1
|
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Mukerjee N, Al-Hamash SMJ, Al-Maiahy TJ, Batiha GES. 5-HT/CGRP pathway and Sumatriptan role in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3148-3173. [PMID: 36042570 DOI: 10.1080/02648725.2022.2108996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). In Covid-19, there is uncontrolled activation of immune cells with a massive release of pro-inflammatory cytokines and the development of cytokine storm. These inflammatory changes induce impairment of different organ functions, including the central nervous system (CNS), leading to acute brain injury and substantial changes in the neurotransmitters, including serotonin (5-HT) and calcitonin gene-related peptide (CGRP), which have immunomodulatory properties through modulation of central and peripheral immune responses. In Covid-19, 5-HT neurotransmitters and CGRP could contribute to abnormal and atypical vascular reactivity. Sumatriptan is a pre-synaptic 5-HT (5-HT1D and 5-HT1B) agonist and inhibits the release of CGRP. Both 5-HT and CGRP seem to be augmented in Covid-19 due to underlying activation of inflammatory signaling pathways and hyperinflammation. In virtue of its anti-inflammatory and antioxidant properties with inhibition release of 5-HT and CGRP, Sumatriptan may reduce Covid-19 hyperinflammation. Therefore, Sumatriptan might be a novel potential therapeutic strategy in managing Covid-19. In conclusion, Sumatriptan could be an effective therapeutic strategy in managing Covid-19 through modulation of 5-HT neurotransmitters and inhibiting CGRP.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Rumbus Z, Fekete K, Kelava L, Gardos B, Klonfar K, Keringer P, Pinter E, Pakai E, Garami A. Ammonium chloride-induced hypothermia is attenuated by transient receptor potential channel vanilloid-1, but augmented by ankyrin-1 in rodents. Life Sci 2024; 346:122633. [PMID: 38615746 DOI: 10.1016/j.lfs.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
AIMS Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Bibor Gardos
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Krisztian Klonfar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary.
| |
Collapse
|
3
|
Dvornikova KA, Platonova ON, Bystrova EY. The Role of TRP Channels in Sepsis and Colitis. Int J Mol Sci 2024; 25:4784. [PMID: 38731999 PMCID: PMC11084600 DOI: 10.3390/ijms25094784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
To date, several members of the transient receptor potential (TRP) channels which provide a wide array of roles have been found in the gastrointestinal tract (GI). The goal of earlier research was to comprehend the intricate signaling cascades that contribute to TRP channel activation as well as how these receptors' activity affects other systems. Moreover, there is a large volume of published studies describing the role of TRP channels in a number of pathological disorders, including inflammatory bowel disease (IBD) and sepsis. Nevertheless, the generalizability of these results is subject to certain limitations. For instance, the study of IBD relies on various animal models and experimental methods, which are unable to precisely imitate the multifactorial chronic disease. The diverse pathophysiological mechanisms and unique susceptibility of animals may account for the inconsistency of the experimental data collected. The main purpose of this study was to conduct a comprehensive review and analysis of existing studies on transient receptor potential (TRP) channels implicating specific models of colitis and sepsis, with particular emphasis on their involvement in pathological disorders such as IBD and sepsis. Furthermore, the text endeavors to evaluate the generalizability of experimental findings, taking into consideration the limitations posed by animal models and experimental methodologies. Finally, we also provide an updated schematic of the most important and possible molecular signaling pathways associated with TRP channels in IBD and sepsis.
Collapse
Affiliation(s)
| | | | - Elena Y. Bystrova
- I.P. Pavlov Institute of Physiology RAS, 199034 St. Petersburg, Russia; (K.A.D.); (O.N.P.)
| |
Collapse
|
4
|
Rossi G, Di Nisio V, Chiominto A, Cecconi S, Maccarrone M. Endocannabinoid System Components of the Female Mouse Reproductive Tract Are Modulated during Reproductive Aging. Int J Mol Sci 2023; 24:ijms24087542. [PMID: 37108704 PMCID: PMC10144466 DOI: 10.3390/ijms24087542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The endocannabinoid (eCB) system has gained ground as a key modulator of several female fertility-related processes, under physiological/pathological conditions. Nevertheless, its modulation during reproductive aging remains unclear. This study aimed to investigate the expression levels of the main receptors (cannabinoid receptor 1,CB1; cannabinoid receptor 2, CB2; G-protein coupled receptor, GPR55; and transient receptor potential vanilloid type 1 channel, TRPV1) and metabolic enzymes (N-acylphosphatidylethanolamine phospholipase D, NAPE-PLD; fatty acid amide hydrolase, FAAH; monoacylglycerol lipase, MAGL; and diacylglycerol lipase, DAGL-α and -β) of this system in the ovaries, oviducts, and uteri of mice at prepubertal, adult, late reproductive, and post-reproductive stages through quantitative ELISA and immunohistochemistry. The ELISA showed that among the receptors, TRPV1 had the highest expression and significantly increased during aging. Among the enzymes, NAPE-PLD, FAAH, and DAGL-β were the most expressed in these organs at all ages, and increased age-dependently. Immunohistochemistry revealed that, regardless of age, NAPE-PLD and FAAH were mainly found in the epithelial cells facing the lumen of the oviduct and uteri. Moreover, in ovaries, NAPE-PLD was predominant in the granulosa cells, while FAAH was sparse in the stromal compartment. Of note, the age-dependent increase in TRPV1 and DAGL-β could be indicative of increased inflammation, while that of NAPE-PLD and FAAH could suggest the need to tightly control the levels of the eCB anandamide at late reproductive age. These findings offer new insights into the role of the eCB system in female reproduction, with potential for therapeutic exploitation.
