1
|
Howlett LA, Stevenson-Cocks H, Colman MA, Lancaster MK, Benson AP. Ionic current changes underlying action potential repolarization responses to physiological pacing and adrenergic stimulation in adult rat ventricular myocytes. Physiol Rep 2023; 11:e15766. [PMID: 37495507 PMCID: PMC10371833 DOI: 10.14814/phy2.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
This study aimed to simulate ventricular responses to elevations in myocyte pacing and adrenergic stimulation using a novel electrophysiological rat model and investigate ion channel responses underlying action potential (AP) modulations. Peak ion currents and AP repolarization to 50% and 90% of full repolarization (APD50-90 ) were recorded during simulations at 1-10 Hz pacing under control and adrenergic stimulation conditions. Further simulations were performed with incremental ion current block (L-type calcium current, ICa ; transient outward current, Ito ; slow delayed rectifier potassium current, IKs ; rapid delayed rectifier potassium current, IKr ; inward rectifier potassium current, IK1 ) to identify current influence on AP response to exercise. Simulated APD50-90 closely resembled experimental findings. Rate-dependent increases in IKs (6%-101%), IKr (141%-1339%), and ICa (0%-15%) and reductions in Ito (11%-57%) and IK1 (1%-9%) were observed. Meanwhile, adrenergic stimulation triggered moderate increases in all currents (23%-67%) except IK1 . Further analyses suggest AP plateau is most sensitive to modulations in Ito and ICa while late repolarization is most sensitive to IK1 , ICa , and IKs , with alterations in IKs predominantly stimulating the greatest magnitude of influence on late repolarization (35%-846% APD90 prolongation). The modified Leeds rat model (mLR) is capable of accurately modeling APs during physiological stress. This study highlights the importance of ICa , Ito , IK1, and IKs in controlling electrophysiological responses to exercise. This work will benefit the study of cardiac dysfunction, arrythmia, and disease, though future physiologically relevant experimental studies and model development are required.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | - Alan P Benson
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Al-U’datt DGF, Tranchant CC, Al-Husein B, Hiram R, Al-Dwairi A, AlQudah M, Al-shboul O, Jaradat S, Alqbelat J, Almajwal A. Involvement and possible role of transglutaminases 1 and 2 in mediating fibrotic signalling, collagen cross-linking and cell proliferation in neonatal rat ventricular fibroblasts. PLoS One 2023; 18:e0281320. [PMID: 36848364 PMCID: PMC9970086 DOI: 10.1371/journal.pone.0281320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Transglutaminase (TG) isoforms control diverse normal and pathophysiologic processes through their capacity to cross-link extracellular matrix (ECM) proteins. Their functional and signalling roles in cardiac fibrosis remain poorly understood, despite some evidence of TG2 involvement in abnormal ECM remodelling in heart diseases. In this study, we investigated the role of TG1 and TG2 in mediating fibrotic signalling, collagen cross-linking, and cell proliferation in healthy fibroblasts by siRNA-mediated knockdown. siRNA for TG1, TG2 or negative control was transfected into cultured neonatal rat ventricular fibroblasts and cardiomyocytes. mRNA expression of TGs and profibrotic, proliferation and apoptotic markers was assessed by qPCR. Cell proliferation and soluble and insoluble collagen were determined by ELISA and LC-MS/MS, respectively. TG1 and TG2 were both expressed in neonatal rat cardiomyocytes and fibroblasts before transfection. Other TGs were not detected before and after transfection. TG2 was predominantly expressed and more effectively silenced than TG1. Knocking down TG1 or TG2 significantly modified profibrotic markers mRNA expression in fibroblasts, decreasing connective tissue growth factor (CTGF) and increasing transforming growth factor-β1 compared to the negative siRNA control. Reduced expression of collagen 3A1 was found upon TG1 knockdown, while TG2 knockdown raised α-smooth muscle actin expression. TG2 knockdown further increased fibroblast proliferation and the expression of proliferation marker cyclin D1. Lower insoluble collagen content and collagen cross-linking were evidenced upon silencing TG1 or TG2. Transcript levels of collagen 1A1, fibronectin 1, matrix metalloproteinase-2, cyclin E2, and BCL-2-associated X protein/B-cell lymphoma 2 ratio were strongly correlated with TG1 mRNA expression, whereas TG2 expression correlated strongly with CTGF mRNA abundance. These findings support a functional and signalling role for TG1 and TG2 from fibroblasts in regulating key processes underlying myocardial ECM homeostasis and dysregulation, suggesting that these isoforms could be potential and promising targets for the development of cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Carole C. Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Belal Al-Husein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Roddy Hiram
