1
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
2
|
Abd El-Fattah EE. Tumor lysis syndrome promotes cancer chemoresistance and relapse through AMPK inhibition. Int Immunopharmacol 2023; 114:109568. [PMID: 36527883 DOI: 10.1016/j.intimp.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Cancer is a disease caused when cells divide uncontrollably and spread into surrounding tissues. There are different therapeutic modalities that control cancer growth, of which surgery, chemotherapy, and radiotherapy. Chemotherapy is a cancer treatment approach in which medications are used to inhibit cell proliferation and tumor multiplication, thus avoiding invasion and metastasis and thus eradicate cancer. One of the common complications associated with cancer chemotherapy is rapid lysis of expanding tumor cells, known as tumor lysis syndrome (TLS). TLS is associated with number of metabolic changes such as hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcemia. Among the consequences of hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcemia is the inhibition of 5' AMP-activated protein kinase (AMPK). Inhibition of AMPK induced different cancer chemo-resistance mechanisms such as cancer stem cells (CSCs), p-glycoproteins, Octamer-binding transcription factor 4 (OCT-4), homeobox protein NANOG, Krüppel-like factor 4 (KLF4) and immune microenvironment and thus leads to poor response to chemotherapy and even relapses after treatment. Our review aims to uncover new mechanisms underlying the metabolic consequences of tumor lysis on AMPK in tumor microenvironment. In this review, we also investigated the effect of AMPK on different cancer chemo-resistance mechanisms such as cancer stem cells, p-glycoproteins, OCT-4, NANOG, KLF4 and immune microenvironment.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
3
|
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, Zhang J, Cao Y, Somasundaram SG, Kirkland CE, Fan R, Aliev G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022; 83:556-569. [PMID: 33035656 DOI: 10.1016/j.semcancer.2020.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China; Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - SubbaRao V Madhunapantula
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Mikhail Y Sinelnikov
- Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China.
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation; Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
4
|
Xing G, Liu Z, Huang L, Zhao D, Wang T, Yuan H, Wu Y, Li L, Long Q, Zhou Y, Hao Z, Liu Y, Lu J, Li S, Zhu J, Wang B, Wang J, Liu J, Chen J, Pei D, Liu X, Chen K. MAP2K6 remodels chromatin and facilitates reprogramming by activating Gatad2b-phosphorylation dependent heterochromatin loosening. Cell Death Differ 2022; 29:1042-1054. [PMID: 34815549 PMCID: PMC9090911 DOI: 10.1038/s41418-021-00902-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Somatic cell reprogramming is an ideal model for studying epigenetic regulation as it undergoes dramatic chromatin remodeling. However, a role for phosphorylation signaling in chromatin protein modifications for reprogramming remains unclear. Here, we identified mitogen-activated protein kinase kinase 6 (Mkk6) as a chromatin relaxer and found that it could significantly enhance reprogramming. The function of Mkk6 in heterochromatin loosening and reprogramming requires its kinase activity but does not depend on its best-known target, P38. We identified Gatad2b as a novel target of Mkk6 phosphorylation that acts downstream to elevate histone acetylation levels and loosen heterochromatin. As a result, Mkk6 over-expression facilitates binding of Sox2 and Klf4 to their targets and promotes pluripotency gene expression during reprogramming. Our studies not only reveal an Mkk phosphorylation mediated modulation of chromatin status in reprogramming, but also provide new rationales to further investigate and improve the cell fate determination processes.