Collapse
Affiliation(s)
- Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | | | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center of Brain Research, Santa Lucia Foundation IRCCS, 00164 Rome, Italy
| |
Collapse
|
5
|
Garami A, Steiner AA, Pakai E, Wanner SP, Almeida MC, Keringer P, Oliveira DL, Nakamura K, Morrison SF, Romanovsky AA. The neural pathway of the hyperthermic response to antagonists of the transient receptor potential vanilloid-1 channel. Temperature (Austin) 2023; 10:136-154. [PMID: 37187834 PMCID: PMC10177699 DOI: 10.1080/23328940.2023.2171671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
We identified the neural pathway of the hyperthermic response to TRPV1 antagonists. We showed that hyperthermia induced by i.v. AMG0347, AMG 517, or AMG8163 did not occur in rats with abdominal sensory nerves desensitized by pretreatment with a low i.p. dose of resiniferatoxin (RTX, TRPV1 agonist). However, neither bilateral vagotomy nor bilateral transection of the greater splanchnic nerve attenuated AMG0347-induced hyperthermia. Yet, this hyperthermia was attenuated by bilateral high cervical transection of the spinal dorsolateral funiculus (DLF). To explain the extra-splanchnic, spinal mediation of TRPV1 antagonist-induced hyperthermia, we proposed that abdominal signals that drive this hyperthermia originate in skeletal muscles - not viscera. If so, in order to prevent TRPV1 antagonist-induced hyperthermia, the desensitization caused by i.p. RTX should spread into the abdominal-wall muscles. Indeed, we found that the local hypoperfusion response to capsaicin (TRPV1 agonist) in the abdominal-wall muscles was absent in i.p. RTX-desensitized rats. We then showed that the most upstream (lateral parabrachial, LPB) and the most downstream (rostral raphe pallidus) nuclei of the intrabrain pathway that controls autonomic cold defenses are also required for the hyperthermic response to i.v. AMG0347. Injection of muscimol (inhibitor of neuronal activity) into the LPB or injection of glycine (inhibitory neurotransmitter) into the raphe blocked the hyperthermic response to i.v. AMG0347, whereas i.v. AMG0347 increased the number of c-Fos cells in the raphe. We conclude that the neural pathway of TRPV1 antagonist-induced hyperthermia involves TRPV1-expressing sensory nerves in trunk muscles, the DLF, and the same LPB-raphe pathway that controls autonomic cold defenses.
Collapse
Affiliation(s)
- Andras Garami
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Alexandre A. Steiner
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Eszter Pakai
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Samuel P. Wanner
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - M. Camila Almeida
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Daniela L. Oliveira
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shaun F. Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Andrej A. Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- School of Molecular Sciences, University of Arizona, Tempe, AZ, USA
- Zharko Pharma, Inc., Olympia, WA, USA
| |
Collapse
|
6
|
Lima PM, Reis TO, Wanner SP, Chianca-Jr DA, Menezes RC. The role of peripheral transient receptor potential vanilloid 1 channels in stress-induced hyperthermia in rats subjected to an anxiogenic environment. J Therm Biol 2022; 106:103191. [DOI: 10.1016/j.jtherbio.2022.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
7
|
Hiroki CH, Sarden N, Hassanabad MF, Yipp BG. Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging. Front Immunol 2021; 12:785355. [PMID: 34975876 PMCID: PMC8716370 DOI: 10.3389/fimmu.2021.785355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.
Collapse
Affiliation(s)
- Carlos H. Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mortaza F. Hassanabad
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Liviero F, Campisi M, Mason P, Pavanello S. Transient Receptor Potential Vanilloid Subtype 1: Potential Role in Infection, Susceptibility, Symptoms and Treatment of COVID-19. Front Med (Lausanne) 2021; 8:753819. [PMID: 34805220 PMCID: PMC8599155 DOI: 10.3389/fmed.2021.753819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The battle against the new coronavirus that continues to kill millions of people will be still long. Novel strategies are demanded to control infection, mitigate symptoms and treatment of COVID-19. This is even more imperative given the long sequels that the disease has on the health of the infected. The discovery that S protein includes two ankyrin binding motifs (S-ARBMs) and that the transient receptor potential vanilloid subtype 1 (TRPV-1) cation channels contain these ankyrin repeat domains (TRPs-ARDs) suggest that TRPV-1, the most studied member of the TRPV channel family, can play a role in binding SARS-CoV-2. This hypothesis is strengthened by studies showing that other respiratory viruses bind the TRPV-1 on sensory nerves and epithelial cells in the airways. Furthermore, the pathophysiology in COVID-19 patients is similar to the effects generated by TRPV-1 stimulation. Lastly, treatment with agonists that down-regulate or inactivate TRPV-1 can have a beneficial action on impaired lung functions and clearance of infection. In this review, we explore the role of the TRPV-1 channel in the infection, susceptibility, pathogenesis, and treatment of COVID-19, with the aim of looking at novel strategies to control infection and mitigate symptoms, and trying to translate this knowledge into new preventive and therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padua, Padova, Italy
| |
Collapse
|
9
|
Luo C, Ai J, Ren E, Li J, Feng C, Li X, Luo X. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus: Focus on its anti-cancer activity and bioavailability (Review). Exp Ther Med 2021; 22:1327. [PMID: 34630681 DOI: 10.3892/etm.2021.10762] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Evodiae fructus (Wu-Zhu-Yu in Chinese) can be isolated from the dried, unripe fruits of Tetradium ruticarpum and is a well-known traditional Chinese medicine that is applied extensively in China, Japan and Korea. Evodiae fructus has been traditionally used to treat headaches, abdominal pain and menorrhalgia. In addition, it is widely used as a dietary supplement to provide carboxylic acids, essential oils and flavonoids. Evodiamine (EVO) is one of the major bioactive components contained within Evodiae fructus and is considered to be a potential candidate anti-cancer agent. EVO has been reported to exert anti-cancer effects by inhibiting cell proliferation, invasion and metastasis, whilst inducing apoptosis in numerous types of cancer cells. However, EVO is susceptible to metabolism and may inhibit the activities of metabolizing enzymes, such as cytochrome P450. Clinical application of EVO in the treatment of cancers may prove difficult due to poor bioavailability and potential toxicity due to metabolism. Currently, novel drug carriers involving the use of solid dispersion techniques, phospholipids and nanocomplexes to deliver EVO to improve its bioavailability and mitigate side effects have been tested. The present review aims to summarize the reported anti-cancer effects of EVO whilst discussing the pharmacokinetic behaviors, characteristics and effective delivery systems of EVO.