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Boscolo Sesillo F, Wong M, Cortez A, Alperin M. Isolation of muscle stem cells from rat skeletal muscles. Stem Cell Res 2019; 43:101684. [PMID: 31931473 PMCID: PMC7357689 DOI: 10.1016/j.scr.2019.101684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/15/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Muscle stem cells (MuSCs) are involved in homeostatic maintenance of skeletal muscle and play a central role in muscle regeneration in response to injury. Thus, understanding MuSC autonomous properties is of fundamental importance for studies of muscle degenerative diseases and muscle plasticity. Rat, as an animal model, has been widely used in the skeletal muscle field, however rat MuSC isolation through fluorescence-activated cell sorting has never been described. This work validates a protocol for effective MuSC isolation from rat skeletal muscles. Tibialis anterior was harvested from female rats and digested for isolation of MuSCs. Three protocols, employing different cell surface markers (CD106, CD56, and CD29), were compared for their ability to isolate a highly enriched MuSC population. Cells isolated using only CD106 as a positive marker showed high expression of Pax7, ability to progress through myogenic lineage while in culture, and complete differentiation in serum-deprived conditions. The protocol was further validated in gastrocnemius, diaphragm, and the individual components of the pelvic floor muscle complex (coccygeus, iliocaudalis, and pubocaudalis), proving to be reproducible. CD106 is an efficient marker for reliable isolation of MuSCs from a variety of rat skeletal muscles.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Michelle Wong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Amy Cortez
- Flow Cytometry Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marianna Alperin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Wang D, Wang Y, Liu H, Tong C, Ying Q, Sachinidis A, Li L, Peng L. Laminin promotes differentiation of rat embryonic stem cells into cardiomyocytes by activating the integrin/FAK/PI3K p85 pathway. J Cell Mol Med 2019; 23:3629-3640. [PMID: 30907509 PMCID: PMC6484303 DOI: 10.1111/jcmm.14264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/27/2022] Open
Abstract
The generation of germline competent rat embryonic stem cells (rESCs) allows the study of their lineage commitment. Here, we developed a highly efficient system for rESC-derived cardiomyocytes, and even the formation of three-dimensional (3D)-like cell clusters with cTNT and α-Actinin. We have validated that laminin can interact with membrane integrin to promote the phosphorylation of both phosphatidylinositol 3-kinase (PI3K) p85 and the focal adhesion kinase (FAK). In parallel, GATA4 was up-regulated. Upon inhibiting the integrin, laminin loses the effect on cardiomyocyte differentiation, accompanied with a down-regulation of phosphorylation level of PI3K p85 and FAK. Meanwhile, the expression of Gata4 was inhibited as well. Taken together, laminin is a crucial component in the differentiation of rESCs into cardiomyocytes through increasing their proliferation via interacting with integrin pathway. These results provide new insights into the pathways mediated by extracellular laminin involved in the fate of rESC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Chang Tong
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular MedicineUniversity of CologneCologneGermany
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Pridans C, Raper A, Davis GM, Alves J, Sauter KA, Lefevre L, Regan T, Meek S, Sutherland L, Thomson AJ, Clohisey S, Bush SJ, Rojo R, Lisowski ZM, Wallace R, Grabert K, Upton KR, Tsai YT, Brown D, Smith LB, Summers KM, Mabbott NA, Piccardo P, Cheeseman MT, Burdon T, Hume DA. Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the Csf1r Locus. THE JOURNAL OF IMMUNOLOGY 2018; 201:2683-2699. [PMID: 30249809 PMCID: PMC6196293 DOI: 10.4049/jimmunol.1701783] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.