Collapse
Affiliation(s)
- Guangsuo Xing
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zichao Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Luyuan Huang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Danyun Zhao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Hao Yuan
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yi Wu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Linpeng Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Qi Long
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yanshuang Zhou
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zhihong Hao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jianghuan Lu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Shiting Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jieying Zhu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Bo Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Junwei Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jing Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jiekai Chen
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
5
|
Aledavood E, Gheeraert A, Forte A, Vuillon L, Rivalta I, Luque FJ, Estarellas C. Elucidating the Activation Mechanism of AMPK by Direct Pan-Activator PF-739. Front Mol Biosci 2021; 8:760026. [PMID: 34805275 PMCID: PMC8602109 DOI: 10.3389/fmolb.2021.760026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key energy sensor regulating the cell metabolism in response to energy supply and demand. The evolutionary adaptation of AMPK to different tissues is accomplished through the expression of distinct isoforms that can form up to 12 heterotrimeric complexes, which exhibit notable differences in the sensitivity to direct activators. To comprehend the molecular factors of the activation mechanism of AMPK, we have assessed the changes in the structural and dynamical properties of β1- and β2-containing AMPK complexes formed upon binding to the pan-activator PF-739. The analysis revealed the molecular basis of the PF-739-mediated activation of AMPK and enabled us to identify distinctive features that may justify the slightly higher affinity towards the β1−isoform, such as the β1−Asn111 to β2−Asp111 substitution, which seems to be critical for modulating the dynamical sensitivity of β1- and β2 isoforms. The results are valuable in the design of selective activators to improve the tissue specificity of therapeutic treatment.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain
| | - Aria Gheeraert
- Dipartimento di Chimica Industriale "Toso Montanari" Università di Bologna, Bologna, Italy.,LAMA, University of Savoie Mont Blanc, CNRS, LAMA, Le Bourget du Lac, France
| | - Alessia Forte
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain
| | - Laurent Vuillon
- LAMA, University of Savoie Mont Blanc, CNRS, LAMA, Le Bourget du Lac, France
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari" Università di Bologna, Bologna, Italy.,Université de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon, France
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Carolina Estarellas
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Oxygen as a Master Regulator of Human Pluripotent Stem Cell Function and Metabolism. J Pers Med 2021; 11:jpm11090905. [PMID: 34575682 PMCID: PMC8466012 DOI: 10.3390/jpm11090905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer numerous possibilities in science and medicine, particularly when combined with precise genome editing methods. hiPSCs are artificially generated equivalents of human embryonic stem cells (hESCs), which possess an unlimited ability to self-renew and the potential to differentiate into any cell type of the human body. Importantly, generating patient-specific hiPSCs enables personalized drug testing or autologous cell therapy upon differentiation into a desired cell line. However, to ensure the highest standard of hiPSC-based biomedical products, their safety and reliability need to be proved. One of the key factors influencing human pluripotent stem cell (hPSC) characteristics and function is oxygen concentration in their microenvironment. In recent years, emerging data have pointed toward the beneficial effect of low oxygen pressure (hypoxia) on both hiPSCs and hESCs. In this review, we examine the state-of-the-art research on the oxygen impact on hiPSC functions and activity with an emphasis on their niche, metabolic state, reprogramming efficiency, and differentiation potential. We also discuss the similarities and differences between PSCs and cancer stem cells (CSCs) with respect to the role of oxygen in both cell types.
Collapse
|
7
|
Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 2021; 9:714370. [PMID: 34422833 PMCID: PMC8377544 DOI: 10.3389/fcell.2021.714370] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, are generated as byproducts of oxidative phosphorylation in the mitochondria or via cell signaling-induced NADPH oxidases in the cytosol. In the recent two decades, a plethora of studies established that elevated ROS levels generated by oxidative eustress are crucial physiological mediators of many cellular and developmental processes. In this review, we discuss the mechanisms of ROS generation and regulation, current understanding of ROS functions in the maintenance of adult and embryonic stem cells, as well as in the process of cell reprogramming to a pluripotent state. Recently discovered cell-non-autonomous ROS functions mediated by growth factors are crucial for controlling cell differentiation and cellular immune response in Drosophila. Importantly, many physiological functions of ROS discovered in Drosophila may allow for deciphering and understanding analogous processes in human, which could potentially lead to the development of novel therapeutic approaches in ROS-associated diseases treatment.