Collapse
Affiliation(s)
- Chaodan Luo
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Jingwen Ai
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Erfang Ren
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Jianqiang Li
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Chunmei Feng
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Xinrong Li
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| | - Xiaojie Luo
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
10
|
Hill M, Třískala Z, Honců P, Krejčí M, Kajzar J, Bičíková M, Ondřejíková L, Jandová D, Sterzl I. Aging, hormones and receptors. Physiol Res 2021; 69:S255-S272. [PMID: 33094624 DOI: 10.33549/physiolres.934523] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ageing is accompanied by deterioration in physical condition and a number of physiological processes and thus a higher risk of a range of diseases and disorders. In particular, we focused on the changes associated with aging, especially the role of small molecules, their role in physiological and pathophysiological processes and potential treatment options. Our previously published results and data from other authors lead to the conclusion that these unwanted changes are mainly linked to the hypothalamic-pituitary-adrenal axis can be slowed down, stopped, or in some cases even reversed by an appropriate treatment, but especially by a life-management adjustment.
Collapse
Affiliation(s)
- M Hill
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bagood MD, Isseroff RR. TRPV1: Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing. Int J Mol Sci 2021; 22:ijms22116135. [PMID: 34200205 PMCID: PMC8201146 DOI: 10.3390/ijms22116135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Skin is innervated by a multitude of sensory nerves that are important to the function of this barrier tissue in homeostasis and injury. The role of innervation and neuromediators has been previously reviewed so here we focus on the role of the transient receptor potential cation channel, subfamily V member 1 (TRPV1) in wound healing, with the intent of targeting it in treatment of non-healing wounds. TRPV1 structure and function as well as the outcomes of TRPV1-targeted therapies utilized in several diseases and tissues are summarized. In skin, keratinocytes, sebocytes, nociceptors, and several immune cells express TRPV1, making it an attractive focus area for treating wounds. Many intrinsic and extrinsic factors confound the function and targeting of TRPV1 and may lead to adverse or off-target effects. Therefore, a better understanding of what is known about the role of TRPV1 in skin and wound healing will inform future therapies to treat impaired and chronic wounds to improve healing.
Collapse
Affiliation(s)
- Michelle D. Bagood
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95816, USA;
| | - R. Rivkah Isseroff
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95816, USA;
- Dermatology Section, VA Northern California Health Care System, Mather, CA 95655, USA
- Correspondence: ; Tel.: +1-(916)-551-2606
| |
Collapse
|
12
|
Zhang XB, Li J, Gu J, Zeng YQ. Roles of Cannabidiol in the treatment and prevention of Alzheimer's disease by multi-target actions. Mini Rev Med Chem 2021; 22:43-51. [PMID: 33797364 DOI: 10.2174/1389557521666210331162857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with chronic, progressive, and irreversible characteristics, affecting nearly 50 million older adults worldwide. The pathogenesis of AD includes the formation of senile plaques, the abnormal aggregation of tau protein and the gradual degeneration and death of cerebral cortical cells. The main symptoms are memory loss, cognitive decline and behavioral disorders. Studies indicate that cannabidiol(CBD) possesses various pharmacological activities including anti-inflammatory, anti-oxidation and neuroprotective activities. It has been suggested as a potential multi-target medicine for treatment of AD. In this review, we aim to summarize the underlying mechanisms and protective effects of CBD on signaling pathways and central receptors involved in the pathogenesis of AD, including the endocannabinoid system(eCBs), the Transient receptor potential vanilloid type 1(TRPV1) receptor, and the Peroxisome proliferator-activated receptor (PPAR) receptor.
Collapse
Affiliation(s)
- Xiao-Bei Zhang
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Jintao Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500. China
| | - Juanhua Gu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Yue-Qin Zeng
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| |
Collapse
|
13
|
Schiffman HJ, Olufs ZPG, Lasarev MR, Wassarman DA, Perouansky M. Ageing and genetic background influence anaesthetic effects in a D. melanogaster model of blunt trauma with brain injury †. Br J Anaesth 2020; 125:77-86. [PMID: 32466842 DOI: 10.1016/j.bja.2020.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND General anaesthetics interact with the pathophysiological mechanisms of traumatic brain injury (TBI). We used a Drosophila melanogaster (fruit fly) model to test the hypothesis that ageing and genetic background modulate the effect of anaesthetics and hyperoxia on TBI-induced mortality in the context of blunt trauma. METHODS We exposed flies to isoflurane or sevoflurane under normoxic or hyperoxic conditions and TBI, and subsequently quantified the effect on mortality 24 h after injury. To determine the effect of age on anaesthetic-induced mortality, we analysed flies at 1-8 and 43-50 days old. To determine the effect of genetic background, we performed a genome-wide association study (GWAS) analysis on a collection of young inbred, fully sequenced lines. RESULTS Exposure to anaesthetics and hyperoxia differentially affected mortality in young and old flies. Pre-exposure of young but not old flies to anaesthetics reduced mortality. Post-exposure selectively increased mortality. For old but not young flies, hyperoxia enhanced the effect on mortality of post-exposure to isoflurane but not to sevoflurane. Post-exposure to isoflurane in hyperoxia increased the mortality of young fly lines in the Drosophila Genetic Reference Panel collection to different extents. GWAS analysis of these data identified single nucleotide polymorphisms in genes involved in cell water regulation and oxygen sensing as being associated with the post-exposure effect on mortality. CONCLUSIONS Ageing and genetic background influence the effects of volatile general anaesthetics and hyperoxia on mortality in the context of traumatic brain injury. Polymorphisms in specific genes are identified as potential causes of ageing and genetic effects.