Collapse
Affiliation(s)
- Clare Pridans
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom; .,The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Anna Raper
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Gemma M Davis
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Joana Alves
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Kristin A Sauter
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Tim Regan
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Stephen Meek
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Linda Sutherland
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Alison J Thomson
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,New World Laboratories, Laval, Quebec H7V 5B7, Canada
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Rocío Rojo
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Zofia M Lisowski
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Robert Wallace
- Department of Orthopaedic Surgery, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Kathleen Grabert
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Kyle R Upton
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yi Ting Tsai
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Deborah Brown
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Lee B Smith
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.,Faculty of Science, University of Newcastle, Callaghan, New South Wales 2309, Australia; and
| | - Kim M Summers
- Mater Research-University of Queensland, Brisbane, Queensland 4101, Australia
| | - Neil A Mabbott
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Pedro Piccardo
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Michael T Cheeseman
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Tom Burdon
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - David A Hume
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; .,Mater Research-University of Queensland, Brisbane, Queensland 4101, Australia
| |
Collapse
|
6
|
Mulla W, Gillis R, Murninkas M, Klapper-Goldstein H, Gabay H, Mor M, Elyagon S, Liel-Cohen N, Bernus O, Etzion Y. Unanesthetized Rodents Demonstrate Insensitivity of QT Interval and Ventricular Refractory Period to Pacing Cycle Length. Front Physiol 2018; 9:897. [PMID: 30050462 PMCID: PMC6050393 DOI: 10.3389/fphys.2018.00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022] Open
Abstract
Aim: The cardiac electrophysiology of mice and rats has been analyzed extensively, often in the context of pathological manipulations. However, the effects of beating rate on the basic electrical properties of the rodent heart remain unclear. Due to technical challenges, reported electrophysiological studies in rodents are mainly from ex vivo preparations or under deep anesthesia, conditions that might be quite far from the normal physiological state. The aim of the current study was to characterize the ventricular rate-adaptation properties of unanesthetized rats and mice. Methods: An implanted device was chronically implanted in rodents for atrial or ventricular pacing studies. Following recovery from surgery, QT interval was evaluated in rodents exposed to atrial pacing at various frequencies. In addition, the frequency dependence of ventricular refractoriness was tested by conventional ventricular programmed stimulation protocols. Results: Our findings indicate total absence of conventional rate-adaptation properties for both QT interval and ventricular refractoriness. Using monophasic action potential recordings in isolated mice hearts we could confirm the previously reported shortening of the action potential duration at fast pacing rates. However, we found that this mild shortening did not result in similar decrease of ventricular refractory period. Conclusion: Our findings indicate that unanesthetized rodents exhibit flat QT interval and ventricular refractory period rate-dependence. This data argue against empirical use of QT interval correction methods in rodent studies. Our new methodology allowing atrial and ventricular pacing of unanesthetized freely moving rodents may facilitate more appropriate utility of these important animal models in the context of cardiac electrophysiology studies.
