1
|
McKenney CD, Regot S. Cell cycle regulation by the ribotoxic stress response. Trends Cell Biol 2025:S0962-8924(25)00106-0. [PMID: 40379527 DOI: 10.1016/j.tcb.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Cells must sense and respond to numerous stimuli to maintain their function. Stress-activated protein kinases (SAPKs) are part of an integrated network that responds to these stimuli and have critical roles in determining cell behavior. Over the past 5 years, ribosomes and the ribotoxic stress response (RSR) have unexpectedly emerged as critical regulators of the SAPK network and drivers of global cell fate changes. In particular, RSR-SAPK signaling has potent effects on cellular proliferation, with important implications for senescence and cancer. In this review, we discuss cell cycle regulation by the SAPK p38, with a particular focus on how ribotoxic stress affects key cell cycle transitions.
Collapse
Affiliation(s)
- Connor D McKenney
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Yousef DA, Abdalla MS, Elshopakey GE, Al-Olayan E, Abdel Moneim AE, Ramadan SS. Diosmin-loaded chitosan nanoparticles mitigate doxorubicin-evoked cardiotoxicity in rats by featuring oxidative imbalance mechanism, NF-κB, and Bcl-2/Bax pathways. Int J Biol Macromol 2025; 305:140991. [PMID: 39952491 DOI: 10.1016/j.ijbiomac.2025.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cardiotoxicity is doxorubicin's primary side effect. Its cardiac toxicity has been attributed to the generation of free radicals. The present work was designed to understand the potential underlying pathways behind the cardioprotective action of diosmin (Dio) and Dio-loaded chitosan nanoparticles (DCNPs) against doxorubicin (Dox)-mediated cardiotoxicity. Male rats were allocated into five groups: control, Dio (100 mg/kg), Dox (12 mg/kg), Dio + Dox (100 mg/kg + 12 mg/kg), and DCNPs+Dox (100 mg/kg DCNPs/orally+12 mg/kg Dox/IP). Notably, in response to Dox, a significant increase of cardiac biomarkers with a decrease in Na+/K+-ATPase activity was detected. The cardiac inflammatory and pro-apoptotic protein levels were elevated with decreased cardiac interleukin-10 and Bcl-2 levels when the rats were subjected to Dox. Also, the cardiac expression of the fibrotic marker MMP-9 was increased. Moreover, Dox raised malondialdehyde and nitric oxide levels, accompanied by minimizing antioxidant status. Also, Dox-treated rats showed cardiac histopathological impairment compared to the control. The oral administration of Dio or DCNPs enhanced the activity of antioxidant enzymes and diminished inflammatory cytokines and apoptotic markers in the Dox-exposed rats. In summary, these findings indicate that DCNPs exhibit significant cardioprotective effectiveness against Dox-mediated toxicity by suppressing various mechanisms, such as redox status, the NF-κB pathway, and apoptosis.
Collapse
Affiliation(s)
- Doaa A Yousef
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mohga S Abdalla
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, 35516, Egypt; Department of Veterinary Diseases, Faculty of Veterinary Medicine, Delta University for Science and Technology, 35712 Gamasa, Egypt
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, P.O. Box: 64004, An Nasiriyah, Thi Qar, Iraq.
| | - Shimaa S Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
3
|
Douglas T, Zhang J, Wu Z, Abdallah K, McReynolds M, Gilbert WV, Iwai K, Peng J, Young LH, Crews CM. An atypical E3 ligase safeguards the ribosome during nutrient stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617692. [PMID: 39416039 PMCID: PMC11482868 DOI: 10.1101/2024.10.10.617692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic stress must be effectively mitigated for the survival of cells and organisms. Ribosomes have emerged as signaling hubs that sense metabolic perturbations and coordinate responses that either restore homeostasis or trigger cell death. As yet, the mechanisms governing these cell fate decisions are not well understood. Here, we report an unexpected role for the atypical E3 ligase HOIL-1 in safeguarding the ribosome. We find HOIL-1 mutations associated with cardiomyopathy broadly sensitize cells to nutrient and translational stress. These signals converge on the ribotoxic stress sentinel ZAKα. Mechanistically, mutant HOIL-1 excludes a ribosome quality control E3 ligase from its functional complex and remodels the ribosome ubiquitin landscape. This quality control failure renders glucose starvation ribotoxic, precipitating a ZAKα-ATF4-xCT-driven noncanonical cell death. We further show HOIL-1 loss exacerbates cardiac dysfunction under pressure overload. These data reveal an unrecognized ribosome signaling axis and a molecular circuit controlling cell fate during nutrient stress.
Collapse
|
4
|
Tang W, Yang Y, Fu Z, Xu W, Ou W, Liu F, Du P, Liu CY. The RNA helicase DDX21 activates YAP to promote tumorigenesis and is transcriptionally upregulated by β-catenin in colorectal cancer. Oncogene 2024; 43:3227-3239. [PMID: 39285230 PMCID: PMC11518987 DOI: 10.1038/s41388-024-03160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The RNA helicase DDX21 is vital for ribosome biogenesis and is upregulated in CRC, but the mechanism by which DDX21 is dysregulated and by which DDX21 promotes tumorigenesis in CRC remains poorly understood. Here, we showed that DDX21 is a direct transcriptional target gene of β-catenin and mediates the protumorigenic function of β-catenin in CRC. DDX21 expression is correlated with the expression and activity of β-catenin, and high DDX21 expression is associated with a poor prognosis in CRC patients. Loss of DDX21 leads to cytoplasmic translocation and decreased transcriptional activity of YAP and suppresses the proliferation and migration of CRC cells, which can be partially rescued by YAP reactivation. Importantly, by using translation elongation inhibitors and DNA intercalators, we showed that ribosomal stress upregulates DDX21 expression and induces the downregulation of LATS and the activation of YAP, probably through the ZAKα-MKK4/7-JNK axis. Overall, our study revealed the transcriptional activation mechanism of DDX21 in CRC and the activation of YAP in the ribosomal stress response, indicating the potential of combination therapy involving the induction of ribosomal stress and YAP inhibition.
Collapse
Affiliation(s)
- Wenbo Tang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Yiqing Yang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Zhuoyue Fu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Weimin Xu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Weijun Ou
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Fangyuan Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, China.
| |
Collapse
|
5
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
6
|
Lal R, Dharavath RN, Chopra K. Nrf2 Signaling Pathway: a Potential Therapeutic Target in Combating Oxidative Stress and Neurotoxicity in Chemotherapy-Induced Cognitive Impairment. Mol Neurobiol 2024; 61:593-608. [PMID: 37644279 DOI: 10.1007/s12035-023-03559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is one of the major adverse effects of antineoplastic drugs, which decrease the quality of life in cancer survivors. Extensive experimental and clinical research suggests that chemotherapeutic drugs generate an enormous amount of reactive oxygen species (ROS), contributing to oxidative stress, neuroinflammation, blood-brain barrier (BBB) disruption, and neuronal death, eventually leading to CICI. Despite the progress in exploring different pathological mechanisms of CICI, effective treatment to prevent CICI progression has not been developed yet. Nrf2 is the principal transcription factor that regulates cellular redox balance and inflammation-related gene expression. Emerging evidence suggests that upregulation of Nrf2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase neurogenesis. This review discusses the role of Nrf2 in CICI, how it responds to oxidative stress, inflammation, neurotoxicity, and potential Nrf2 activators that could be used to enhance Nrf2 activation in CICI.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Gormal RS, Martinez-Marmol R, Brooks AJ, Meunier FA. Location, location, location: Protein kinase nanoclustering for optimised signalling output. eLife 2024; 13:e93902. [PMID: 38206309 PMCID: PMC10783869 DOI: 10.7554/elife.93902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Andrew J Brooks
- Frazer Institute, The University of QueenslandWoolloongabbaAustralia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Biomedical Sciences, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
8
|
Keetile N, Osuch E, Lentoor AG, Rasakanya T. Association of Circulating Levels of Inflammatory Cytokines and Chemotherapy-Associated Subjective Cognitive Impairment in a South African Cohort of Breast Cancer Patients. NEUROSCI 2023; 4:296-304. [PMID: 39484178 PMCID: PMC11523720 DOI: 10.3390/neurosci4040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The evidence links chemotherapy to cognitive impairment in breast cancer patients. This study assessed the link between subjective chemotherapy-related cognitive impairment and neuroinflammation in breast cancer patients. METHODS In a correlational study, 113 patients aged 21 to 60 years on chemotherapy regimens completed the Functional Assessment of Cancer Therapy-Cognition Test (FACT-Cog) as a measure of subjective cognitive functioning at three time points (baseline- T0, third cycle- T1, and sixth cycle- T2). The levels of inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-alpha (TNF-α)) were measured using an assay method and compared with the subjective cognitive impairment. RESULTS Midway through chemotherapy, higher levels of TNF-α were inversely linked with self-perceived cognitive performance, while higher levels of IL-1β were positively associated (p = 0.030). However, at the end of chemotherapy, only IL-8 (p = 0.50) was associated with higher self-perceived cognitive problems. CONCLUSIONS The specific roles that various cytokines and their interactions may play in neuroinflammation or neuroprotection require further investigation.