Collapse
Affiliation(s)
| | | | | | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
14
|
Garami A, Shimansky YP, Rumbus Z, Vizin RCL, Farkas N, Hegyi J, Szakacs Z, Solymar M, Csenkey A, Chiche DA, Kapil R, Kyle DJ, Van Horn WD, Hegyi P, Romanovsky AA. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol Ther 2020; 208:107474. [PMID: 31926897 DOI: 10.1016/j.pharmthera.2020.107474] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel alter body temperature (Tb) in laboratory animals and humans: most cause hyperthermia; some produce hypothermia; and yet others have no effect. TRPV1 can be activated by capsaicin (CAP), protons (low pH), and heat. First-generation (polymodal) TRPV1 antagonists potently block all three TRPV1 activation modes. Second-generation (mode-selective) TRPV1 antagonists potently block channel activation by CAP, but exert different effects (e.g., potentiation, no effect, or low-potency inhibition) in the proton mode, heat mode, or both. Based on our earlier studies in rats, only one mode of TRPV1 activation - by protons - is involved in thermoregulatory responses to TRPV1 antagonists. In rats, compounds that potently block, potentiate, or have no effect on proton activation cause hyperthermia, hypothermia, or no effect on Tb, respectively. A Tb response occurs when a TRPV1 antagonist blocks (in case of hyperthermia) or potentiates (hypothermia) the tonic TRPV1 activation by protons somewhere in the trunk, perhaps in muscles, and - via the acido-antithermogenic and acido-antivasoconstrictor reflexes - modulates thermogenesis and skin vasoconstriction. In this work, we used a mathematical model to analyze Tb data from human clinical trials of TRPV1 antagonists. The analysis suggests that, in humans, the hyperthermic effect depends on the antagonist's potency to block TRPV1 activation not only by protons, but also by heat, while the CAP activation mode is uninvolved. Whereas in rats TRPV1 drives thermoeffectors by mediating pH signals from the trunk, but not Tb signals, our analysis suggests that TRPV1 mediates both pH and thermal signals driving thermoregulation in humans. Hence, in humans (but not in rats), TRPV1 is likely to serve as a thermosensor of the thermoregulation system. We also conducted a meta-analysis of Tb data from human trials and found that polymodal TRPV1 antagonists (ABT-102, AZD1386, and V116517) increase Tb, whereas the mode-selective blocker NEO6860 does not. Several strategies of harnessing the thermoregulatory effects of TRPV1 antagonists in humans are discussed.
Collapse
Affiliation(s)
- Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
| | - Yury P Shimansky
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robson C L Vizin
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
| | - Nelli Farkas
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsolt Szakacs
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Alexandra Csenkey
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Translational Medicine, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Zharko Pharma Inc., Olympia, WA, USA.
| |
Collapse
|
15
|
Nahama A, Ramachandran R, Cisternas AF, Ji H. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis: A review. MEDICINE IN DRUG DISCOVERY 2020; 5:100033. [PMID: 32292906 PMCID: PMC7147194 DOI: 10.1016/j.medidd.2020.100033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality associated with COVID-19 disease. Many patients will require intensive care with ventilatory support. Despite progress and best efforts, the mortality rates projected remain high. Historical data outlook points towards 80% expected fatality for patients progressing to advanced pulmonary disease, even when hospitalized in the intensive care unit. This is particularly true among the patient population over 65. Novel life-saving strategies are desperately needed to mitigate the high mortality that will be associated with the late stage SARS-CoV-2 viral infection associated with the fatal respiratory distress. We hypothesize that the morbidity, severity of the disease, and underlying physiological events leading to mortality are closely linked to the TRPV1 expressing neuronal system (afferent/efferent neurons) in the lungs. TRPV1 expressing cells are responsible for pain transmission, inflammation and immunomodulation throughout the entire pulmonary system and are modulating the processes associated with localized cytokine release (storm) and overall rapid disease progression. We suggest that therapeutic approaches targeting TRPV1 containing nerve fibers in the lungs will modulate the inflammatory and immune signal activity, leading to reduced mortality and better overall outcomes. We also propose to further explore the use of resiniferatoxin (RTX), an ultra-potent TRPV1 agonist currently in clinical trials for cancer and osteoarthritis pain, as a possible ablating agent of TRPV1 positive pulmonary pathways in patients with advanced COVID-19 disease.
Collapse
Affiliation(s)
- Alexis Nahama
- Sorrento Therapeutics Inc., 4955 Directors’ Place, San Diego, CA, 92121
| | | | | | - Henry Ji
- Sorrento Therapeutics Inc., 4955 Directors’ Place, San Diego, CA, 92121
| |
Collapse
|
16
|
TRPV1 Contributes to Cerebral Malaria Severity and Mortality by Regulating Brain Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9451671. [PMID: 31223430 PMCID: PMC6541938 DOI: 10.1155/2019/9451671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a Ca+2-permeable channel expressed on neuronal and nonneuronal cells, known as an oxidative stress sensor. It plays a protective role in bacterial infection, and recent findings indicate that this receptor modulates monocyte populations in mice with malaria; however, its role in cerebral malaria progression and outcome is unclear. By using TRPV1 wild-type (WT) and knockout (KO) mice, the importance of TRPV1 to this cerebral syndrome was investigated. Infection with Plasmodium berghei ANKA decreased TRPV1 expression in the brain. Mice lacking TRPV1 were protected against Plasmodium-induced mortality and morbidity, a response that was associated with less cerebral swelling, modulation of the brain expression of endothelial tight-junction markers (junctional adhesion molecule A and claudin-5), increased oxidative stress (via inhibition of catalase activity and increased levels of H2O2, nitrotyrosine, and carbonyl residues), and diminished production of cytokines. Plasmodium load was not significantly affected by TRPV1 ablation. Repeated subcutaneous administration of the selective TRPV1 antagonist SB366791 after malaria induction increased TRPV1 expression in the brain tissue and enhanced mouse survival. These data indicate that TRPV1 channels contribute to the development and outcome of cerebral malaria.