Collapse
Affiliation(s)
- Wesam Mulla
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roni Gillis
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadar Klapper-Goldstein
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hovav Gabay
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Mor
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noah Liel-Cohen
- Cardiology Department, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Olivier Bernus
- L'Institut de Rythmologie et Modélisation Cardiaque, l'Institut Hospitalo-Universitaire, Fondation Bordeaux Université, Bordeaux, France
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
He L, Xu JM, Li H, Zhong F, Liu Z, Li CQ, Dai RP. Moderate hypothermia increased the incidence of delayed paralysis through activation of the spinal microglia in an aortic cross-clamping rat model. Int J Cardiol 2016; 220:454-61. [PMID: 27390969 DOI: 10.1016/j.ijcard.2016.06.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Hypothermia reduces immediate paralysis during surgical repair of aortic aneurysms. However, it is unknown what the impact of hypothermia is on delayed paralysis, a serious complication of this type of surgery. METHODS Sprague-Dawley rats were subjected to occlusion of the descending aorta at different duration under normothermia (38.0±0.5) or hypothermia (33.0±0.5°). Neurologic function was assessed. Motor neuron number, glial activation, and cytokine expression in the spinal cord were examined. Minocycline was administered perioperatively by intraperitoneal injection in the rats subjected to the aorta occlusion. RESULTS In contrast to normothermia conditions at which immediate paralysis occurred when the duration of aorta occlusion exceeded 11.5min, hypothermia did not induce immediate paralysis if the duration of aorta occlusion was less than 41min. However, delayed paralysis was developed when the duration of aorta occlusion exceeded 18min, and reached peak level when the duration of aorta occlusion was 40min at hypothermia condition. The number of motoneurons was significantly decreased (P<0.05) at 30h postoperation. In addition, microglia was activated, and interleukin-1β and interleukin-6 levels were upregulated, both of which were co-localized in microglia at 24h postoperation in the hypothermia group. Minocycline treatment attenuated the incidence and degree of paralysis but did not decrease the mortality. CONCLUSIONS Hypothermia, a neuroprotective strategy in cardiothoracic surgery, increased the incidence of delayed paralysis through activation of spinal microglia and cytokines. Blocking the activated microglia may be a potential intervention to prevent the incidence of delayed paralysis.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesia, The Second Xiangya Hospital of Central South University, Ren-Min Road 139#, Changsha 410011, China.; Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Lequn Road 15#, Guilin 54100, China
| | - Jun-Mei Xu
- Department of Anesthesia, The Second Xiangya Hospital of Central South University, Ren-Min Road 139#, Changsha 410011, China
| | - Hui Li
- Department of Anesthesia, The Second Xiangya Hospital of Central South University, Ren-Min Road 139#, Changsha 410011, China
| | - Feng Zhong
- Department of Anesthesia, The Second Xiangya Hospital of Central South University, Ren-Min Road 139#, Changsha 410011, China
| | - Zhi Liu
- Department of Anesthesia, The Second Xiangya Hospital of Central South University, Ren-Min Road 139#, Changsha 410011, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410000, China
| | - Ru-Ping Dai
- Department of Anesthesia, The Second Xiangya Hospital of Central South University, Ren-Min Road 139#, Changsha 410011, China..
| |
Collapse
|
8
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
9
|
Kawaharada K, Kawamata M, Ochiya T. Rat embryonic stem cells create new era in development of genetically manipulated rat models. World J Stem Cells 2015; 7:1054-1063. [PMID: 26328021 PMCID: PMC4550629 DOI: 10.4252/wjsc.v7.i7.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem (ES) cells are isolated from the inner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer gene-modified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.
Collapse
|
10
|
Terp MG, Ditzel HJ. Application of proteomics in the study of rodent models of cancer. Proteomics Clin Appl 2014; 8:640-52. [DOI: 10.1002/prca.201300084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Mikkel G. Terp
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
- Department of Oncology; Odense University Hospital; Odense Denmark
| |
Collapse
|
11
|
Doorschodt B, Teubner A, Kobayashi E, Tolba R. Promising future for the transgenic rat in transplantation research. Transplant Rev (Orlando) 2014; 28:155-62. [DOI: 10.1016/j.trre.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/02/2014] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
|
12
|
Savastano LE, Laurito SR, Fitt MR, Rasmussen JA, Gonzalez Polo V, Patterson SI. Sciatic nerve injury: A simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods 2014; 227:166-80. [DOI: 10.1016/j.jneumeth.2014.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
|
13
|
Scott BB, Brody CD, Tank DW. Cellular resolution functional imaging in behaving rats using voluntary head restraint. Neuron 2013; 80:371-84. [PMID: 24055015 DOI: 10.1016/j.neuron.2013.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
High-throughput operant conditioning systems for rodents provide efficient training on sophisticated behavioral tasks. Combining these systems with technologies for cellular resolution functional imaging would provide a powerful approach to study neural dynamics during behavior. Here we describe an integrated two-photon microscope and behavioral apparatus that allows cellular resolution functional imaging of cortical regions during epochs of voluntary head restraint. Rats were trained to initiate periods of restraint up to 8 s in duration, which provided the mechanical stability necessary for in vivo imaging while allowing free movement between behavioral trials. A mechanical registration system repositioned the head to within a few microns, allowing the same neuronal populations to be imaged on each trial. In proof-of-principle experiments, calcium-dependent fluorescence transients were recorded from GCaMP-labeled cortical neurons. In contrast to previous methods for head restraint, this system can be incorporated into high-throughput operant conditioning systems.