Collapse
Affiliation(s)
- Nicholas Keetile
- Department of Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa; (N.K.)
| | - Elzbieta Osuch
- Department of Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa; (N.K.)
| | - Antonio G. Lentoor
- Department of Clinical Psychology, School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa
| | - Tsakani Rasakanya
- Department of Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa; (N.K.)
| |
Collapse
|
9
|
Xi J, Snieckute G, Asthana A, Gaughan C, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent Ribotoxic Stress Response by the Innate Immunity Endoribonuclease RNase L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562082. [PMID: 37873202 PMCID: PMC10592832 DOI: 10.1101/2023.10.12.562082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
RNase L is a regulated endoribonuclease in higher vertebrates that functions in antiviral innate immunity. Interferons induce OAS enzymes that sense double-stranded RNA of viral origin leading to synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L inhibits viral infections. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A was directly introduced into cells. Here we report that RNase L activation by 2-5A causes a ribotoxic stress response that requires the ribosome-associated MAP3K, ZAKα. Subsequently, the stress-activated protein kinases (SAPK) JNK and p38α are phosphorylated. RNase L activation profoundly altered the transcriptome by widespread depletion of mRNAs associated with different cellular functions, but also by SAPK-dependent induction of inflammatory genes. Our findings show that 2-5A is a ribotoxic stressor that causes RNA damage through RNase L triggering a ZAKα kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
10
|
Vind AC, Snieckute G, Bekker-Jensen S, Blasius M. Run, Ribosome, Run: From Compromised Translation to Human Health. Antioxid Redox Signal 2023; 39:336-350. [PMID: 36825529 DOI: 10.1089/ars.2022.0157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Translation is an essential cellular process, and diverse signaling pathways have evolved to deal with problems arising during translation. Erroneous stalls and unresolved ribosome collisions are implicated in many pathologies, including neurodegeneration and metabolic dysregulation. Recent Advances: Many proteins involved in detection and clearance of stalled and collided ribosomes have been identified and studied in detail. Ribosome profiling techniques have revealed extensive and nonprogrammed ribosome stalling and leaky translation into the 3' untranslated regions of mRNAs. Impairment of protein synthesis has been linked to aging in yeast and mice. Critical Issues: Ribosomes act as sensors of cellular states, but the molecular mechanisms, as well as physiological relevance, remain understudied. Most of our current knowledge stems from work in yeast and simple multicellular organisms such as Caenorhabditis elegans, while we are only beginning to comprehend the role of ribosome surveillance in higher organisms. As an example, the ribotoxic stress response, a pathway responding to global translational stress, has been studied mostly in response to small translation inhibitors and ribotoxins, and has only recently been explored in physiological settings. This review focuses on ribosome-surveillance pathways and their importance for cell and tissue homeostasis upon naturally occurring insults such as oxidative stress, nutrient deprivation, and viral infections. Future Directions: A better insight into the physiological roles of ribosome-surveillance pathways and their crosstalk could lead to an improved understanding of human pathologies and aging. Antioxid. Redox Signal. 39, 336-350.
Collapse
Affiliation(s)
- Anna Constance Vind
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Goda Snieckute
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Blasius
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
12
|
Patil C, Wagh S, Patil K, Mahajan U, Bagal P, Wadkar A, Bommanhalli B, Patil P, Goyal S, Ojha S. Phloretin-induced suppression of oxidative and nitrosative stress attenuates doxorubicin-induced cardiotoxicity in rats. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.338921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Abulizi A, Hu L, Ma A, Shao FY, Zhu HZ, Lin SM, Shao GY, Xu Y, Ran JH, Li J, Zhou H, Lin DM, Wang LF, Li M, Yang BX. Ganoderic acid alleviates chemotherapy-induced fatigue in mice bearing colon tumor. Acta Pharmacol Sin 2021; 42:1703-1713. [PMID: 33927358 PMCID: PMC8463583 DOI: 10.1038/s41401-021-00669-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Chemotherapy-related fatigue (CRF) is increasingly being recognized as one of the severe symptoms in patients undergoing chemotherapy, which not only largely reduces the quality of life in patients, but also diminishes their physical and social function. At present, there is no effective drug for preventing and treating CRF. Ganoderic acid (GA), isolated from traditional Chinese medicine Ganoderma lucidum, has shown a variety of pharmacological activities such as anti-tumor, anti-inflammation, immunoregulation, etc. In this study, we investigated whether GA possessed anti-fatigue activity against CRF. CT26 tumor-bearing mice were treated with 5-fluorouracil (5-FU, 30 mg/kg) and GA (50 mg/kg) alone or in combination for 18 days. Peripheral and central fatigue-related behaviors, energy metabolism and inflammatory factors were assessed. We demonstrated that co-administration of GA ameliorated 5-FU-induced peripheral muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing glycogen content and ATP production, reducing lactic acid content and LDH activity, and inhibiting p-AMPK, IL-6 and TNF-α expression in skeletal muscle. Co-administration of GA also retarded the 5-FU-induced central fatigue-like behavior accompanied by down-regulating the expression of IL-6, iNOS and COX2 in the hippocampus through inhibiting TLR4/Myd88/NF-κB pathway. These results suggest that GA could attenuate 5-FU-induced peripheral and central fatigue in tumor-bearing mice, which provides evidence for GA as a potential drug for treatment of CRF in clinic.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ling Hu
- Department of Anatomy and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Fang-Yu Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hui-Ze Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Si-Mei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guang-Ying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Li
- Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dong-Mei Lin
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lian-Fu Wang
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
14
|
Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother 2021; 71:507-526. [PMID: 34355266 DOI: 10.1007/s00262-021-03013-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is a well-known and effective treatment for different cancers; unfortunately, it has not been as efficient in the eradication of all cancer cells as been expected. The mechanism of this failure was not fully clarified, yet. Meanwhile, alterations in the physiologic conditions of the tumor microenvironment (TME) were suggested as one of the underlying possibilities. Chemotherapy drugs can activate multiple signaling pathways and augment the secretion of inflammatory mediators. Inflammation may show two opposite roles in the TME. On the one hand, inflammation, as an innate immune response, tries to suppress tumor growth but on the other hand, it might be not powerful enough to eradicate the cancer cells and even it can provide appropriate conditions for cancer promotion and relapse as well. Therefore, the administration of mild anti-inflammatory drugs during chemotherapy might result in more successful clinical results. Here, we will review and discuss this hypothesis. Most chemotherapy agents are triggers of inflammation in the tumor microenvironment through inducing the production of senescence-associated secretory phenotype (SASP) molecules. Some chemotherapy agents can induce systematic inflammation by provoking TLR4 signaling or triggering IL-1B secretion through the inflammasome pathway. NF-kB and MAPK are key signaling pathways of inflammation and could be activated by several chemotherapy drugs. Furthermore, inflammation can play a key role in cancer development, metastasis and exacerbation.
Collapse
|
15
|
Eid BG, El-Shitany NAEA, Neamatallah T. Trimetazidine improved adriamycin-induced cardiomyopathy by downregulating TNF-α, BAX, and VEGF immunoexpression via an antioxidant mechanism. ENVIRONMENTAL TOXICOLOGY 2021; 36:1217-1225. [PMID: 33704910 DOI: 10.1002/tox.23120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Few studies have reported a prophylactic effect of the anti-ischemic trimetazidine (TRI) against cardiac toxicity caused by adriamycin (ADR). However, the mechanism of action of TRI remained incomplete. The cardioprotective mechanism(s) of TRI against ADR-induced cardiotoxicity was investigated in this study. Cardiotoxicity was induced in three groups of Wistar rats by injecting a single dose of ADR (10 mg/kg, i.p.). TRI was administered in two doses regimen, low (L) (2.5 mg/kg, i.p.) and high (H) (10 mg/kg, i.p.). The results of the study showed that both TRI L and H doses improved cardiac enzymes and pathology, while only the TRI H dose improved the electrocardiogram. Both TRI L and H doses decreased malondialdehyde and increased reduced glutathione and superoxide dismutase. Only TRI H dose increased glutathione peroxidase and catalase. Both TRI L and H doses decreased interleukin-1 beta and tumor necrosis factor-alpha (TNF-α). Both TRI L and H doses downregulated TNF-α, BAX, and vascular endothelial growth factor cardiac protein expression. The data obtained in this study provided evidence that TRI opposed ADR-induced cardiotoxicity. The mechanism could be due to improved antioxidant levels as well as inhibition of inflammation and programmed cell death.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagla Abd El-Aziz El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Khani D, Hedayati MA, Nasseri S, Sheikhesmaeili F, Ghadiany R. ZAK Gene Expression in Patients with Helicobacter pylori Infection. J Gastrointest Cancer 2021; 53:326-332. [PMID: 33620708 DOI: 10.1007/s12029-021-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND ZAK protein is a member of the MLK family proteins defined as mediators in the cell cycle. A survey of ZAK gene expression in gastric antral epithelial cells (GAECs) of gastritis and gastric adenocarcinoma patients with Helicobacter pylori genotypes infection can elucidate carcinogenesis of H. pylori genotypes. METHODS In a case-control study, ZAK gene expression was evaluated in GAECs biopsy samples of gastritis and gastric adenocarcinoma patients with (n 23, 21) and without H. pylori infection (n 27, 32), respectively. Total RNA was extracted from each gastric antral biopsy samples and cDNA synthesized by using Takara kits. H. pylori virulence genes֝ cDNA were detected by traditional PCR and specific primers. The ZAK gene expression was measured using the relative Real-Time RT PCR. RESULTS The prevalence of gastric adenocarcinoma was the highest in man and 61-85 aged groups (p < .05). There was no significant correlation between the prevalence of H. pylori infection and patients' demographic groups. This study showed that ZAK gene overexpression gradually increases with increasing age and tumor grade among gastric adenocarcinoma patients. The gastric antral biopsy samples with H. pylori vacA s1m2 genotype infection showed a weak correlation with ZAK gene overexpression (p < .1). CONCLUSION ZAK gene expression was higher in GAECs of gastritis cancer than in gastric adenocarcinoma, indicating the protective effect of ZAK against gastric cancer (p < .005). Reducing ZAK gene expression shows the negative correlations with H. pylori infection and gastric adenocarcinoma.