Collapse
|
17
|
Chen L, Huang Z, Du Y, Fu M, Han H, Wang Y, Dong Z. Capsaicin Attenuates Amyloid-β-Induced Synapse Loss and Cognitive Impairments in Mice. J Alzheimers Dis 2018; 59:683-694. [PMID: 28671132 DOI: 10.3233/jad-170337] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of progressive cognitive impairment in the aged. The aggregation of the amyloid β-protein (Aβ) is a hallmark of AD and is linked to synapse loss and cognitive impairment. Capsaicin, a specific agonist of the transient receptor potential vanilloid 1 (TRPV1), has been proven to ameliorate stress-induced AD-like pathological and cognitive impairments, but it is unclear whether TRPV1 activation can affect cognitive and synaptic functions in Aβ-induced mouse model of AD. In this study, we investigated the effects of TRPV1 activation on spatial memory and synaptic plasticity in mice treated with Aβ. To induce AD-like pathological and cognitive impairments, adult C57Bl/6 mice were microinjected with Aβ42 (100 μM, 2.5 μl/mouse, i.c.v.). Two weeks after Aβ42 microinjection, spatial learning and memory as well as hippocampal long-term potentiation (LTP) were examined. The results showed that Aβ42 microinjection significantly impaired spatial learning and memory in the Morris water maze and novel object recognition tests compared with controls. These behavioral changes were accompanied by synapse loss and impaired LTP in the CA1 area of hippocampus. More importantly, daily capsaicin (1 mg/kg, i.p.) treatment throughout the experiment dramatically improved spatial learning and memory and synaptic function, as reflected by enhanced hippocampal LTP and reduced synapse loss, whereas the TRPV1 antagonist capsazepine (1 mg/kg, i.p.) treatment had no effects on cognitive and synaptic function in Aβ42-treated mice. These results indicate that TRPV1 activation by capsaicin rescues cognitive deficit in the Aβ42-induced mouse model of AD both structurely and functionally.
Collapse
Affiliation(s)
- Long Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yehong Du
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Min Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Huili Han
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yutian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
18
|
Ohyama K, Suzuki K. Dihydrocapsiate improved age-associated impairments in mice by increasing energy expenditure. Am J Physiol Endocrinol Metab 2017; 313:E586-E597. [PMID: 28811294 DOI: 10.1152/ajpendo.00132.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 01/06/2023]
Abstract
Metabolic dysfunction is associated with aging and results in age-associated chronic diseases, including type 2 diabetes mellitus, cardiovascular disease, and stroke. Hence, there has been a focus on increasing energy expenditure in aged populations to protect them from age-associated diseases. Dihydrocapsiate (DCT) is a compound that belongs to the capsinoid family. Capsinoids are capsaicin analogs that are found in nonpungent peppers and increase whole body energy expenditure. However, their effect on energy expenditure has been reported only in young populations, and to date the effectiveness of DCT in increasing energy expenditure in aged populations has not been investigated. In this study, we investigated whether DCT supplementation in aged mice improves age-associated impairments. We obtained 5-wk-old and 1-yr-old male C57BL/6J mice and randomly assigned the aged mice to two groups, resulting in a total of three groups: 1) young mice, 2) old mice, and 3) old mice supplemented with 0.3% DCT. After 12 wk of supplementation, blood and tissue samples were collected and analyzed. DCT significantly suppressed age-associated fat accumulation, adipocyte hypertrophy, and liver steatosis. In addition, the DCT treatment dramatically suppressed age-associated increases in hepatic inflammation, immune cell infiltration, and oxidative stress. DCT exerted these suppression effects by increasing energy expenditure linked to upregulation of both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that DCT efficiently improves age-associated impairments, including liver steatosis and inflammation, in part by increasing energy expenditure via activation of the fat oxidation pathway in skeletal muscle.
Collapse
Affiliation(s)
- Kana Ohyama
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Company, Incorporated, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Company, Incorporated, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
19
|
Transient Receptor Potential Vanilloid 1 Antagonists Prevent Anesthesia-induced Hypothermia and Decrease Postincisional Opioid Dose Requirements in Rodents. Anesthesiology 2017; 127:813-823. [DOI: 10.1097/aln.0000000000001812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background
Intraoperative hypothermia and postoperative pain control are two important clinical challenges in anesthesiology. Transient receptor potential vanilloid 1 has been implicated both in thermoregulation and pain. Transient receptor potential vanilloid 1 antagonists were not advanced as analgesics in humans in part due to a side effect of hyperthermia. This study tested the hypothesis that a single, preincision injection of a transient receptor potential vanilloid 1 antagonist could prevent anesthesia-induced hypothermia and decrease the opioid requirement for postsurgical hypersensitivity.
Methods
General anesthesia was induced in rats and mice with either isoflurane or ketamine, and animals were treated with transient receptor potential vanilloid 1 antagonists (AMG 517 or ABT-102). The core body temperature and oxygen consumption were monitored during anesthesia and the postanesthesia period. The effect of preincision AMG 517 on morphine-induced reversal of postincision hyperalgesia was evaluated in rats.
Results
AMG 517 and ABT-102 dose-dependently prevented general anesthesia-induced hypothermia (mean ± SD; from 1.5° ± 0.1°C to 0.1° ± 0.1°C decrease; P < 0.001) without causing hyperthermia in the postanesthesia phase. Isoflurane-induced hypothermia was prevented by AMG 517 in wild-type but not in transient receptor potential vanilloid 1 knockout mice (n = 7 to 11 per group). The prevention of anesthesia-induced hypothermia by AMG 517 involved activation of brown fat thermogenesis with a possible contribution from changes in vasomotor tone. A single preincision dose of AMG 517 decreased the morphine dose requirement for the reduction of postincision thermal (12.6 ± 3.0 vs. 15.6 ± 1.0 s) and mechanical (6.8 ± 3.0 vs. 9.5 ± 3.0 g) withdrawal latencies.
Conclusions
These studies demonstrate that transient receptor potential vanilloid 1 antagonists prevent anesthesia-induced hypothermia and decrease opioid dose requirements for the reduction of postincisional hypersensitivity in rodents.
Collapse
|
20
|
Meyer CW, Ootsuka Y, Romanovsky AA. Body Temperature Measurements for Metabolic Phenotyping in Mice. Front Physiol 2017; 8:520. [PMID: 28824441 PMCID: PMC5534453 DOI: 10.3389/fphys.2017.00520] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses.