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Traxler L, Lagerwall J, Eichhorner S, Stefanoni D, D'Alessandro A, Mertens J. Metabolism navigates neural cell fate in development, aging and neurodegeneration. Dis Model Mech 2021; 14:dmm048993. [PMID: 34345916 PMCID: PMC8353098 DOI: 10.1242/dmm.048993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An uninterrupted energy supply is critical for the optimal functioning of all our organs, and in this regard the human brain is particularly energy dependent. The study of energy metabolic pathways is a major focus within neuroscience research, which is supported by genetic defects in the oxidative phosphorylation mechanism often contributing towards neurodevelopmental disorders and changes in glucose metabolism presenting as a hallmark feature in age-dependent neurodegenerative disorders. However, as recent studies have illuminated roles of cellular metabolism that span far beyond mere energetics, it would be valuable to first comprehend the physiological involvement of metabolic pathways in neural cell fate and function, and to subsequently reconstruct their impact on diseases of the brain. In this Review, we first discuss recent evidence that implies metabolism as a master regulator of cell identity during neural development. Additionally, we examine the cell type-dependent metabolic states present in the adult brain. As metabolic states have been studied extensively as crucial regulators of malignant transformation in cancer, we reveal how knowledge gained from the field of cancer has aided our understanding in how metabolism likewise controls neural fate determination and stability by directly wiring into the cellular epigenetic landscape. We further summarize research pertaining to the interplay between metabolic alterations and neurodevelopmental and psychiatric disorders, and expose how an improved understanding of metabolic cell fate control might assist in the development of new concepts to combat age-dependent neurodegenerative diseases, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Larissa Traxler
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
| | - Jessica Lagerwall
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
| | - Sophie Eichhorner
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol 6020, Austria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
McKay LK, White JP. The AMPK/p27 Kip1 Pathway as a Novel Target to Promote Autophagy and Resilience in Aged Cells. Cells 2021; 10:cells10061430. [PMID: 34201101 PMCID: PMC8229180 DOI: 10.3390/cells10061430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Once believed to solely function as a cyclin-dependent kinase inhibitor, p27Kip1 is now emerging as a critical mediator of autophagy, cytoskeletal dynamics, cell migration and apoptosis. During periods of metabolic stress, the subcellular location of p27Kip1 largely dictates its function. Cytoplasmic p27Kip1 has been found to be promote cellular resilience through autophagy and anti-apoptotic mechanisms. Nuclear p27Kip1, however, inhibits cell cycle progression and makes the cell susceptible to quiescence, apoptosis, and/or senescence. Cellular location of p27Kip1 is regulated, in part, by phosphorylation by various kinases, including Akt and AMPK. Aging promotes nuclear localization of p27Kip1 and a predisposition to senescence or apoptosis. Here, we will review the role of p27Kip1 in healthy and aging cells with a particular emphasis on the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
- Lauren K. McKay
- Adams School of Dentistry, UNC Chapel Hill, Chapel Hill, NC 27599, USA;
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
| | - James P. White
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Correspondence:
| |
Collapse
|
10
|
Aledavood E, Forte A, Estarellas C, Javier Luque F. Structural basis of the selective activation of enzyme isoforms: Allosteric response to activators of β1- and β2-containing AMPK complexes. Comput Struct Biotechnol J 2021; 19:3394-3406. [PMID: 34194666 PMCID: PMC8217686 DOI: 10.1016/j.csbj.2021.05.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key energy sensor regulating the cell metabolism in response to energy supply and demand. The evolutionary adaptation of AMPK to different tissues is accomplished through the expression of distinct isoforms that can form up to 12 complexes, which exhibit notable differences in the sensitivity to allosteric activators. To shed light into the molecular determinants of the allosteric regulation of this energy sensor, we have examined the structural and dynamical properties of β1- and β2-containing AMPK complexes formed with small molecule activators A-769662 and SC4, and dissected the mechanical response leading to active-like enzyme conformations through the analysis of interaction networks between structural domains. The results reveal the mechanical sensitivity of the α2β1 complex, in contrast with a larger resilience of the α2β2 species, especially regarding modulation by A-769662. Furthermore, binding of activators to α2β1 consistently promotes the pre-organization of the ATP-binding site, favoring the adoption of activated states of the enzyme. These findings are discussed in light of the changes in the residue content of β-subunit isoforms, particularly regarding the β1Asn111 → β2Asp111 substitution as a key factor in modulating the mechanical sensitivity of β1- and β2-containing AMPK complexes. Our studies pave the way for the design of activators tailored for improving the therapeutic treatment of tissue-specific metabolic disorders.
Collapse
Affiliation(s)
| | - Alessia Forte
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain
| | | | | |
Collapse
|
11
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
12
|
Salicylic diamines selectively eliminate residual undifferentiated cells from pluripotent stem cell-derived cardiomyocyte preparations. Sci Rep 2021; 11:2391. [PMID: 33504837 PMCID: PMC7841182 DOI: 10.1038/s41598-021-81351-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical translation of pluripotent stem cell (PSC) derivatives is hindered by the tumorigenic risk from residual undifferentiated cells. Here, we identified salicylic diamines as potent agents exhibiting toxicity to murine and human PSCs but not to cardiomyocytes (CMs) derived from them. Half maximal inhibitory concentrations (IC50) of small molecules SM2 and SM6 were, respectively, 9- and 18-fold higher for human than murine PSCs, while the IC50 of SM8 was comparable for both PSC groups. Treatment of murine embryoid bodies in suspension differentiation cultures with the most effective small molecule SM6 significantly reduced PSC and non-PSC contamination and enriched CM populations that would otherwise be eliminated in genetic selection approaches. All tested salicylic diamines exerted their toxicity by inhibiting the oxygen consumption rate (OCR) in PSCs. No or only minimal and reversible effects on OCR, sarcomeric integrity, DNA stability, apoptosis rate, ROS levels or beating frequency were observed in PSC-CMs, although effects on human PSC-CMs seemed to be more deleterious at higher SM-concentrations. Teratoma formation from SM6-treated murine PSC-CMs was abolished or delayed compared to untreated cells. We conclude that salicylic diamines represent promising compounds for PSC removal and enrichment of CMs without the need for other selection strategies.