Collapse
Affiliation(s)
- Delniya Khani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Ahmadi Hedayati
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farshad Sheikhesmaeili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghaie Ghadiany
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
17
|
Sadek KM, Mahmoud SFE, Zeweil MF, Abouzed TK. Proanthocyanidin alleviates doxorubicin-induced cardiac injury by inhibiting NF-kB pathway and modulating oxidative stress, cell cycle, and fibrogenesis. J Biochem Mol Toxicol 2021; 35:e22716. [PMID: 33484087 DOI: 10.1002/jbt.22716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023]
Abstract
This study investigated the potential mechanism(s) and the signaling pathway(s) underlying the prophylactic effect of proanthocyanidin extract (PE) against doxorubicin (DOX)-induced cardiotoxicity in rats. A total of 32 male albino rats were randomly allocated into four groups. Control rats were orally administrated normal saline. Rats in the second group were orally administrated PE (50 mg/kg bw/once daily) for 4 weeks. Rats in the third group were intraperitoneally injected with DOX (10 mg/kg on Days 3, 9, 15, and 21 of the experiment). Rats in the fourth group were injected with DOX and PE simultaneously for 4 weeks. DOX significantly augmented the levels of serum heart damage biomarkers. In addition, histopathology indicated that DOX-induced cardiac tissue injury upregulated the expression of fibrogenic factors, alpha smooth muscle actin (α-SMA), transforming growth factor β1 (TGF- β1), and p16INK4A . Downregulation of cell proliferation markers, cyclin-dependent kinase-4 (CDK4), and retinoblastoma (Rb) was also observed. Furthermore, DOX-induced oxidative and inflammatory stress resulted in increased cardiac malondialdehyde (MDA), protein carbonyl (PC), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Decreased cardiac glutathione (GSH) levels and enzyme activity of catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were observed. Treatment of DOX-induced rat cardiotoxicity with PE normalized serum parameters for the aforementioned parameters and alleviated cardiac tissue structure. Furthermore, reduced cardiac tissue α-SMA and TGF-β1, and increased CDK4 and Rb protein expression, along with the amelioration of oxidative and inflammatory effects were observed. PE attenuates DOX-induced cardiomyocyte inflammation possibly by attenuating the nuclear factor kappa-B (NF- kB) signaling pathway. These results indicate that PE may be useful as a preventative agent against DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sahar F E Mahmoud
- Department of Histology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed F Zeweil
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Damanhour, Egypt
| |
Collapse
|
18
|
Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153402. [PMID: 33203590 DOI: 10.1016/j.phymed.2020.153402] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy. PURPOSE This review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications. METHODS We obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects. RESULTS Representative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values. CONCLUSION This review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiao-Lu Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
19
|
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 2020; 48:10648-10661. [PMID: 32941609 PMCID: PMC7641731 DOI: 10.1093/nar/gkaa757] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Pop RM, Bocsan IC, Buzoianu AD, Chedea VS, Socaci SA, Pecoraro M, Popolo A. Evaluation of the Antioxidant Activity of Nigella sativa L. and Allium ursinum Extracts in a Cellular Model of Doxorubicin-Induced Cardiotoxicity. Molecules 2020; 25:molecules25225259. [PMID: 33187371 PMCID: PMC7697550 DOI: 10.3390/molecules25225259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Natural products black cumin—Nigella sativa (N. sativa) and wild garlic—Allium ursinum (AU) are known for their potential role in reducing cardiovascular risk factors, including antracycline chemotherapy. Therefore, this study investigates the effect of N. sativa and AU water and methanolic extracts in a cellular model of doxorubicin (doxo)-induced cardiotoxicity. The extracts were characterized using Ultraviolet-visible (UV-VIS) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques. Antioxidant activity was evaluated on H9c2 cells. Cytosolic and mitochondrial reactive oxygen species (ROS) release was evaluated using 2′,7′-dichlorofluorescin-diacetate (DHCF-DA) and mitochondria-targeted superoxide indicator (MitoSOX red), respectively. Mitochondrial membrane depolarization was evaluated by flow cytometry. LC-MS analysis identified 12 and 10 phenolic compounds in NSS and AU extracts, respectively, with flavonols as predominant compounds. FT-IR analysis identified the presence of carbohydrates, amino acids and lipids in both plants. GC-MS identified the sulfur compounds in the AU water extract. N. sativa seeds (NSS) methanolic extract had the highest antioxidant activity reducing both intracellular and mitochondrial ROS release. All extracts (excepting AU methanolic extract) preserved H9c2 cells viability. None of the investigated plants affected the mitochondrial membrane depolarization. N. sativa and AU are important sources of bioactive compounds with increased antioxidant activities, requiring different extraction solvents to obtain the pharmacological effects.
Collapse
Affiliation(s)
- Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (A.D.B.)
- Correspondence: (R.M.P.); (A.P.)
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (A.D.B.)
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (A.D.B.)
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania;
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Manaștur 3–5, 400372 Cluj-Napoca, Romania;
| | - Michela Pecoraro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
- Correspondence: (R.M.P.); (A.P.)
| |
Collapse
|
21
|
He J, Xue Y, Wang Q, Zhou X, Liu L, Zhang T, Shang C, Ma J, Ma T. Long non-coding RNA MIAT regulates blood tumor barrier permeability by functioning as a competing endogenous RNA. Cell Death Dis 2020; 11:936. [PMID: 33127881 PMCID: PMC7603350 DOI: 10.1038/s41419-020-03134-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Blood-tumor barrier (BTB) presents a major obstacle to brain drug delivery. Therefore, it is urgent to enhance BTB permeability for the treatment of glioma. In this study, we demonstrated that MIAT, ZAK, and phosphorylated NFκB-p65 (p-NFκB-p65) were upregulated, while miR-140-3p was downregulated in glioma-exposed endothelial cells (GECs) of BTB compared with those in endothelial cells cocultured with astrocytes (ECs) of blood-brain barrier (BBB). MIAT inhibited miR-140-3p expression, increased the expression of ZAK, enhanced the ratio of p-NFκB-p65:NFκB-p65, and promoted the endothelial leakage of BTB. Our current study revealed that miR-140-3p was complementary to the ZAK 3'untranslated regions (3'-UTR), and luciferase activity of ZAK was inhibited by miR-140-3p in 293T cells. MiR-140-3p silencing resulted in an increase in BTB permeability by targeting ZAK, while overexpression of miR-140-3p had the opposite results in GECs of BTB. Overexpression of ZAK induced an increase in BTB permeability, and this effect was related to ZAK's ability to mediate phosphorylation of NFκB-p65. Conversely, ZAK silencing get opposite results in GECs of BTB. As a molecular sponge of miR-140-3p, MIAT attenuated its negative regulation of the target gene ZAK by adsorbing miR-140-3p. P-NFκB-p65 as a transcription factor negatively regulated the expression of TJ-associated proteins by means of chip assay and luciferase assay. Single or combined application of MIAT and miR-140-3p effectively promoted antitumor drug doxorubicin (Dox) across BTB to induce apoptosis of glioma cells. In summary, MIAT functioned as a miR-140-3p sponge to regulate the expression of its target gene ZAK, which contribution to phosphorylation of NFκB-p65 was associated with an increase in BTB permeability by down-regulating the expression of TJ associated proteins, thereby promoting Dox delivery across BTB. These results might provide a novel strategy and target for chemotherapy of glioma.