Collapse
Affiliation(s)
- Benjamin B Scott
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
14
|
The new pig on the block: modelling cancer in pigs. Transgenic Res 2013; 22:673-80. [DOI: 10.1007/s11248-013-9720-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/30/2013] [Indexed: 01/09/2023]
|
15
|
Uva P, Da Sacco L, Del Cornò M, Baldassarre A, Sestili P, Orsini M, Palma A, Gessani S, Masotti A. Rat mir-155 generated from the lncRNA Bic is 'hidden' in the alternate genomic assembly and reveals the existence of novel mammalian miRNAs and clusters. RNA (NEW YORK, N.Y.) 2013; 19:365-79. [PMID: 23329697 PMCID: PMC3677247 DOI: 10.1261/rna.035394.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs acting as post-transcriptional gene expression regulators in many physiological and pathological conditions. During the last few years, many novel mammalian miRNAs have been predicted experimentally with bioinformatics approaches and validated by next-generation sequencing. Although these strategies have prompted the discovery of several miRNAs, the total number of these genes still seems larger. Here, by exploiting the species conservation of human, mouse, and rat hairpin miRNAs, we discovered a novel rat microRNA, mir-155. We found that mature miR-155 is overexpressed in rat spleen myeloid cells treated with LPS, similarly to humans and mice. Rat mir-155 is annotated only on the alternate genome, suggesting the presence of other "hidden" miRNAs on this assembly. Therefore, we comprehensively extended the homology search also to mice and humans, finally validating 34 novel mammalian miRNAs (two in humans, five in mice, and up to 27 in rats). Surprisingly, 15 of these novel miRNAs (one for mice and 14 for rats) were found only on the alternate and not on the reference genomic assembly. To date, our findings indicate that the choice of genomic assembly, when mapping small RNA reads, is an important option that should be carefully considered, at least for these animal models. Finally, the discovery of these novel mammalian miRNA genes may contribute to a better understanding of already acquired experimental data, thereby paving the way to still unexplored investigations and to unraveling the function of miRNAs in disease models.
Collapse
Affiliation(s)
- Paolo Uva
- CRS4 Bioinformatics Laboratory, Parco Scientifico e Tecnologico POLARIS, 09010 Pula, Cagliari, Italy
| | - Letizia Da Sacco
- Gene Expression–Microarrays Laboratory, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Manuela Del Cornò
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Baldassarre
- Gene Expression–Microarrays Laboratory, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Paola Sestili
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Massimiliano Orsini
- CRS4 Bioinformatics Laboratory, Parco Scientifico e Tecnologico POLARIS, 09010 Pula, Cagliari, Italy
| | - Alessia Palma
- Genomic Core Facility, Bambino Gesù Children’s Hospital, IRCCS, 00139 Rome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Andrea Masotti
- Gene Expression–Microarrays Laboratory, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Corresponding authorE-mail E-mail
| |
Collapse
|
16
|
Connecting signaling pathways underlying communication to ASD vulnerability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:97-133. [PMID: 24290384 DOI: 10.1016/b978-0-12-418700-9.00004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Language is a human-specific trait that likely facilitated the rapid increase in higher cognitive function in our species. A consequence of the selective pressures that have permitted language and cognition to flourish in humans is the unique vulnerability of humans to developing cognitive disorders such as autism. Therefore, progress in understanding the genetic and molecular mechanisms of language evolution should provide insight into such disorders. Here, we discuss the few genes that have been identified in both autism-related pathways and language. We also detail the use of animal models to uncover the function of these genes at a mechanistic and circuit level. Finally, we present the use of comparative genomics to identify novel genes and gene networks involved in autism. Together, all of these approaches will allow for a broader and deeper view of the molecular brain mechanisms involved in the evolution of language and the gene disruptions associated with autism.