Collapse
Affiliation(s)
- Carola W Meyer
- Department of Pharmacology, Max-Planck Institute for Heart and Lung ResearchBad Nauheim, Germany
| | - Youichirou Ootsuka
- Centre for Neuroscience, School of Medicine, Flinders University of South AustraliaAdelaide, SA, Australia
| | - Andrej A Romanovsky
- FeverLab, St. Joseph's Hospital and Medical CenterPhoenix, AZ, United States
| |
Collapse
|
21
|
Ivic I, Solymar M, Pakai E, Rumbus Z, Pinter E, Koller A, Garami A. Transient Receptor Potential Vanilloid-1 Channels Contribute to the Regulation of Acid- and Base-Induced Vasomotor Responses. J Vasc Res 2016; 53:279-290. [PMID: 27923234 DOI: 10.1159/000452414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/08/2016] [Indexed: 11/19/2022] Open
Abstract
pH changes can influence local blood flow, but the mechanisms of how acids and bases affect vascular tone is not fully clarified. Transient receptor potential vanilloid-1 (TRPV1) channels are expressed in vessels and can be activated by pH alterations. Thus, we hypothesized that TRPV1 channels are involved in the mediation of vascular responses to acid-base changes. Vasomotor responses to HCl, NaOH, and capsaicin were measured in isolated murine carotid and tail skin arteries. The function of TRPV1 was blocked by either of three approaches: Trpv1 gene disruption, pharmacological blockade with a TRPV1 antagonist (BCTC), and functional impairment of mainly neural TRPV1 channels (desensitization). In each artery type of control mice, HCl caused relaxation but NaOH contraction, and both responses were augmented after genetic or pharmacological TRPV1 blockade. In arteries of TRPV1-desensitized mice, HCl-induced relaxation did not differ from controls, whereas NaOH-induced contraction was augmented. All three types of TRPV1 blockade had more pronounced effects in carotid than in tail skin arteries. We conclude that TRPV1 channels limit the vasomotor responses to changes in pH. While base-induced arterial contraction is regulated primarily by neural TRPV1 channels, acid-induced arterial relaxation is modulated by TRPV1 channels located on nonneural vascular structures.
Collapse
Affiliation(s)
- Ivan Ivic
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | |
Collapse
|
22
|
Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci Rep 2016; 6:29294. [PMID: 27388773 PMCID: PMC4937344 DOI: 10.1038/srep29294] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/17/2016] [Indexed: 02/02/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP.
Collapse
|
23
|
Carletto L, Troncoso A, Rocha AC, Rumbus Z, Solymár M, Garami A. "Science without Borders" program and Brazilian-Hungarian collaboration in thermoregulation. Temperature (Austin) 2016; 2:455-6. [PMID: 27227065 PMCID: PMC4843935 DOI: 10.1080/23328940.2015.1109745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Luís Carletto
- Department of Pathophysiology and Gerontology; Medical School, University of Pécs; Pécs, Hungary; Medical School; Federal University of Paraná; Curitiba, Brazil
| | - Adam Troncoso
- Department of Pathophysiology and Gerontology; Medical School, University of Pécs; Pécs, Hungary; Medical School; Federal University of São Francisco Valley Foundation; Petrolina, Brazil
| | - Ana C Rocha
- Department of Pathophysiology and Gerontology; Medical School, University of Pécs; Pécs, Hungary; Medical School; Federal University of Alagoas; Maceió, Brazil
| | - Zoltán Rumbus
- Department of Pathophysiology and Gerontology; Medical School, University of Pécs ; Pécs, Hungary
| | - Margit Solymár
- Department of Pathophysiology and Gerontology; Medical School, University of Pécs ; Pécs, Hungary
| | - András Garami
- Department of Pathophysiology and Gerontology; Medical School, University of Pécs ; Pécs, Hungary
| |
Collapse
|
24
|
Hudson ASR, Kunstetter AC, Damasceno WC, Wanner SP. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses. ACTA ACUST UNITED AC 2016; 49:e5183. [PMID: 27191606 PMCID: PMC4869825 DOI: 10.1590/1414-431x20165183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
Physical exercise triggers coordinated physiological responses to meet the augmented
metabolic demand of contracting muscles. To provide adequate responses, the brain
must receive sensory information about the physiological status of peripheral tissues
and organs, such as changes in osmolality, temperature and pH. Most of the receptors
involved in these afferent pathways express ion channels, including transient
receptor potential (TRP) channels, which are usually activated by more than one type
of stimulus and are therefore considered polymodal receptors. Among these TRP
channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or
capsaicin receptor) has well-documented functions in the modulation of pain sensation
and thermoregulatory responses. However, the TRPV1 channel is also expressed in
non-neural tissues, suggesting that this channel may perform a broad range of
functions. In this review, we first present a brief overview of the available tools
for studying the physiological roles of the TRPV1 channel. Then, we present the
relationship between the TRPV1 channel and spontaneous locomotor activity, physical
performance, and modulation of several physiological responses, including water and
electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular,
gastrointestinal, and inflammatory responses. Altogether, the data presented herein
indicate that the TPRV1 channel modulates many physiological functions other than
nociception and thermoregulation. In addition, these data open new possibilities for
investigating the role of this channel in the acute effects induced by a single bout
of physical exercise and in the chronic effects induced by physical training.
Collapse
Affiliation(s)
- A S R Hudson
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - A C Kunstetter
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - W C Damasceno
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - S P Wanner
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
25
|
Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer's disease. Brain Res 2016; 1642:397-408. [PMID: 27084583 DOI: 10.1016/j.brainres.2016.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Alzheime's disease (AD) is an overwhelming neurodegenerative disorder, characterized by synaptic dysfunction, memory loss, neuro-inflammation and neural cell death. Very few treatments are in hand for the management of AD and they are only concentrating on peculiar aspects. Hence, an immense thrust is required to find utmost therapeutic targets to conquer this condition. This study investigates a potential role of vanillin, a selective agonist of transient receptor potential vanilloid subtype 1 (TRPV1) in the experimental models of AD viz. intracerebroventricular (i.c.v.) streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose induced AD in mice. The i.c.v. administration of STZ and intraperitoneally administration of AlCl3+d-galactose have significantly impaired learning-memory (Morris water maze and attentional set-shifting test), brain structure (hematoxylin, eosin and Congo red staining), enhanced brain oxidative stress (thiobarbituric acid reactive substance - TBARS and glutathione - GSH), nitrosative stress (nitrite/nitrate), acetylcholinesterase activity (AChE), inflammation (MPO), and calcium levels (Ca(++)). Treatment with vanillin in different doses and donepezil have significantly ameliorated i.c.v. STZ and AlCl3+d-galactose induced reduction in executive function, impaired reversal learning, cognition, memory and brain damage. Treatment with these drugs has also reduced the brain oxidative stress (TBARS and GSH), nitrosative stress (nitrite/nitrate), and AChE, MPO, and Ca(++) levels. These results indicate that vanillin, a selective agonist of TRPV1 and donepezil, a potent acetylcholine esterase inhibitor have attenuated i.c.v. STZ and AlCl3+d-galactose induced experimental AD. Hence, pharmacological positive modulation of TRPV1 channels may be a potential research target for mitigation of AD.