Collapse
Affiliation(s)
- Jiayuan He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Qingyuan Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Tianyuan Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Chao Shang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
22
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
23
|
Maruyama T, Sasaki A, Iijima S, Ayukawa S, Goda N, Tazuru K, Hashimoto N, Hayashi T, Kozawa K, Sato N, Ishikawa S, Morita T, Fujita Y. ZAK Inhibitor PLX4720 Promotes Extrusion of Transformed Cells via Cell Competition. iScience 2020; 23:101327. [PMID: 32688284 PMCID: PMC7371749 DOI: 10.1016/j.isci.2020.101327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that, at the initial step of carcinogenesis, transformed cells are often eliminated from epithelia via cell competition with the surrounding normal cells. In this study, we performed cell competition-based high-throughput screening for chemical compounds using cultured epithelial cells and confocal microscopy. PLX4720 was identified as a hit compound that promoted apical extrusion of RasV12-transformed cells surrounded by normal epithelial cells. Knockdown/knockout of ZAK, a target of PLX4720, substantially enhanced the apical elimination of RasV12 cells in vitro and in vivo. ZAK negatively modulated the accumulation or activation of multiple cell competition regulators. Moreover, PLX4720 treatment promoted apical elimination of RasV12-transformed cells in vivo and suppressed the formation of potentially precancerous tumors. This is the first report demonstrating that a cell competition-promoting chemical drug facilitates apical elimination of transformed cells in vivo, providing a new dimension in cancer preventive medicine.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan; Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050, Japan.
| | - Ayana Sasaki
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Sayuri Iijima
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Shiyu Ayukawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Keisuke Tazuru
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Shiga 520-0106, Japan
| | - Norikazu Hashimoto
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Shiga 520-0106, Japan
| | - Takashi Hayashi
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Kei Kozawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Nanami Sato
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Susumu Ishikawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Tomoko Morita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan; Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
24
|
Dexrazoxane Protects Cardiomyocyte from Doxorubicin-Induced Apoptosis by Modulating miR-17-5p. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5107193. [PMID: 32190669 PMCID: PMC7071803 DOI: 10.1155/2020/5107193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/08/2020] [Indexed: 12/22/2022]
Abstract
The usage of doxorubicin is hampered by its life-threatening cardiotoxicity in clinical practice. Dexrazoxane is the only cardioprotective medicine approved by the FDA for preventing doxorubicin-induced cardiac toxicity. Nevertheless, the mechanism of dexrazoxane is incompletely understood. The aim of our study is to investigate the possible molecular mechanism of dexrazoxane against doxorubicin-induced cardiotoxicity. We established a doxorubicin-induced mouse and cardiomyocyte injury model. Male C57BL/6J mice were randomly distributed into a control group (Con), a doxorubicin treatment group (DOX), a doxorubicin plus dexrazoxane treatment group (DOX+DEX), and a dexrazoxane treatment group (DEX). Echocardiography and histology analyses were performed to evaluate heart function and structure. DNA laddering, qRT-PCR, and Western blot were performed on DOX-treated cardiomyocytes with/without DEX treatment in vitro. Cardiomyocytes were then transfected with miR-17-5p mimics or inhibitors in order to analyze its downstream target. Our results demonstrated that dexrazoxane has a potent effect on preventing cardiac injury induced by doxorubicin in vivo and in vitro by reducing cardiomyocyte apoptosis. MicroRNA plays an important role in cardiovascular diseases. Our data revealed that dexrazoxane could upregulate the expression of miR-17-5p, which plays a cytoprotective role in response to hypoxia by regulating cell apoptosis. Furthermore, the miRNA and protein analysis revealed that miR-17-5p significantly attenuated phosphatase and tensin homolog (PTEN) expression in cardiomyocytes exposed to doxorubicin. Taken together, dexrazoxane might exert a cardioprotective effect against doxorubicin-induced cardiomyocyte apoptosis by regulating the expression of miR-17-5p/PTEN cascade.
Collapse
|
25
|
Gallo KA, Ellsworth E, Stoub H, Conrad SE. Therapeutic potential of targeting mixed lineage kinases in cancer and inflammation. Pharmacol Ther 2019; 207:107457. [PMID: 31863814 DOI: 10.1016/j.pharmthera.2019.107457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of intracellular signaling pathways is a key attribute of diseases associated with chronic inflammation, including cancer. Mitogen activated protein kinases have emerged as critical conduits of intracellular signal transmission, yet due to their ubiquitous roles in cellular processes, their direct inhibition may lead to undesired effects, thus limiting their usefulness as therapeutic targets. Mixed lineage kinases (MLKs) are mitogen-activated protein kinase kinase kinases (MAP3Ks) that interact with scaffolding proteins and function upstream of p38, JNK, ERK, and NF-kappaB to mediate diverse cellular signals. Studies involving gene silencing, genetically engineered mouse models, and small molecule inhibitors suggest that MLKs are critical in tumor progression as well as in inflammatory processes. Recent advances indicate that they may be useful targets in some types of cancer and in diseases driven by chronic inflammation including neurodegenerative diseases and metabolic diseases such as nonalcoholic steatohepatitis. This review describes existing MLK inhibitors, the roles of MLKs in various aspects of tumor progression and in the control of inflammatory processes, and the potential for therapeutic targeting of MLKs.
Collapse
Affiliation(s)
- Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hayden Stoub
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Susan E Conrad
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Chen S, Liu G, Chen J, Hu A, Zhang L, Sun W, Tang W, Liu C, Zhang H, Ke C, Wu J, Chen X. Ponatinib Protects Mice From Lethal Influenza Infection by Suppressing Cytokine Storm. Front Immunol 2019; 10:1393. [PMID: 31293574 PMCID: PMC6598400 DOI: 10.3389/fimmu.2019.01393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive inflammation associated with the uncontrolled release of pro-inflammatory cytokines is the main cause of death from influenza virus infection. Previous studies have indicated that inhibition of interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), or their cognate receptors has beneficial effects. Here, by using monocytic U937 cells that capable of secreting the three important cytokines during influenza A virus infection, we measured the inhibitory activities on the production of three cytokines of six anti-inflammatory compounds reported in other models of inflammation. We found that ponatinib had a highly inhibitory effect on the production of all three cytokines. We tested ponatinib in a mouse influenza model to assess its therapeutic effects with different doses and administration times and found that the delayed administration of ponatinib was protective against lethal influenza A virus infection without reducing virus titers. Therefore, we suggest that ponatinib may serve as a new immunomodulator in the treatment of influenza.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ge Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jungang Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenyu Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chang Ke
- Wuhan Virolead Biopharmaceutical Company, Wuhan, China
| | - Jianguo Wu
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Gong P, Jiang R, Yao J, Yao Q, Xu X, Chen J, Shen J, Shi W. Novel Insights into MSK1 Phosphorylation by MRKβ in Intracerebral Hemorrhage-Induced Neuronal Apoptosis. Cell Transplant 2019; 28:783-795. [PMID: 30744416 PMCID: PMC6686428 DOI: 10.1177/0963689719829073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neuronal apoptosis is regarded as one of the most important pathophysiological changes of intracerebral hemorrhagic (ICH) stroke—a major public health problem that leads to high mortality rates and functional dependency. Mitogen-and stress-activated kinase (MSK) 1 is implicated in various biological functions in different cell types, including proliferation, tumorigenesis and responses to stress. Our previous study showed that MSK1 phosphorylation (p-MSK1) is related to the regulation of LPS-induced astrocytic inflammation, and possibly acts as a negative regulator of inflammation. In this study, we identified a specific interaction between MSK1 and MRKβ (MLK-related kinase)—a member of the MAPK pathway—during neuronal apoptosis. In an ICH rat model, western blotting and immunohistochemical analysis revealed that both MRKβ and phosphorylation of MSK1 (p-MSK1 Ser376) were significantly upregulated in cells surrounding the hematoma. Triple-immunofluorescent labeling demonstrated the co-localization of MRKβ and p-MSK1 in neurons, but not astrocytes. Furthermore, MRKβ was partially transported into the nucleus, and interacted with p-MSK1 in hemin-treated neurons. Immunoprecipitation showed that MRKβ and p-MSK1 exhibited an enhanced interaction during the pathophysiology process. Utilizing small interfering RNAs to knockdown MRKβ or MSK1, we verified that MSK1 Ser376 is a phosphorylation site targeted by MRKβ. We also observed that the phosphorylation of NF-κB p65 at Ser276 was mediated by the MRKβ-p-MSK1 complex. Furthermore, it was found that the neuronal apoptosis marker, active caspase-3, was co-localized with MRKβ and p-MSK1. In addition, flow cytometry analysis revealed that knockdown of MRKβ or MSK1 specifically resulted in increased neuronal apoptosis, which suggested that the MRKβ-p-MSK1 complex might exert a neuroprotective function against ICH-induced neuronal apoptosis. Taken together, our data suggest that MRKβ translocated into the nucleus and phosphorylated MSK1 to protect neurons via phosphorylation of p65—a subunit of nuclear factor κB.
