long Wan
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Xuan Wang
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Judong Luo
- Department of Radiation Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Dorris ER, O'Neill A, Treacy A, Klocker H, Teltsh O, Kay E, Watson RW. The transcription factor CUX1 negatively regulates invasion in castrate resistant prostate cancer. Oncotarget 2020; 11:846-857. [PMID: 32180898 PMCID: PMC7061738 DOI: 10.18632/oncotarget.27494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Metastatic prostate cancer is treated with androgen ablation therapy but progress to castrate resistant prostate cancer (CRPC). This study aimed to investigate the role of CUX1 in CRPC using clinical samples and in vitro models. CUX1 expression was increased in androgen-independent cells compared to androgen-sensitive cells. The multi-isoform nature of CUX1 makes it difficult to assay in tissue microarrays as there is no epitope able to distinguish the many isoforms for immunohistochemistry. Using surrogate markers, we found no differential expression between castrate resistant and local hormone naïve tissue. However, differences have been demonstrated at the transcript level. In androgen-sensitive cells, migration, but not invasion, increased following CUX1 knockdown. Conversely, in androgen-independent cells, invasion was increased. This observed difference in invasion capacity is not E-cadherin mediated, as CUX1 knockdown increases the expression of E-cadherin in both cell lines with no inter-cell line difference. Cells expressed different ratios of p110/p200 isoforms depending on androgen status and cathepsin L was only detectable in androgen-sensitive cells. MMP3 is upregulated in the androgen-independent cells. Rather than a simple presence or absence of CUX1, the relative balance of CUX1 isoforms and their interplay may be a significant factor in the functional role of CUX1 in CRPC.
Collapse
Affiliation(s)
- Emma R Dorris
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Amanda O'Neill
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Ann Treacy
- Pathology Department, Mater Private Hospital, Dublin, Ireland
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Omri Teltsh
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Elaine Kay
- Department of Pathology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
7
|
Fei Y, Xiong Y, Shen X, Zhao Y, Zhu Y, Wang L, Liang Z. Cathepsin L promotes ionizing radiation-induced U251 glioma cell migration and invasion through regulating the GSK-3β/CUX1 pathway. Cell Signal 2018; 44:62-71. [DOI: 10.1016/j.cellsig.2018.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
|
8
|
Abstract
Cux1 and Cux2 are the vertebrate members of a family of homeodomain transcription factors (TF) containing Cut repeat DNA-binding sequences. Perturbation of their expression has been implicated in a wide variety of diseases and disorders, ranging from cancer to autism spectrum disorder (ASD). Within the nervous system, both genes are expressed during neurogenesis and in specific neuronal subpopulations. Their role during development and circuit specification is discussed here, with a particular focus on the cortex where their restricted expression in pyramidal neurons of the upper layers appears to be responsible for many of the specialized functions of these cells, and where their functions have been extensively investigated. Finally, we discuss how Cux TF represent a promising avenue for manipulating neuronal function and for reprogramming.
Collapse
|
9
|
Han ML, Zhao YF, Tan CH, Xiong YJ, Wang WJ, Wu F, Fei Y, Wang L, Liang ZQ. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells. Acta Pharmacol Sin 2016; 37:1606-1622. [PMID: 27840408 DOI: 10.1038/aps.2016.93] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
AIM Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. METHODS Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. RESULTS Cisplatin or paclitaxel treatment (10-80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse model, the mice implanted with A549 cells overexpressing CTSL exhibited significantly reduced sensitivity to paclitaxel treatment, and increased expression of EMT-associated proteins and transcription factors in tumor tissues. CONCLUSION Cisplatin and paclitaxel resistance is associated with CTSL upregulation-induced EMT in A549 cells. Thus, CTSL-mediated EMT may be exploited as a target to enhance the efficacy of cisplatin or paclitaxel against lung cancer and other types of malignancies.