Collapse
|
17
|
Kawamata M, Ochiya T. Two distinct knockout approaches highlight a critical role for p53 in rat development. Sci Rep 2012; 2:945. [PMID: 23230510 PMCID: PMC3517977 DOI: 10.1038/srep00945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/29/2012] [Indexed: 01/06/2023] Open
Abstract
Gene targeting in embryonic stem cells (ESCs) has become the principal technology for generating knockout models. Although numerous studies have predicted that the disruption of p53 leads to increased developmental anomalies and malignancies, most p53 knockout mice develop normally. Therefore, the role of p53 in animal development was examined using rat knockout models. Conventionally generated homozygous KO males developed normally, whereas females rarely survived due to neural tube defects. Mutant chimeras generated via blastocyst injection with p53-null ESCs exhibited high rates of embryonic lethality in both sexes. This phenotype could be observed in one month by the use of zinc-finger nucleases. The p53-null ESCs were resistant to apoptosis and differentiation, and exhibited severe chromosome instabilities in the chimera-contributed cells, suggesting an essential role for p53 in maintaining ESC quality and genomic integrity. These results demonstrate that p53 functions as a guardian of embryogenesis in the rats.
Collapse
Affiliation(s)
- Masaki Kawamata
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute , 1-1, Tsukiji, 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | | |
Collapse
|
18
|
Zschemisch NH, Glage S, Wedekind D, Weinstein EJ, Cui X, Dorsch M, Hedrich HJ. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 2012; 13:60. [PMID: 23136839 PMCID: PMC3522011 DOI: 10.1186/1471-2172-13-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background Engineered zinc-finger nucleases (ZFN) represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB) and initiated non-homologous end joining (NHEJ) after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(D)J recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain. Results After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαβ+ as well as CD8+/CD3+/TCRαβ+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat. Conclusion The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena.
Collapse
Affiliation(s)
- Nils-Holger Zschemisch
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str,1, 30625, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Men H, Bauer BA, Bryda EC. Germline transmission of a novel rat embryonic stem cell line derived from transgenic rats. Stem Cells Dev 2012; 21:2606-12. [PMID: 22455749 PMCID: PMC3438845 DOI: 10.1089/scd.2012.0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/25/2012] [Indexed: 01/30/2023] Open
Abstract
Germline-competent rat embryonic stem (ES) cell lines are important resources for the creation of mutant rat models using ES-cell-based gene targeting technology. The ability to isolate germline-competent ES cell lines from any rat strain, including genetically modified strains, would allow for more sophisticated genetic manipulations without extensive breeding. Sprague Dawley (SD) males carrying an enhanced green fluorescent protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. A number of ES cell lines were established and subjected to rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing. Two male ES cell lines, SD-Tg.EC1/Rrrc and SD-Tg.EC8/Rrrc, were injected into blastocysts recovered from a cross of Dark Agouti (DA) males with SD females. Resulting chimeric animals were bred with wild-type SD mates to verify the germline transmissibility of the ES cell lines by identifying pups carrying the ES cell line-derived EGFP transgene. While both ES cell lines gave rise to chimeric animals, only SD-Tg.EC1 was germline competent. This confirms the feasibility of deriving germline-competent ES cell lines from transgenic rat strains and provides a novel ES cell line with a stable green fluorescent protein (GFP) reporter for future genetic manipulations to create new rat models.