Collapse
Affiliation(s)
- Peipei Gong
- * These authors contributed equally to this work
| | - Rui Jiang
- * These authors contributed equally to this work
| | - Junzhong Yao
- 1 Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, P.R. China
| | - Qi Yao
- 1 Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, P.R. China
| | - Xide Xu
- 1 Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, P.R. China
| | - Jian Chen
- 1 Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, P.R. China
| | - Jianhong Shen
- 1 Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, P.R. China
| | - Wei Shi
- 1 Department of Neurosurgery, Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, P.R. China
| |
Collapse
|
28
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
29
|
Pecoraro M, Ciccarelli M, Fiordelisi A, Iaccarino G, Pinto A, Popolo A. Diazoxide Improves Mitochondrial Connexin 43 Expression in a Mouse Model of Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2018. [PMID: 29518932 PMCID: PMC5877618 DOI: 10.3390/ijms19030757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin (DOXO) administration induces alterations in Connexin 43 (Cx43) expression and localization, thus, inducing alterations in chemical and electrical signal transmission between cardiomyocytes and in intracellular calcium homeostasis even evident after a single administration. This study was designed to evaluate if Diazoxide (DZX), a specific opener of mitochondrial KATP channels widely used for its cardioprotective effects, can fight DOXO-induced cardiotoxicity in a short-time mouse model. DZX (20 mg/kg i.p.) was administered 30 min before DOXO (10 mg/kg i.p.) in C57BL/6j female mice for 1–3 or seven days once every other day. A recovery of cardiac parameters, evaluated by Echocardiography, were observed in DZX+DOXO co-treated mice. Western blot analysis performed on heart lysates showed an increase in sarco/endoplasmic reticulum Ca2+-ATPase (SERCAII) and a reduction in phospholamban (PLB) amounts in DZX+DOXO co-treated mice. A contemporary recovery of intracellular Ca2+-signal, detected spectrofluorometrically by means of FURA-2AM, was observed in these mice. Cx43 expression and localization, analyzed by Western blot and confirmed by immunofluorescence analysis, showed that DZX co-treatement increases Cx43 amount both on sarcoplasmic membrane and on mitochondria. In conclusion, our data demonstrate that, in a short-time mouse model of DOXO-induced cardiotoxicity, DZX exerts its cardioprotective effects also by enhancing the amount Cx43.
Collapse
Affiliation(s)
- Michela Pecoraro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84084 Baronissi, Italy.
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, Federico II University, 80138 Naples, Italy.
| | - Guido Iaccarino
- Department of Medicine and Surgery, University of Salerno, 84084 Baronissi, Italy.
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
| |
Collapse
|
30
|
Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:125-139. [PMID: 29496165 DOI: 10.1016/j.phymed.2018.01.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. PURPOSE We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. METHODS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. RESULTS Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. CONCLUSIONS Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Changxi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, PR China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China.
| |
Collapse
|
31
|
Fu CY, Tseng YS, Chen MC, Hsu HH, Yang JJ, Tu CC, Lin YM, Viswanadha VP, Kuo WW, Huang CY. Doxorubicin induces ZAKα overexpression with a subsequent enhancement of apoptosis and attenuation of survivability in human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:191-197. [PMID: 29105997 DOI: 10.1002/tox.22507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/10/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Human osteosarcoma (OS) is a malignant cancer of the bone. It exhibits a characteristic malignant osteoblastic transformation and produces a diseased osteoid. A previous study demonstrated that doxorubicin (DOX) chemotherapy decreases human OS cell proliferation and might enhance the relative RNA expression of ZAK. However, the impact of ZAKα overexpression on the OS cell proliferation that is inhibited by DOX and the molecular mechanism underlying this effect are not yet known. ZAK is a protein kinase of the MAPKKK family and functions to promote apoptosis. In our study, we found that ZAKα overexpression induced an apoptotic effect in human OS cells. Treatment of human OS cells with DOX enhanced ZAKα expression and decreased cancer cell viability while increasing apoptosis of human OS cells. In the meantime, suppression of ZAKα expression using shRNA and inhibitor D1771 both suppressed the DOX therapeutic effect. These findings reveal a novel molecular mechanism underlying the DOX effect on human OS cells. Taken together, our findings demonstrate that ZAKα enhances the apoptotic effect and decreases cell viability in DOX-treated human OS cells.
Collapse
Affiliation(s)
- Chien-Yao Fu
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Orthopaedic Department, Armed Forces General Hospital, Taichung, Taiwan
- Department of Orthopaedic, National Defense Medical Center, Taipei, Taiwan
| | - Yan-Shen Tseng
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, 10449, Taiwan
- Nursing and Management College, Mackay Medicine, Taipei, 11260, Taiwan
| | - Jaw-Ji Yang
- School of Dentistry, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, 41152, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
32
|
Ai N, Chong CM, Chen W, Hu Z, Su H, Chen G, Lei Wong QW, Ge W. Ponatinib exerts anti-angiogenic effects in the zebrafish and human umbilical vein endothelial cells via blocking VEGFR signaling pathway. Oncotarget 2018; 9:31958-31970. [PMID: 30174789 PMCID: PMC6112840 DOI: 10.18632/oncotarget.24110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a hallmark for cancer development because it is essential for cancer growth and provides the route for cancer cell migration (metastasis). Understanding the mechanism of angiogenesis and developing drugs that target the process has therefore been a major focus for research on cancer therapy. In this study, we screened 114 FDA-approved anti-cancer drugs for their effects on angiogenesis in the zebrafish. Among those with positive effects, we chose to focus on Ponatinib (AP24534; Iclusig®) for further investigation. Ponatinib is an inhibitor of the tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), and its clinical trial has been approved by FDA for the treatment of the disease. In recent clinical trials, however, some side effects have been reported for Ponatinib, mostly on blood vessel disorders, raising the possibility that this drug may influence angiogenesis. In this study, we demonstrated that Ponatinib was able to suppress the formation of intersegmental vessels (ISV) and subintestinal vessels (SIV) in the zebrafish larvae. The anti-angiogenic effect of Ponatinib was further validated by other bioassays in human umbilical vein endothelial cells (HUVECs), including cell proliferation and migration, tube formation, and wound healing. Further experiments showed that Ponatinib inhibited VEGF-induced VEGFR2 phosphorylation and its downstream signaling pathways including Akt/eNOS/NO pathway and MAPK pathways (ERK and p38MAPK). Taken together, these results suggest that inhibition of VEGF signaling at its receptor level and downstream pathways may likely be responsible for the antiangiogenic activity of Ponatinib.
Collapse
Affiliation(s)
- Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Cheong-Meng Chong
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Huanxing Su
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Queenie Wing Lei Wong
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
33
|
Huang L, Zhang K, Guo Y, Huang F, Yang K, Chen L, Huang K, Zhang F, Long Q, Yang Q. Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Sci Rep 2017; 7:11989. [PMID: 28931882 PMCID: PMC5607346 DOI: 10.1038/s41598-017-12095-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Honokiol is a key component of a medicinal herb, Magnolia bark. Honokiol possesses potential pharmacological benefits for many disease conditions, especially cancer. Recent studies demonstrate that Honokiol exerts beneficial effects on cardiac hypertrophy and doxorubicin (Dox)-cardiotoxicity via deacetylation of mitochondrial proteins. However, the effects and mechanisms of Honokiol on cardiac mitochondrial respiration remain unclear. In the present study, we investigate the effect of Honokiol on cardiac mitochondrial respiration in mice subjected to Dox treatment. Oxygen consumption in freshly isolated mitochondria from mice treated with Honokiol showed enhanced mitochondrial respiration. The Dox-induced impairment of mitochondrial respiration was less pronounced in honokiol-treated than control mice. Furthermore, Luciferase reporter assay reveals that Honokiol modestly increased PPARγ transcriptional activities in cultured embryonic rat cardiomyocytes (H9c2). Honokiol upregulated the expression of PPARγ in the mouse heart. Honokiol repressed cardiac inflammatory responses and oxidative stress in mice subjected to Dox treatment. As a result, Honokiol alleviated Dox-cardiotoxicity with improved cardiac function and reduced cardiomyocyte apoptosis. We conclude that Honokiol protects the heart from Dox-cardiotoxicity via improving mitochondrial function by not only repressing mitochondrial protein acetylation but also enhancing PPARγ activity in the heart. This study further supports Honokiol as a promising therapy for cancer patients receiving Dox treatment.
Collapse
Affiliation(s)
- Lizhen Huang
- School of Basic Medicine, Research Center of Integrative Medicine, Guangzhou University of Chinese Medicine, 230 Guangzhou University City Outer Ring Road, Guangzhou, 510006, China.,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Kailiang Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yingying Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fengyuan Huang
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 Univ Blvd, Birmingham, AL, 35205, USA
| | - Kevin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 Univ Blvd, Birmingham, AL, 35205, USA
| | - Long Chen
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
| | - Fengxue Zhang
- School of Basic Medicine, Research Center of Integrative Medicine, Guangzhou University of Chinese Medicine, 230 Guangzhou University City Outer Ring Road, Guangzhou, 510006, China
| | - Qinqiang Long
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Qinglin Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China. .,Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 Univ Blvd, Birmingham, AL, 35205, USA.
| |
Collapse
|
34
|
Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother Pharmacol 2017; 80:745-753. [DOI: 10.1007/s00280-017-3413-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
|
35
|
Chang Y, Lu X, Shibu MA, Dai YB, Luo J, Zhang Y, Li Y, Zhao P, Zhang Z, Xu Y, Tu ZC, Zhang QW, Yun CH, Huang CY, Ding K. Structure Based Design of N-(3-((1H-Pyrazolo[3,4-b]pyridin-5-yl)ethynyl)benzenesulfonamides as Selective Leucine-Zipper and Sterile-α Motif Kinase (ZAK) Inhibitors. J Med Chem 2017; 60:5927-5932. [PMID: 28586211 DOI: 10.1021/acs.jmedchem.7b00572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of N-(3-((1H-pyrazolo[3,4-b]pyridin-5-yl)ethynyl)benzenesulfonamides were designed as the first class of highly selective ZAK inhibitors. The representative compound 3h strongly inhibits the kinase activity of ZAK with an IC50 of 3.3 nM and dose-dependently suppresses the activation of ZAK downstream signals in vitro and in vivo, while it is significantly less potent for the majority of 403 nonmutated kinases evaluated. Compound 3h also exhibits orally therapeutic effects on cardiac hypertrophy in a spontaneous hypertensive rat model.