Collapse
|
10
|
Cathepsin L is involved in X-ray-induced invasion and migration of human glioma U251 cells. Cell Signal 2016; 29:181-191. [PMID: 27989700 DOI: 10.1016/j.cellsig.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
An important therapeutic method of glioblastoma, the most common primary brain tumor, is radiotherapy. However, several studies reported recently that radiation could also promote the invasion and migration of malignant tumor. Herein, we have identified that a significant increase of migration and invasiveness of human glioma U251 cells undergoing X-ray was observed compared to controls, accompanied by the increase of cathepsin L (CTSL), which is a lysosomal cysteine protease overexpressed and secreted by tumor cells. To verify if there was a relationship between CTSL and the X-ray-induced glioma invasion, a CTSL specific inhibitor Z-FY-CHO or a short hairpin RNA interference was used to pretreat U251 cells. As a result, the cell invasion and migration was impaired via down-regulation of CTSL. Additionally, a marked reduction of the cell-signaling molecules Rho kinase was also detected compared with controls. We also found that CTSL is involved in EMT progress: both in vitro and in clinical specimens. Overall, our findings show that CTSL is an important protein which mediates cell invasion and migration of human glioma U251 cells induced by X-ray, and the inhibition of CTSL expression might diminish the invasion of U251 cells by reducing the activity of RhoA and CDC42 as well as EMT positive markers.
Collapse
|
11
|
Topka S, Glassmann A, Weisheit G, Schüller U, Schilling K. The transcription factor Cux1 in cerebellar granule cell development and medulloblastoma pathogenesis. THE CEREBELLUM 2015; 13:698-712. [PMID: 25096634 DOI: 10.1007/s12311-014-0588-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cux1, also known as Cutl1, CDP or Cut is a homeodomain transcription factor implicated in the regulation of normal and oncogenic development in diverse peripheral tissues and organs. We studied the expression and functional role of Cux1 in cerebellar granule cells and medulloblastoma. Cux1 is robustly expressed in proliferating granule cell precursors and in postmitotic, migrating granule cells. Expression is lost as postmigratory granule cells mature. Moreover, Cux1 is also strongly expressed in a well-established mouse model of medulloblastoma. In contrast, expression of CUX1 in human medulloblastoma tissue samples is lower than in normal fetal cerebellum. In these tumors, CUX1 expression tightly correlates with a set of genes which, when mapped on a global protein-protein interaction dataset, yields a tight network that constitutes a cell cycle control signature and may be related to p53 and the DNA damage response pathway. Antisense-mediated reduction of CUX1 levels in two human medulloblastoma cell lines led to a decrease in proliferation and altered motility. The developmental expression of Cux1 in the cerebellum and its action in cell lines support a role in granule cell and medulloblastoma proliferation. Its expression in human medulloblastoma shifts that perspective, suggesting that CUX1 is part of a network involved in cell cycle control and maintenance of DNA integrity. The constituents of this network may be rational targets to therapeutically approach medulloblastomas.
Collapse
Affiliation(s)
- Sabine Topka
- Anatomisches Institut, Anatomie & Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Nussallee 10, 53115, Bonn, Germany,
| | | | | | | | | |
Collapse
|
12
|
Donovan SM, Monaco MH, Drnevich J, Kvistgaard AS, Hernell O, Lönnerdal B. Bovine osteopontin modifies the intestinal transcriptome of formula-fed infant rhesus monkeys to be more similar to those that were breastfed. J Nutr 2014; 144:1910-9. [PMID: 25320184 DOI: 10.3945/jn.114.197558] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Osteopontin (OPN) is a multifunctional protein found in human milk at high concentration. OBJECTIVE The impact of supplemental bovine OPN on growth, body composition, and the jejunal transcriptome was assessed. METHODS Newborn rhesus monkeys were randomly assigned to be breastfed (n = 4) or to receive formula [formula fed (FF), n = 6] or formula supplemented with 125 mg/L of bovine OPN (bOPN, n = 6) for 3 mo. Jejunal mRNA was extracted and subjected to microarray analysis. RESULTS Growth was similar among all the treatment groups, but breastfed monkeys were ∼25% leaner at 3 mo. Pairwise comparisons demonstrated that 1017 genes were differentially expressed between breastfed and FF groups, 217 between breastfed and bOPN groups, and 119 between FF and bOPN groups. The data were also analyzed with the use of weighted gene coexpression network analysis, which revealed 6 modules of coexpressed genes that differed among the 3 treatments. Nearly 50% of genes were assigned to one module in which breastfed differed from FF and bOPN expression was intermediate. This module was enriched for genes related to cell adhesion and motility, cytoskeletal remodeling, wingless and integration site signaling, and neuronal development. Most of these canonical pathways centered on integrins, which are receptors for OPN. CONCLUSIONS The intestinal transcriptome of breastfed and FF monkeys differs, but bovine OPN at levels similar to human milk shifts gene expression profiles to be more similar to breastfed monkeys.