Collapse
Affiliation(s)
- Hongsheng Men
- Department of Veterinary Pathobiology, Rat Resource and Research Center, University of Missouri, Columbia, Missouri 65201, USA
| | | | | |
Collapse
|
20
|
Yan HX, Wu HP, Ashton C, Tong C, Ying QL. Rats deficient for p53 are susceptible to spontaneous and carcinogen-induced tumorigenesis. Carcinogenesis 2012; 33:2001-5. [PMID: 22791818 DOI: 10.1093/carcin/bgs238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The p53 tumor suppressor gene is highly mutated in human cancers. Individuals who inherit one p53 mutant allele are susceptible to a wide range of tumor types, including breast cancer and sarcoma. We recently generated p53 knockout rats through gene targeting in embryonic stem cells. Here we show that rats homozygous for the null allele are prone to early onset spontaneous sarcomas and lymphoma with high incidence of metastases. Heterozygous rats are also highly predisposed to cancer, but with a delayed onset and a wider spectrum of tumor types compared with homozygotes. Importantly, up to 20% of female heterozygotes developed breast cancer and about 70% of the tumors were positive for estrogen receptor. Exposing p53-deficient rats to a low dose of the carcinogen diethylnitrosamine dramatically decreased the latency for sarcoma development and survival time compared with equivalently treated wild-type rats. These unique features make this knockout line a valuable model for investigating human malignancy and in vivo carcinogenicity of chemicals and therapeutic compounds.
Collapse
Affiliation(s)
- He-Xin Yan
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
21
|
Zheng S, Geghman K, Shenoy S, Li C. Retake the center stage--new development of rat genetics. J Genet Genomics 2012; 39:261-8. [PMID: 22749013 DOI: 10.1016/j.jgg.2012.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
The rat is a powerful model for the study of human physiology and diseases, and is preferred by physiologists, neuroscientists and toxicologists. However, the lack of robust genetic modification tools has severely limited the generation of rat genetic models over the last two decades. In the last few years, several gene-targeting strategies have been developed in rats using N-ethyl-N-nitrosourea (ENU), transposons, zinc-finger nucleases (ZFNs), bacterial artificial chromosome (BAC) mediated transgenesis, and recently established rat embryonic stem (ES) cells. The development and improvement of these approaches to genetic manipulation have created a bright future for the use of genetic rat models in investigations of gene function and human diseases. Here, we summarize the strategies used for rat genetic manipulation in current research. We also discuss BAC transgenesis as a potential tool in rat transgenic models.
Collapse
Affiliation(s)
- Sushuang Zheng
- Department of Neurology, Friedman Brain Institute, Mt. Sinai School of Medicine, Box 1137, New York, NY 10029, USA
| | | | | | | |
Collapse
|
22
|
Mendes JJ, Leandro CI, Bonaparte DP, Pinto AL. A rat model of diabetic wound infection for the evaluation of topical antimicrobial therapies. Comp Med 2012; 62:37-48. [PMID: 22330650 PMCID: PMC3276391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/14/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
Diabetes mellitus is an epidemic multisystemic chronic disease that frequently is complicated by complex wound infections. Innovative topical antimicrobial therapy agents are potentially useful for multimodal treatment of these infections. However, an appropriately standardized in vivo model is currently not available to facilitate the screening of these emerging products and their effect on wound healing. To develop such a model, we analyzed, tested, and modified published models of wound healing. We optimized various aspects of the model, including animal species, diabetes induction method, hair removal technique, splint and dressing methods, the control of unintentional bacterial infection, sampling methods for the evaluation of bacterial burden, and aspects of the microscopic and macroscopic assessment of wound healing, all while taking into consideration animal welfare and the '3Rs' principle. We thus developed a new wound infection model in rats that is optimized for testing topical antimicrobial therapy agents. This model accurately reproduces the pathophysiology of infected diabetic wound healing and includes the current standard treatment (that is, debridement). The numerous benefits of this model include the ready availability of necessary materials, simple techniques, high reproducibility, and practicality for experiments with large sample sizes. Furthermore, given its similarities to infected-wound healing and treatment in humans, our new model can serve as a valid alternative for applied research.