Collapse
Affiliation(s)
- Yu Chang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
- School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University , Taichung 404, Taiwan, China
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 433, Taiwan, China
| | - Yi-Bo Dai
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing 100191, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yan Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yingjun Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Peng Zhao
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing 100191, China
| | - Zhang Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Cai-Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center , Beijing 100191, China
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University , Taichung 404, Taiwan, China
- Department of Health and Nutrition Biotechnology, Asia University , Taichung 433, Taiwan, China
| | - Ke Ding
- School of Pharmacy, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
36
|
Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol Res 2017; 117:267-273. [DOI: 10.1016/j.phrs.2017.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
|
37
|
Time-of-Day Dictates Transcriptional Inflammatory Responses to Cytotoxic Chemotherapy. Sci Rep 2017; 7:41220. [PMID: 28117419 PMCID: PMC5259749 DOI: 10.1038/srep41220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
Many cytotoxic chemotherapeutics elicit a proinflammatory response which is often associated with chemotherapy-induced behavioral alterations. The immune system is under circadian influence; time-of-day may alter inflammatory responses to chemotherapeutics. We tested this hypothesis by administering cyclophosphamide and doxorubicin (Cyclo/Dox), a common treatment for breast cancer, to female BALB/c mice near the beginning of the light or dark phase. Mice were injected intravenously with Cyclo/Dox or the vehicle two hours after lights on (zeitgeber time (ZT2), or two hours after lights off (ZT14). Tissue was collected 1, 3, 9, and 24 hours later. Mice injected with Cyclo/Dox at ZT2 lost more body mass than mice injected at ZT14. Cyclo/Dox injected at ZT2 increased the expression of several pro-inflammatory genes within the spleen; this was not evident among mice treated at ZT14. Transcription of enzymes within the liver responsible for converting Cyclo/Dox into their toxic metabolites increased among mice injected at ZT2; furthermore, transcription of these enzymes correlated with splenic pro-inflammatory gene expression when treatment occurred at ZT2 but not ZT14. The pattern was reversed in the brain; pro-inflammatory gene expression increased among mice injected at ZT14. These data suggest that inflammatory responses to chemotherapy depend on time-of-day and are tissue specific.
Collapse
|
38
|
Jandhyala DM, Wong J, Mantis NJ, Magun BE, Leong JM, Thorpe CM. A Novel Zak Knockout Mouse with a Defective Ribotoxic Stress Response. Toxins (Basel) 2016; 8:toxins8090259. [PMID: 27598200 PMCID: PMC5037485 DOI: 10.3390/toxins8090259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Ricin activates the proinflammatory ribotoxic stress response through the mitogen activated protein 3 kinase (MAP3K) ZAK, resulting in activation of mitogen activated protein kinases (MAPKs) p38 and JNK1/2. We had a novel zak−/− mouse generated to study the role of ZAK signaling in vivo during ricin intoxication. To characterize this murine strain, we intoxicated zak−/− and zak+/+ bone marrow–derived murine macrophages with ricin, measured p38 and JNK1/2 activation by Western blot, and measured zak, c-jun, and cxcl-1 expression by qRT-PCR. To determine whether zak−/− mice differed from wild-type mice in their in vivo response to ricin, we performed oral ricin intoxication experiments with zak+/+ and zak−/− mice, using blinded histopathology scoring of duodenal tissue sections to determine differences in tissue damage. Unlike macrophages derived from zak+/+ mice, those derived from the novel zak−/− strain fail to activate p38 and JNK1/2 and have decreased c-jun and cxcl-1 expression following ricin intoxication. Furthermore, compared with zak+/+ mice, zak−/− mice have decreased duodenal damage following in vivo ricin challenge. zak−/− mice demonstrate a distinct ribotoxic stress–associated phenotype in response to ricin and therefore provide a new animal model for in vivo studies of ZAK signaling.
Collapse
Affiliation(s)
- Dakshina M Jandhyala
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA.
| | - John Wong
- School of Nursing, MGH Institute of Health Professions, Boston, MA 02129, USA.
| | - Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.
| | - Bruce E Magun
- School of Nursing, MGH Institute of Health Professions, Boston, MA 02129, USA.
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Cheleste M Thorpe
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
39
|
Mathea S, Abdul Azeez KR, Salah E, Tallant C, Wolfreys F, Konietzny R, Fischer R, Lou HJ, Brennan PE, Schnapp G, Pautsch A, Kessler BM, Turk BE, Knapp S. Structure of the Human Protein Kinase ZAK in Complex with Vemurafenib. ACS Chem Biol 2016; 11:1595-602. [PMID: 26999302 DOI: 10.1021/acschembio.6b00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mixed lineage kinase ZAK is a key regulator of the MAPK pathway mediating cell survival and inflammatory response. ZAK is targeted by several clinically approved kinase inhibitors, and inhibition of ZAK has been reported to protect from doxorubicin-induced cardiomyopathy. On the other hand, unintended targeting of ZAK has been linked to severe adverse effects such as the development of cutaneous squamous cell carcinoma. Therefore, both specific inhibitors of ZAK, as well as anticancer drugs lacking off-target activity against ZAK, may provide therapeutic benefit. Here, we report the first crystal structure of ZAK in complex with the B-RAF inhibitor vemurafenib. The cocrystal structure displayed a number of ZAK-specific features including a highly distorted P loop conformation enabling rational inhibitor design. Positional scanning peptide library analysis revealed a unique substrate specificity of the ZAK kinase including unprecedented preferences for histidine residues at positions -1 and +2 relative to the phosphoacceptor site. In addition, we screened a library of clinical kinase inhibitors identifying several inhibitors that potently inhibit ZAK, demonstrating that this kinase is commonly mistargeted by currently used anticancer drugs.
Collapse
Affiliation(s)
- Sebastian Mathea
- Structural
Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX37DQ, United Kingdom
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Kamal R. Abdul Azeez
- Structural
Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX37DQ, United Kingdom
| | - Eidarus Salah
- Structural
Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX37DQ, United Kingdom
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Cynthia Tallant
- Structural
Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX37DQ, United Kingdom
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Finn Wolfreys
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Rebecca Konietzny
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Roman Fischer
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Hua Jane Lou
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Paul E. Brennan
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Gisela Schnapp
- Lead Discovery and Optimisation Support, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, 88400, Germany
| | - Alexander Pautsch
- Lead Discovery and Optimisation Support, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, 88400, Germany
| | - Benedikt M. Kessler
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
| | - Benjamin E. Turk
- Department
of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Stefan Knapp
- Target
Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom
- Institute
for Pharmaceutical Chemistry and Buchmann Institute for Molecular
Life Sciences (BMLS), Johann Wolfgang Goethe University, Frankfurt am Main, 60438, Germany
| |
Collapse
|
40
|
Mello MB, Machado CS, Ribeiro DL, Aissa AF, Burim RV, Alves da Cunha MA, Barcelos GRM, Antunes LMG, Bianchi MLP. Protective effects of the exopolysaccharide Lasiodiplodan against DNA damage and inflammation induced by doxorubicin in rats: Cytogenetic and gene expression assays. Toxicology 2016; 376:66-74. [PMID: 27181935 DOI: 10.1016/j.tox.2016.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
The lasiodiplodan (LS) is a β-(1→6)-d-glucan produced by the fungus Lasiodiplodia theobromae and some of the biological activities of LS were reported as hypoglycemic, anticoagulant, anti-proliferative and anticancer action; however, its effects on DNA instability and modulation of gene expression are still unclear. Aims of study were investigate the genotoxic effects of lasiodiplodan, and its protective activity against DNA damage induced by doxorubicin (DXR) and its impact on the expression of genes associated with DNA damage and inflammatory response pathways. Therefore, Wistar rats were treated (15 days) orally with LS (5.0; 10 and 20mg/kg bw) alone and in combination with DXR (15mg/kg bw; administrated intraperitoneally on 14th day) as well as their respective controls: distilled water and DXR. Monitoring of DNA damage was assessed by comet and micronucleus (MN) assays and gene expression was evaluated by PCR-Arrays. Treatments with LS alone did not induce disturbances on DNA; when LS was given in combination with DXR, comet and MN formations were reduced to those found in the respective controls. Moreover, LS was able to reduce the disturbances on gene expressions induced by DXR treatment, since the animals that receive LS associated with DXR showed no alteration in the expression of genes related to DNA damage response. Also, DXR induced several up- and down-regulation of several genes associated to inflammatory process, while the animals that received LS+DXR had their gene expression patterns similar to those found in the control group. In conclusion, our results showed that LS did not induce disturbances on DNA stability and significantly reduce the DNA damage and inflammation caused by DXR exposure. In addition, we give further information concerning the molecular mechanisms associated to LS protective effects which seems to be a promising nutraceutical with chemopreventive potential.