Collapse
|
26
|
"TRP inflammation" relationship in cardiovascular system. Semin Immunopathol 2015; 38:339-56. [PMID: 26482920 PMCID: PMC4851701 DOI: 10.1007/s00281-015-0536-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.
Collapse
|
27
|
Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature (Austin) 2015; 2:178-87. [PMID: 27227022 PMCID: PMC4843888 DOI: 10.1080/23328940.2015.1040604] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
28
|
Rossi F, Bellini G, Torella M, Tortora C, Manzo I, Giordano C, Guida F, Luongo L, Papale F, Rosso F, Nobili B, Maione S. The genetic ablation or pharmacological inhibition of TRPV1 signalling is beneficial for the restoration of quiescent osteoclast activity in ovariectomized mice. Br J Pharmacol 2014; 171:2621-30. [PMID: 24308803 DOI: 10.1111/bph.12542] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/12/2013] [Accepted: 11/24/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoporosis is a condition characterized by a decrease in bone density, which decreases its strength and results in fragile bones. The endocannabinoid/endovanilloid system has been shown to be involved in the regulation of skeletal remodelling. The aim of this study was to investigate the possible modulation of bone mass mediated by the transient receptor potential vanilloid type 1 channel (TRPV1) in vivo and in vitro. EXPERIMENTAL APPROACH A multidisciplinary approach, including biomolecular, biochemical and morphological analysis, was used to investigate the involvement of TRPV1 in changes in bone density in vivo and osteoclast activity in vitro, in wild-type and Trpv1(-/-) mice, that had undergone ovariectomy or had a sham operation. KEY RESULTS Genetic deletion of Trpv1 as well as pharmacological inhibition/desensitization of TRPV1 signalling dramatically reduced the osteoclast activity in vitro and prevented the ovariectomy-induced bone loss in vivo, whereas the expression of cannabinoid type 2 (CB2 ) receptors was increased. CONCLUSIONS AND IMPLICATIONS These findings highlight the pivotal role TRPV1 channels play in bone resorption and suggest a possible cross-talk between TRPV1 and CB2 receptors. Based on these results, hybrid compounds acting on both TRPV1 and CB2 receptors in an opposite manner could provide a future pharmacological tool for the treatment of diseases associated with disturbances in the bone remodelling process.
Collapse
Affiliation(s)
- F Rossi
- Department of Women, Child and of General and Specialistic Surgery, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wanner SP, Costa KA, Soares ADN, Cardoso VN, Coimbra CC. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:1077-1085. [PMID: 23857354 DOI: 10.1007/s00484-013-0699-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature (T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures (T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.
Collapse
Affiliation(s)
- Samuel Penna Wanner
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil, 31270-901,
| | | | | | | | | |
Collapse
|
30
|
Kunstetter AC, Wanner SP, Madeira LG, Wilke CF, Rodrigues LOC, Lima NRV. Association between the increase in brain temperature and physical performance at different exercise intensities and protocols in a temperate environment. ACTA ACUST UNITED AC 2014; 47:679-88. [PMID: 25003543 PMCID: PMC4165295 DOI: 10.1590/1414-431x20143561] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
There is evidence that brain temperature (Tbrain) provides a more
sensitive index than other core body temperatures in determining physical
performance. However, no study has addressed whether the association between
performance and increases in Tbrain in a temperate environment is
dependent upon exercise intensity, and this was the primary aim of the present study.
Adult male Wistar rats were subjected to constant exercise at three different speeds
(18, 21, and 24 m/min) until the onset of volitional fatigue. Tbrain was
continuously measured by a thermistor inserted through a brain guide cannula.
Exercise induced a speed-dependent increase in Tbrain, with the fastest
speed associated with a higher rate of Tbrain increase. Rats subjected to
constant exercise had similar Tbrain values at the time of fatigue,
although a pronounced individual variability was observed (38.7-41.7°C). There were
negative correlations between the rate of Tbrain increase and performance
for all speeds that were studied. These results indicate that performance during
constant exercise is negatively associated with the increase in Tbrain,
particularly with its rate of increase. We then investigated how an incremental-speed
protocol affected the association between the increase in Tbrain and
performance. At volitional fatigue, Tbrain was lower during incremental
exercise compared with the Tbrain resulting from constant exercise
(39.3±0.3 vs 40.3±0.1°C; P<0.05), and no association between the
rate of Tbrain increase and performance was observed. These findings
suggest that the influence of Tbrain on performance under temperate
conditions is dependent on exercise protocol.
Collapse
Affiliation(s)
- A C Kunstetter
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - S P Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - L G Madeira
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - C F Wilke
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - L O C Rodrigues
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - N R V Lima
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
31
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
32
|
Absence of transient receptor potential vanilloid-1 accelerates stress-induced axonopathy in the optic projection. J Neurosci 2014; 34:3161-70. [PMID: 24573275 DOI: 10.1523/jneurosci.4089-13.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
How neurons respond to stress in degenerative disease is of fundamental importance for identifying mechanisms of progression and new therapeutic targets. Members of the transient receptor potential (TRP) family of cation-selective ion channels are candidates for mediating stress signals, since different subunits transduce a variety of stimuli relevant in both normal and pathogenic physiology. We addressed this possibility for the TRP vanilloid-1 (TRPV1) subunit by comparing how the optic projection of Trpv1(-/-) mice and age-matched C57 controls responds to stress from elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Over a 5 week period of elevated pressure induced by microbead occlusion of ocular fluid, Trpv1(-/-) accelerated both degradation of axonal transport from retinal ganglion cells to the superior colliculus and degeneration of the axons themselves in the optic nerve. Ganglion cell body loss, which is normally later in progression, occurred in nasal sectors of Trpv1(-/-) but not C57 retina. Pharmacological antagonism of TRPV1 in rats similarly accelerated ganglion cell axonopathy. Elevated ocular pressure resulted in differences in spontaneous firing rate and action potential threshold current in Trpv1(-/-) ganglion cells compared with C57. In the absence of elevated pressure, ganglion cells in the two strains had similar firing patterns. Based on these data, we propose that TRPV1 may help neurons respond to disease-relevant stressors by enhancing activity necessary for axonal signaling.