Collapse
|
13
|
Russell FM, Hardie DG. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Int J Mol Sci 2020; 22:E186. [PMID: 33375416 PMCID: PMC7795930 DOI: 10.3390/ijms22010186] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance. In response to metabolic stress, it acts to redress energy imbalance through promotion of ATP-generating catabolic processes and inhibition of ATP-consuming processes, including cell growth and proliferation. While findings that AMPK was a downstream effector of the tumour suppressor LKB1 indicated that it might act to repress tumourigenesis, more recent evidence suggests that AMPK can either suppress or promote cancer, depending on the context. Prior to tumourigenesis AMPK may indeed restrain aberrant growth, but once a cancer has arisen, AMPK may instead support survival of the cancer cells by adjusting their rate of growth to match their energy supply, as well as promoting genome stability. The two isoforms of the AMPK catalytic subunit may have distinct functions in human cancers, with the AMPK-α1 gene often being amplified, while the AMPK-α2 gene is more often mutated. The prevalence of metabolic disorders, such as obesity and Type 2 diabetes, has led to the development of a wide range of AMPK-activating drugs. While these might be useful as preventative therapeutics in individuals predisposed to cancer, it seems more likely that AMPK inhibitors, whose development has lagged behind that of activators, would be efficacious for the treatment of pre-existing cancers.
Collapse
Affiliation(s)
| | - David Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland DD1 5EH, UK;
| |
Collapse
|
14
|
Sánchez BG, Bort A, Vara-Ciruelos D, Díaz-Laviada I. Androgen Deprivation Induces Reprogramming of Prostate Cancer Cells to Stem-Like Cells. Cells 2020; 9:cells9061441. [PMID: 32531951 PMCID: PMC7349866 DOI: 10.3390/cells9061441] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in prostate adenocarcinoma. When exposed to anticancer therapies, tumor cells may switch into a different histological subtype, such as the neuroendocrine phenotype which is associated with treatment failure and a poor prognosis. In this study, we demonstrated that long-term androgen signal depletion of prostate LNCaP cells induced a neuroendocrine phenotype followed by re-differentiation towards a “stem-like” state. LNCaP cells incubated for 30 days in charcoal-stripped medium or with the androgen receptor antagonist 2-hydroxyflutamide developed neuroendocrine morphology and increased the expression of the neuroendocrine markers βIII-tubulin and neuron specific enolase (NSE). When cells were incubated for 90 days in androgen-depleted medium, they grew as floating spheres and had enhanced expression of the stem cell markers CD133, ALDH1A1, and the transporter ABCB1A. Additionally, the pluripotent transcription factors Nanog and Oct4 and the angiogenic factor VEGF were up-regulated while the expression of E-cadherin was inhibited. Cell viability revealed that those cells were resistant to docetaxel and 2-hidroxyflutamide. Mechanistically, androgen depletion induced the decrease in AMP-activated kinase (AMPK) expression and activation and stabilization of the hypoxia-inducible factor HIF-1α. Overexpression of AMPK in the stem-like cells decreased the expression of stem markers as well as that of HIF-1α and VEGF while it restored the levels of E-cadherin and PGC-1α. Most importantly, docetaxel sensitivity was restored in stem-like AMPK-transfected cells. Our model provides a new regulatory mechanism of prostate cancer plasticity through AMPK that is worth exploring.
Collapse
Affiliation(s)
- Belén G. Sánchez
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
| | - Alicia Bort
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
| | - Diana Vara-Ciruelos
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
| | - Inés Díaz-Laviada
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (B.G.S.); (A.B.); (D.V.-C.)