Collapse
Affiliation(s)
- M B Mello
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - C S Machado
- Department of Genetics; School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - D L Ribeiro
- Department of Genetics; School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - A F Aissa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - R V Burim
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - M A Alves da Cunha
- Department of Chemistry, Federal University of Technology of Paraná, Via do Conhecimento, km 01, CEP 85503-390, Pato Branco, Paraná, Brazil
| | - G R M Barcelos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, São Paulo, Brazil.
| | - L M G Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - M L P Bianchi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
41
|
Pecoraro M, Del Pizzo M, Marzocco S, Sorrentino R, Ciccarelli M, Iaccarino G, Pinto A, Popolo A. Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol 2016; 293:44-52. [DOI: 10.1016/j.taap.2016.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/14/2015] [Accepted: 01/08/2016] [Indexed: 11/25/2022]
|
42
|
Activation of the Classical Mitogen-Activated Protein Kinases Is Part of the Shiga Toxin-Induced Ribotoxic Stress Response and May Contribute to Shiga Toxin-Induced Inflammation. Infect Immun 2015; 84:138-48. [PMID: 26483408 DOI: 10.1128/iai.00977-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Infection with enterohemorrhagic Escherichia coli (EHEC) can result in severe disease, including hemorrhagic colitis and the hemolytic uremic syndrome. Shiga toxins (Stx) are the key EHEC virulence determinant contributing to severe disease. Despite inhibiting protein synthesis, Shiga toxins paradoxically induce the expression of proinflammatory cytokines from various cell types in vitro, including intestinal epithelial cells (IECs). This effect is mediated in large part by the ribotoxic stress response (RSR). The Shiga toxin-induced RSR is known to involve the activation of the stress-activated protein kinases (SAPKs) p38 and JNK. In some cell types, Stx also can induce the classical mitogen-activated protein kinases (MAPKs) or ERK1/2, but the mechanism(s) by which this activation occurs is unknown. In this study, we investigated the mechanism by which Stx activates ERK1/2s in IECs and the contribution of ERK1/2 activation to interleukin-8 (IL-8) expression. We demonstrate that Stx1 activates ERK1/2 in a biphasic manner: the first phase occurs in response to StxB1 subunit, while the second phase requires StxA1 subunit activity. We show that the A subunit-dependent ERK1/2 activation is mediated through ZAK-dependent signaling, and inhibition of ERK1/2 activation via the MEK1/2 inhibitors U0126 and PD98059 results in decreased Stx1-mediated IL-8 mRNA. Finally, we demonstrate that ERK1/2 are activated in vivo in the colon of Stx2-intoxicated infant rabbits, a model in which Stx2 induces a primarily neutrophilic inflammatory response. Together, our data support a role for ERK1/2 activation in the development of Stx-mediated intestinal inflammation.
Collapse
|
43
|
Elsherbiny NM, El-Sherbiny M, Said E. Amelioration of experimentally induced diabetic nephropathy and renal damage by nilotinib. J Physiol Biochem 2015; 71:635-48. [PMID: 26293752 DOI: 10.1007/s13105-015-0428-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is an ever growing world-wide health problem. The patient has to stick to a firm life-long therapeutic regimen, otherwise diabetic complications will develop. Diabetic nephropathy (DN) is one of the most common diabetic complications and it requires careful medical attendance. Nilotinib hydrochloride is a protein tyrosine kinase inhibitor reported to have numerous therapeutic efficacies besides being an anticancer. In the current study, single I.P. streptozotocin (50 mg/kg) injection was used to induce type I diabetes mellitus in male Sprague-Dawley rats. After 8 weeks, significant deterioration of renal function with urinary excretion of nephrin, podocalyxin, and albumin was observed. Daily oral administration of nilotinib (20 mg/kg) for 8 weeks significantly improved signs of DN on all investigated scales. On a biochemical scale, kidney functions, albuminuria, urinary nephrin, podocalyxin excretion, and host oxidant/antioxidant balance significantly improved. Kidney content of nitric oxide, expression of toll-like receptors 4 and NF-κB/p65 activity significantly declined as well. On a histopathological scale, α-smooth muscle actin and nestin expression significantly declined. Meanwhile, area of fibrosis significantly declined as seen with significant reduction in accumulation of extracellular matrix components and kidney content of collagen. Ultimately, such improvements were accompanied by significant restoration of normal kidney physiology and function. In conclusion, nilotinib can hinder progression of DN through various mechanisms. Reduction of oxidative stress, enhancement of host antioxidant defense system, reduction of inflammation, angiogenesis, tissue hypoxia, and pro-fibrogenic biomarker expression can be implicated in the beneficial therapeutic outcome observed with nilotinib therapy.
Collapse
Affiliation(s)
| | - Mohamed El-Sherbiny
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
44
|
Wong J, Tran LT, Magun EA, Magun BE, Wood LJ. Production of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: synergistic effects of doxorubicin and vincristine. Cancer Biol Ther 2014; 15:1395-403. [PMID: 25046000 PMCID: PMC4130732 DOI: 10.4161/cbt.29922] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytotoxic chemotherapeutic drugs, especially when used in combination, are widely employed to treat a variety of cancers in patients but often lead to serious symptoms that negatively affect physical functioning and quality of life. There is compelling evidence that implicates cytotoxic chemotherapy-induced inflammation in the etiology of these symptoms. Because IL-1β plays a central role as an initiator cytokine in immune responses, we compared doxorubicin, a drug known to induce IL-1β production, with ten other commonly prescribed chemotherapeutic drugs in their ability to lead to processing and secretion of IL-1β by primary mouse macrophages. Seven of them (melphalan, cisplatin, vincristine, etoposide, paclitaxel, methotrexate, and cytarabine) caused the production of IL-1β in cells pretreated with lipopolysaccharide. When delivered in combination with doxorubicin, one of the drugs, vincristine, was also capable of synergistically activating the NLRP3-dependent inflammasome and increasing expression of IL-1β, IL-6, and CXCL1. The absence of TNF-α and IL-1 signaling caused a partial reduction in the production of mature IL-1β. Three small-molecule inhibitors known to suppress activity of kinases situated upstream of mitogen-activated kinases (MAPKs) inhibited the expression of IL-1β, IL-6, and CXCL1 when doxorubicin and vincristine were used singly or together, so specific kinase inhibitors may be useful in reducing inflammation in patients receiving chemotherapy.
Collapse
Affiliation(s)
- John Wong
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Lisa T Tran
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Eli A Magun
- Department of Dermatology; Oregon Health & Science University; Portland, OR USA
| | - Bruce E Magun
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Lisa J Wood
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| |
Collapse
|
45
|
Salazar-Mendiguchía J, González-Costello J, Roca J, Ariza-Solé A, Manito N, Cequier A. Anthracycline-mediated cardiomyopathy: basic molecular knowledge for the cardiologist. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2014; 84:218-23. [PMID: 25001055 DOI: 10.1016/j.acmx.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 11/28/2022] Open
Abstract
Anthracyclines are cytostatic antibiotics discovered almost half a century ago exerting their action through inhibition of topoisomerase II. The two most representative drugs are doxorubicin and daunorubicin and they have been proven as useful antineoplastics and are widely prescribed in daily oncology practice; unfortunately, cardiotoxicity has been a limiting factor when it comes to their use. Diverse mechanisms have been involved in anthracycline cardiotoxicity, none of which are capable of causing the whole clinical picture by itself. Traditionally, reactive oxygen species (ROS) have received more attention, although recently basic research has proven other factors to be as important as ROS. These factors mainly involve sarcomeric structure disruption, toxic accumulation of metabolites, iron metabolism, energetic alterations and inflammation. The role of genetics has been studied by some groups, although a clear genotype-response relationship is yet to be elucidated. With the improved survival from different oncologic diseases we are witnessing more cases of chemotherapy-induced cardiotoxicity and the advent of new anticancer drugs poses several challenges for the cardiologist, highlighting the importance of a deep knowledge of the main mechanisms inducing this toxicity.