Collapse
Affiliation(s)
| | | | - Jenny Drnevich
- High Performance Biological Computing Group and the Carver Biotechnology Center, University of Illinois, Urbana, IL
| | | | - Olle Hernell
- Department of Clinical Sciences, University of Umea, Umea, Sweden; and
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA
| |
Collapse
|
13
|
Ramdzan ZM, Nepveu A. CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers. Nat Rev Cancer 2014; 14:673-82. [PMID: 25190083 DOI: 10.1038/nrc3805] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CUT-like homeobox 1 (CUX1) is a homeobox gene that is implicated in both tumour suppression and progression. The accumulated evidence supports a model of haploinsufficiency whereby reduced CUX1 expression promotes tumour development. Paradoxically, increased CUX1 expression is associated with tumour progression, and ectopic CUX1 expression in transgenic mice increases tumour burden in several tissues. One CUX1 isoform functions as an ancillary factor in base excision repair and the other CUX1 isoforms act as transcriptional activators or repressors. Several transcriptional targets and cellular functions of CUX1 affect tumorigenesis; however, we have yet to develop a mechanistic framework to reconcile the opposite roles of CUX1 in cancer protection and progression.
Collapse
Affiliation(s)
- Zubaidah M Ramdzan
- Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada
| | - Alain Nepveu
- 1] Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [2] Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [3] Department of Medicine, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada. [4] Department of Oncology, McGill University, 1160 Pine Avenue West, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
14
|
Vadnais C, Shooshtarizadeh P, Rajadurai CV, Lesurf R, Hulea L, Davoudi S, Cadieux C, Hallett M, Park M, Nepveu A. Autocrine Activation of the Wnt/β-Catenin Pathway by CUX1 and GLIS1 in Breast Cancers. Biol Open 2014; 3:937-46. [PMID: 25217618 PMCID: PMC4197442 DOI: 10.1242/bio.20148193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autocrine activation of the Wnt/β-catenin pathway occurs in several cancers, notably in breast tumors, and is associated with higher expression of various Wnt ligands. Using various inhibitors of the FZD/LRP receptor complex, we demonstrate that some adenosquamous carcinomas that develop in MMTV-CUX1 transgenic mice represent a model for autocrine activation of the Wnt/β-catenin pathway. By comparing expression profiles of laser-capture microdissected mammary tumors, we identify Glis1 as a transcription factor that is highly expressed in the subset of tumors with elevated Wnt gene expression. Analysis of human cancer datasets confirms that elevated WNT gene expression is associated with high levels of CUX1 and GLIS1 and correlates with genes of the epithelial-to-mesenchymal transition (EMT) signature: VIM, SNAI1 and TWIST1 are elevated whereas CDH1 and OCLN are decreased. Co-expression experiments demonstrate that CUX1 and GLIS1 cooperate to stimulate TCF/β-catenin transcriptional activity and to enhance cell migration and invasion. Altogether, these results provide additional evidence for the role of GLIS1 in reprogramming gene expression and suggest a hierarchical model for transcriptional regulation of the Wnt/β-catenin pathway and the epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Charles Vadnais
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Charles V Rajadurai
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Robert Lesurf
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada McGill Centre for Bioinformatics, McGill University, Montreal, QC H3G 0B1, Canada
| | - Laura Hulea
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sayeh Davoudi
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Chantal Cadieux
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael Hallett
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada McGill Centre for Bioinformatics, McGill University, Montreal, QC H3G 0B1, Canada