Collapse
Affiliation(s)
- João J Mendes
- Internal Medicine Department, Hospital de Santa Marta/Centro Hospitalar de Lisboa Central EPE, Lisbon, Portugal.
| | | | | | | |
Collapse
|
23
|
Soares MJ, Chakraborty D, Karim Rumi MA, Konno T, Renaud SJ. Rat placentation: an experimental model for investigating the hemochorial maternal-fetal interface. Placenta 2012; 33:233-43. [PMID: 22284666 DOI: 10.1016/j.placenta.2011.11.026] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022]
Abstract
The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research.
Collapse
Affiliation(s)
- M J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
24
|
Progress in The Genetic Manipulation Technology of Embryonic Stem Cells in Rats. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Mollard S, Mousseau Y, Baaj Y, Richard L, Cook-Moreau J, Monteil J, Funalot B, Sturtz FG. How can grafted breast cancer models be optimized? Cancer Biol Ther 2011; 12:855-64. [PMID: 22057217 DOI: 10.4161/cbt.12.10.18139] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent spontaneous malignancy diagnosed in women and is characterized by a broad histological diversity. Progression of the disease has a metastasizing trend and can be resistant to hormonal and chemotherapy. Animal models have provided some understanding of these features and have allowed new treatments to be proposed. However, these models need to be revised because they have some limitations in predicting the clinical efficacy of new therapies. In this review, we discuss the biological criteria to be taken into account for a realistic animal model of breast cancer graft (tumor implantation site, animal immune status, histological diversity, modern imaging). We emphasize the need for more stringent monitoring criteria, and suggest adopting the human RECIST (Response Evaluation Criteria in Solid Tumors) criteria to evaluate treatments in animal models.
Collapse
Affiliation(s)
- Séverine Mollard
- Molecular Biology, School of Medicine, University of Limoges, Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
van Boxtel R, Kuiper RV, Toonen PW, van Heesch S, Hermsen R, de Bruin A, Cuppen E. Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1616-22. [PMID: 21854749 DOI: 10.1016/j.ajpath.2011.06.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/07/2011] [Accepted: 06/14/2011] [Indexed: 11/17/2022]
Abstract
The TP53 tumor suppressor gene is mutated in the majority of human cancers. Inactivation of p53 in a variety of animal models results in early-onset tumorigenesis, reflecting the importance of p53 as a gatekeeper tumor suppressor. We generated a mutant Tp53 allele in the rat using a target-selected mutagenesis approach. Here, we report that homozygosity for this allele results in complete loss of p53 function. Homozygous mutant rats predominantly develop sarcomas with an onset of 4 months of age with a high occurrence of pulmonary metastases. Heterozygous rats develop sarcomas starting at 8 months of age. Molecular analysis revealed that these tumors exhibit a loss-of-heterozygosity of the wild-type Tp53 allele. These unique features make this rat highly complementary to other rodent p53 knockout models and a versatile tool for investigating tumorigenesis processes as well as genotoxic studies.
Collapse
Affiliation(s)
- Ruben van Boxtel
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Dwinell MR, Lazar J, Geurts AM. The emerging role for rat models in gene discovery. Mamm Genome 2011; 22:466-75. [PMID: 21732192 DOI: 10.1007/s00335-011-9346-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/04/2011] [Indexed: 12/17/2022]
Abstract
Rat models have been used for many decades to study physiological and pathophysiological mechanisms. Prior to the release of the rat genome and new technologies for targeting gene manipulation, the rat had been the underdog in the genomics era, despite the abundance of physiological data compared to the mouse. The overarching goal of biomedical research is to improve health and advance medical science. Translating human disease gene discovery and validation in the rat, through the use of emerging technologies and integrated tools and databases, is providing power to understand the genetics, environmental influences, and biology of disease. In this review we briefly outline the rat models, bioinformatics tools, and technologies that are changing the landscape of translational research. The strategies used to translate disease traits to genes to function, and, ultimately, to improve human health is discussed. Finally, our perspective on how rat models will continue to positively impact biomedical research is provided.
Collapse
Affiliation(s)
- Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | |
Collapse
|