Collapse
Affiliation(s)
- Joel Salazar-Mendiguchía
- Unidad de Miocardiopatías, Insuficiencia Cardíaca y Trasplante, Área de Enfermedades del Corazón, Hospital Universitari de Bellvitge, Barcelona, Spain.
| | - José González-Costello
- Unidad de Miocardiopatías, Insuficiencia Cardíaca y Trasplante, Área de Enfermedades del Corazón, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Josep Roca
- Unidad de Miocardiopatías, Insuficiencia Cardíaca y Trasplante, Área de Enfermedades del Corazón, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Albert Ariza-Solé
- Unidad de Miocardiopatías, Insuficiencia Cardíaca y Trasplante, Área de Enfermedades del Corazón, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Nicolás Manito
- Unidad de Miocardiopatías, Insuficiencia Cardíaca y Trasplante, Área de Enfermedades del Corazón, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Angel Cequier
- Unidad de Miocardiopatías, Insuficiencia Cardíaca y Trasplante, Área de Enfermedades del Corazón, Hospital Universitari de Bellvitge, Barcelona, Spain
| |
Collapse
|
46
|
Smith LB, Leo MC, Anderson C, Wright TJ, Weymann KB, Wood LJ. The role of IL-1β and TNF-α signaling in the genesis of cancer treatment related symptoms (CTRS): a study using cytokine receptor-deficient mice. Brain Behav Immun 2014; 38:66-76. [PMID: 24412646 PMCID: PMC3989411 DOI: 10.1016/j.bbi.2013.12.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/19/2013] [Accepted: 12/28/2013] [Indexed: 02/01/2023] Open
Abstract
Cytotoxic chemotherapeutic agents often induce a cluster of cancer treatment related symptoms (CTRS). The purpose of this study was to develop a mouse model of CTRS to examine the role of IL-1β and TNF-α signaling in the genesis of these symptoms. CTRS (change in wheel running activity, food intake, and body weight from baseline) were examined in wild type (WT) mice or mice lacking the TNF-α p55 (type 1) receptor (TNFR1-/-) and/or IL-1β type 1 receptor (IL-1R1-/-) injected with four doses of cyclophosphamide/Adriamycin/5-fluorouracil (CAF) at 20-day intervals. Inflammatory cytokines in blood and tissues were measured using multiplex immunoassays and quantitative RT-PCR. ANOVA was used to examine differences between genotype and/or treatment group. Kaplan-Meier analysis was used to estimate survival rate. CAF rapidly increased IL-1β and TNF-α signaling in WT mice. CAF induced acute CTRS immediately following drug injection which returned to baseline prior to the next CAF dose. Persistent CTRS were evident 3weeks after the 4th CAF dose. Acute but not persistent CTRS were associated with increased levels of IL-7, IL-9, KC, MCP-1, GCSF, and IP-10. This CAF induced inflammatory response was blunted in IL-1R1 deficient mice and absent in IL-1R1/TNFR1-deficient mice. IL-1R1-/- mice showed an identical pattern of CTRS to their WT counterparts. The assessment of CTRS in IL-1R1/TNF-R1-deficient mice was precluded by severe toxicity. Our data suggest that an important function of the IL-1β and TNF-α driven inflammatory cascade is to promote recovery following exposure to cytotoxic agents.
Collapse
Affiliation(s)
- Logan B. Smith
- School of Nursing, Oregon Health Science University, Portland, OR, 97239
| | - Michael C. Leo
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR 97227
| | - Caroline Anderson
- School of Nursing, Oregon Health Science University, Portland, OR 97239, United States.
| | - Teresa J. Wright
- School of Nursing, Oregon Health Science University, Portland, OR, 97239
| | | | - Lisa J. Wood
- School of Nursing, Oregon Health Science University, Portland, OR, 97239
| |
Collapse
|
47
|
Weymann KB, Wood LJ, Zhu X, Marks DL. A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav Immun 2014; 37:84-94. [PMID: 24216337 PMCID: PMC3951615 DOI: 10.1016/j.bbi.2013.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 11/01/2013] [Indexed: 02/08/2023] Open
Abstract
Fatigue is the most common symptom related to cytotoxic chemotherapeutic treatment of cancer. Peripheral inflammation associated with cytotoxic chemotherapy is likely a causal factor of fatigue. The neural mechanisms by which cytotoxic chemotherapy associated inflammation induces fatigue behavior are not known. This lack of knowledge hinders development of interventions to reduce or prevent this disabling symptom. Infection induced fatigue/lethargy in rodents is mediated by suppression of hypothalamic orexin activity. Orexin is critical for maintaining wakefulness and motivated behavior. Though there are differences between infection and cytotoxic chemotherapy in some symptoms, both induce peripheral inflammation and fatigue. Based on these similarities we hypothesized that cytotoxic chemotherapy induces fatigue by disrupting orexin neuron activity. We found that a single dose of a cytotoxic chemotherapy cocktail (cyclophosphamide, adriamycin, 5-fluorouracil - CAF) induced fatigue/lethargy in mice and rats as evidenced by a significant decline in voluntary locomotor activity measured by telemetry. CAF induced inflammatory gene expression - IL-1R1 (p<0.001), IL-6 (p<0.01), TNFα (p<0.01), and MCP-1 (p<0.05) - in the rodent hypothalamus 6-24h after treatment during maximum fatigue/lethargy. CAF decreased orexin neuron activity as reflected by decreased nuclear cFos localization in orexin neurons 24h after treatment (p<0.05) and by decreased orexin-A in cerebrospinal fluid 16 h after treatment (p<0.001). Most importantly, we found that central administration of 1 μg orexin-A restored activity in CAF-treated rats (p<0.05). These results demonstrate that cytotoxic chemotherapy induces hypothalamic inflammation and that suppression of hypothalamic orexin neuron activity has a causal role in cytotoxic chemotherapy-induced fatigue in rodents.
Collapse
Affiliation(s)
- K B Weymann
- Oregon Health & Science University, Portland, OR 97239, United States.
| | - L J Wood
- Oregon Health & Science University, Portland, OR 97239, United States; School of Nursing, MGH Institute of Health Professions, Boston, MA 02129, United States.
| | - X Zhu
- Oregon Health & Science University, Portland, OR 97239, United States.
| | - D L Marks
- Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
48
|
Wang C, Weerapana E, Blewett MM, Cravatt BF. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat Methods 2013; 11:79-85. [PMID: 24292485 PMCID: PMC3901407 DOI: 10.1038/nmeth.2759] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023]
Abstract
Cells produce electrophilic products with the potential to modify and affect the function of proteins. Chemoproteomic methods have provided a means to qualitatively inventory proteins targeted by endogenous electrophiles; however, ascertaining the potency and specificity of these reactions to identify the most sensitive sites in the proteome to electrophilic modification requires more quantitative methods. Here, we describe a competitive activity-based profiling method for quantifying the reactivity of electrophilic compounds against 1000+ cysteines in parallel in the human proteome. Using this approach, we identify a select set of proteins that constitute “hot spots” for modification by various lipid-derived electrophiles, including the oxidative stress product 4-hydroxynonenal (HNE). We show that one of these proteins, ZAK kinase, is labeled by HNE on a conserved, active site-proximal cysteine, resulting in enzyme inhibition to create a negative feedback mechanism that can suppress the activation of JNK pathways by oxidative stress.
Collapse
Affiliation(s)
- Chu Wang
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Eranthie Weerapana
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Megan M Blewett
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin F Cravatt
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
49
|
Vin H, Ojeda SS, Ching G, Leung ML, Chitsazzadeh V, Dwyer DW, Adelmann CH, Restrepo M, Richards KN, Stewart LR, Du L, Ferguson SB, Chakravarti D, Ehrenreiter K, Baccarini M, Ruggieri R, Curry JL, Kim KB, Ciurea AM, Duvic M, Prieto VG, Ullrich SE, Dalby KN, Flores ER, Tsai KY. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. eLife 2013; 2:e00969. [PMID: 24192036 PMCID: PMC3814616 DOI: 10.7554/elife.00969] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001.
Collapse
Affiliation(s)
- Harina Vin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vin H, Ching G, Ojeda SS, Adelmann CH, Chitsazzadeh V, Dwyer DW, Ma H, Ehrenreiter K, Baccarini M, Ruggieri R, Curry JL, Ciurea AM, Duvic M, Busaidy NL, Tannir NM, Tsai KY. Sorafenib suppresses JNK-dependent apoptosis through inhibition of ZAK. Mol Cancer Ther 2013; 13:221-9. [PMID: 24170769 DOI: 10.1158/1535-7163.mct-13-0561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sorafenib is U.S. Food and Drug Adminstration-approved for the treatment of renal cell carcinoma and hepatocellular carcinoma and has been combined with numerous other targeted therapies and chemotherapies in the treatment of many cancers. Unfortunately, as with other RAF inhibitors, patients treated with sorafenib have a 5% to 10% rate of developing cutaneous squamous cell carcinoma (cSCC)/keratoacanthomas. Paradoxical activation of extracellular signal-regulated kinase (ERK) in BRAF wild-type cells has been implicated in RAF inhibitor-induced cSCC. Here, we report that sorafenib suppresses UV-induced apoptosis specifically by inhibiting c-jun-NH(2)-kinase (JNK) activation through the off-target inhibition of leucine zipper and sterile alpha motif-containing kinase (ZAK). Our results implicate suppression of JNK signaling, independent of the ERK pathway, as an additional mechanism of adverse effects of sorafenib. This has broad implications for combination therapies using sorafenib with other modalities that induce apoptosis.
Collapse
Affiliation(s)
- Harina Vin
- Corresponding Author: Kenneth Y. Tsai, Departments of Dermatology and Immunology, University of Texas MD Anderson Cancer Center, 7455 Fannin, Unit 907, Houston, TX 77054.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|