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| |
Collapse
|
15
|
Hulea L, Nepveu A. CUX1 transcription factors: from biochemical activities and cell-based assays to mouse models and human diseases. Gene 2012; 497:18-26. [PMID: 22306263 DOI: 10.1016/j.gene.2012.01.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 01/19/2023]
Abstract
ChIP-chip and expression analyses indicated that CUX1 transcription factors regulate a large number of genes and microRNAs involved in multiple cellular processes. Indeed, in proliferating cells CUX1 was shown to regulate several genes involved in DNA replication, progression into S phase and later, the spindle assembly checkpoint that controls progression through mitosis. siRNA-mediated knockdown established that CUX1 is required for cell motility. Moreover, higher expression of short CUX1 isoforms, as observed in many cancers, was shown to stimulate cell migration and invasion. In parallel, elevated expression particularly in higher grade tumors of breast and pancreatic cancers implicated CUX1 in tumor initiation and progression. Indeed, transgenic mouse models demonstrated a causal role of CUX1 in cancers originating from various cell types. These studies revealed that higher CUX1 expression or activity not only stimulates cell proliferation and motility, but also promotes genetic instability. CUX1 has also been implicated in the etiology of polycystic kidney diseases, both from a transgenic approach and the analysis of CUX1 activity in multiple mouse models of this disease. Studies in neurobiology have uncovered a potential implication of CUX1 in cognitive disorders, neurodegeneration and obesity. CUX1 was shown to be expressed specifically in pyramidal neurons of the neocortex upper layers where it regulates dendrite branching, spine development, and synapse formation. In addition, modulation of CUX1 expression in neurons of the hypothalamus has been associated with changes in leptin receptor trafficking in the vicinity of the primary cilium resulting in altered leptin signaling and ultimately, eating behavior. Overall, studies in various fields have allowed the development of several cell-based assays to monitor CUX1 function and have extended the range of organs in which CUX1 plays an important role in development and tissue homeostasis.
Collapse
Affiliation(s)
- Laura Hulea
- Goodman Cancer Centre, McGill University, 1160 Pine avenue West, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|
16
|
Kojima K, Takata A, Vadnais C, Otsuka M, Yoshikawa T, Akanuma M, Kondo Y, Kang YJ, Kishikawa T, Kato N, Xie Z, Zhang WJ, Yoshida H, Omata M, Nepveu A, Koike K. MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. Nat Commun 2011; 2:338. [PMID: 21654638 DOI: 10.1038/ncomms1345] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/11/2011] [Indexed: 12/18/2022] Open
Abstract
α-fetoprotein (AFP) is not only a widely used biomarker in hepatocellular carcinoma (HCC) surveillance, but is also clinically recognized as linked with aggressive tumour behaviour. Here we show that deregulation of microRNA122, a liver-specific microRNA, is a cause of both AFP elevation and a more biologically aggressive phenotype in HCC. We identify CUX1, a direct target of microRNA122, as a common central mediator of these two effects. Using liver tissues from transgenic mice in which microRNA122 is functionally silenced, an orthotopic xenograft tumour model, and human clinical samples, we further demonstrate that a microRNA122/CUX1/microRNA214/ZBTB20 pathway regulates AFP expression. We also show that the microRNA122/CUX1/RhoA pathway regulates the aggressive characteristics of tumours. We conclude that microRNA122 and associated signalling proteins may represent viable therapeutic targets, and that serum AFP levels in HCC patients may be a surrogate marker for deregulated intracellular microRNA122 signalling pathways in HCC tissues.
Collapse
Affiliation(s)
- Kentaro Kojima
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|