Collapse
|
33
|
Romanovsky AA. New research journals are needed and can compete with titans. Temperature (Austin) 2013; 1:1-5. [PMID: 27830162 PMCID: PMC5101870 DOI: 10.4161/temp.27666] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022] Open
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix, AZ USA
| |
Collapse
|
34
|
Bodkin JV, Fernandes ES. TRPV1 and SP: key elements for sepsis outcome? Br J Pharmacol 2013; 170:1279-92. [PMID: 23145480 PMCID: PMC3838676 DOI: 10.1111/bph.12056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 11/04/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Sensory neurons play important roles in many disorders, including inflammatory diseases, such as sepsis. Sepsis is a potentially lethal systemic inflammatory reaction to a local bacterial infection, affecting thousands of patients annually. Although associated with a high mortality rate, sepsis outcome depends on the severity of systemic inflammation, which can be directly influenced by several factors, including the immune response of the patient. Currently, there is a lack of effective drugs to treat sepsis, and thus there is a need to develop new drugs to improve sepsis outcome. Several mediators involved in the formation of sepsis have now been identified, but the mechanisms underlying the pathology remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) receptor and the neuropeptide substance P (SP) have recently been demonstrated as important targets for sepsis and are located on sensory neurones and non-neuronal cells. Herein, we highlight and review the importance of sensory neurones for the modulation of sepsis, with specific focus on recent findings relating to TRPV1 and SP, with their distinct abilities to alter the transition from local to systemic inflammation and also modify the overall sepsis outcome. We also emphasize the protective role of TRPV1 in this context. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
|
35
|
Abstract
Recent discoveries suggest that aging is neither driven by accumulation of molecular damage of any cause, nor by random damage of any kind. Some predictions of a new theory, quasi-programmed hyperfunction, have already been confirmed and a clinically-available drug slows aging and delays diseases in animals. The relationship between diseases and aging becomes easily apparent. Yet, the essence of aging turns out to be so startling that the theory cannot be instantly accepted and any possible arguments are raised for its disposal. I discuss that these arguments actually support a new theory. Are any questions remaining? And might accumulation of molecular damage still play a peculiar role in aging?
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
36
|
Pharmacological actions of multi-target-directed evodiamine. Molecules 2013; 18:1826-43. [PMID: 23434865 PMCID: PMC6270287 DOI: 10.3390/molecules18021826] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 01/09/2023] Open
Abstract
Evodiamine, a naturally occurring indole alkaloid, is one of the main bioactive ingredients of Evodiae fructus. With respect to the pharmacological actions of evodiamine, more attention has been paid to beneficial effects in insults involving cancer, obesity, nociception, inflammation, cardiovascular diseases, Alzheimer's disease, infectious diseases and themoregulative effects. evodiamine has evolved a superior ability to bind various proteins, so we also argue that it is good starting point for multi-target drugs. This review is primarily addressed to the description of the recent advances in the biological activity studies of evodiamine, with a focus on pharmacological mechanism. The present review also includes the pharmacokinetics and the detailed exploration of target-binding properties of evodiamine in an attempt to provide a direction for further multi-target drug design.
Collapse
|
37
|
Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 2013; 164:1-76. [PMID: 23605179 DOI: 10.1007/112_2013_11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spicy food does not only provide an important hedonic input in daily life, but has also been anedoctically associated to beneficial effects on our health. In this context, the discovery of chemesthetic trigeminal receptors and their spicy ligands has provided the mechanistic basis and the pharmacological means to investigate this enticing possibility. This review discusses in molecular terms the connection between the neurophysiology of pungent spices and the "systemic" effects associated to their trigeminality. It commences with a cultural and historical overview on the Western fascination for spices, and, after analysing in detail the mechanisms underlying the trigeminality of food, the main dietary players from the transient receptor potential (TRP) family of cation channels are introduced, also discussing the "alien" distribution of taste receptors outside the oro-pharingeal cavity. The modulation of TRPV1 and TRPA1 by spices is next described, discussing how spicy sensations can be turned into hedonic pungency, and analyzing the mechanistic bases for the health benefits that have been associated to the consumption of spices. These include, in addition to a beneficial modulation of gastro-intestinal and cardio-vascular function, slimming, the optimization of skeletal muscle performance, the reduction of chronic inflammation, and the prevention of metabolic syndrome and diabetes. We conclude by reviewing the role of electrophilic spice constituents on cancer prevention in the light of their action on pro-inflammatory and pro-cancerogenic nuclear factors like NFκB, and on their interaction with the electrophile sensor protein Keap1 and the ensuing Nrf2-mediated transcriptional activity. Spicy compounds have a complex polypharmacology, and just like any other bioactive agent, show a balance of beneficial and bad actions. However, at least for moderate consumption, the balance seems definitely in favour of the positive side, suggesting that a spicy diet, a caveman-era technology, could be seriously considered in addition to caloric control and exercise as a measurement to prevent and control many chronic diseases associate to malnutrition from a Western diet.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Leuven, Belgium,
| | | |
Collapse
|
38
|
Szallasi A, Sheta M. Targeting TRPV1 for pain relief: limits, losers and laurels. Expert Opin Investig Drugs 2012; 21:1351-69. [DOI: 10.1517/13543784.2012.704021] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Arpad Szallasi
- Monmouth Medical Center, Pathology, 300 Second Ave, Long Branch, 07740, USA
| | - Mohamed Sheta
- Monmouth Medical Center, Medicine, Long Branch, 07740, USA
| |
Collapse
|