- Chemical Research Institute “Andrés M. del Río” (IQAR), Alcalá University, 28871 Alcalá de Henares, Madrid, Spain
- Correspondence:
| |
Collapse
|
15
|
Das PK, Islam F, Lam AK. The Roles of Cancer Stem Cells and Therapy Resistance in Colorectal Carcinoma. Cells 2020; 9:cells9061392. [PMID: 32503256 PMCID: PMC7348976 DOI: 10.3390/cells9061392] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs) are the main culprits involved in therapy resistance and disease recurrence in colorectal carcinoma (CRC). Results using cell culture, animal models and tissues from patients with CRC suggest the indispensable roles of colorectal CSCs in therapeutic failure. Conventional therapies target proliferating and mature cancer cells, while CSCs are mostly quiescent and poorly differentiated, thereby they can easily survive chemotherapeutic insults. The aberrant activation of Wnt/β-catenin, Notch, Hedgehog, Hippo/YAP (Yes-associated protein) and phosphatidylinositol 3-kinase/protein kinase B facilitates CSCs with excessive self-renewal and therapy resistance property in CRC. CSCs survive the chemo-radiotherapies by escaping therapy mediated DNA damage via altering the cell cycle checkpoints, increasing DNA damage repair capacity and by an efficient scavenging of reactive oxygen species. Furthermore, dysregulations of miRNAs e.g., miR-21, miR-93, miR-203, miR-215, miR-497 etc., modulate the therapeutic sensitivity of colorectal CSCs by regulating growth and survival signalling. In addition, a reversible quiescent G0 state and the re-entering cell cycle capacity of colorectal CSCs can accelerate tumour regeneration after treatment. Moreover, switching to favourable metabolic signatures during a therapeutic regimen will add more complexity in therapeutic outcomes against CSCs. Therapeutic strategies targeting these underlying mechanisms of CSCs’ therapy resistance could provide a promising outcome, however, deep understanding and concerted research are necessary to design novel therapies targeting CSCs. To conclude, the understanding of these mechanisms of CSC in CRC could lead to the improved management of patients with CRC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: or (F.I.); (A.K.L.); Tel.: +88-0721-750041-9 (F.I.); +61-7-56780718 (A.K.L.); Fax: +88-0721-750064 (F.I.); +61-7-56780303 (A.K.L.)
| | - Alfred K. Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: or (F.I.); (A.K.L.); Tel.: +88-0721-750041-9 (F.I.); +61-7-56780718 (A.K.L.); Fax: +88-0721-750064 (F.I.); +61-7-56780303 (A.K.L.)
| |
Collapse
|
16
|
Metformin: Sentinel of the Epigenetic Landscapes That Underlie Cell Fate and Identity. Biomolecules 2020; 10:biom10050780. [PMID: 32443566 PMCID: PMC7277648 DOI: 10.3390/biom10050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
The biguanide metformin is the first drug to be tested as a gerotherapeutic in the clinical trial TAME (Targeting Aging with Metformin). The current consensus is that metformin exerts indirect pleiotropy on core metabolic hallmarks of aging, such as the insulin/insulin-like growth factor 1 and AMP-activated protein kinase/mammalian Target Of Rapamycin signaling pathways, downstream of its primary inhibitory effect on mitochondrial respiratory complex I. Alternatively, but not mutually exclusive, metformin can exert regulatory effects on components of the biologic machinery of aging itself such as chromatin-modifying enzymes. An integrative metabolo-epigenetic outlook supports a new model whereby metformin operates as a guardian of cell identity, capable of retarding cellular aging by preventing the loss of the information-theoretic nature of the epigenome. The ultimate anti-aging mechanism of metformin might involve the global preservation of the epigenome architecture, thereby ensuring cell fate commitment and phenotypic outcomes despite the challenging effects of aging noise. Metformin might therefore inspire the development of new gerotherapeutics capable of preserving the epigenome architecture for cell identity. Such gerotherapeutics should replicate the ability of metformin to halt the erosion of the epigenetic landscape, mitigate the loss of cell fate commitment, delay stochastic/environmental DNA methylation drifts, and alleviate cellular senescence. Yet, it remains a challenge to confirm if regulatory changes in higher-order genomic organizers can connect the capacity of metformin to dynamically regulate the three-dimensional nature of epigenetic landscapes with the 4th dimension, the aging time.
Collapse
|
17
|
Prieto J, Ponsoda X, Izpisua Belmonte JC, Torres J. Mitochondrial dynamics and metabolism in induced pluripotency. Exp Gerontol 2020; 133:110870. [PMID: 32045634 DOI: 10.1016/j.exger.2020.110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
18
|
UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis 2020; 11:10. [PMID: 31907353 PMCID: PMC6944706 DOI: 10.1038/s41419-019-2194-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is a large E2 ubiquitin-conjugating enzyme that possesses both E2 and E3 ligase activities. Ectopic UBE2O overexpression is associated with a variety of human diseases, especially cancers. However, the expression profile and functional biology of UBE2O in human breast cancer (BC) remain unclear. In this study, we found that UBE2O was significantly overexpressed in human BC tissues and cells. Patients with high UBE2O expression tended to have a high risk of metastasis and poor prognosis. In vitro assays revealed that UBE2O promoted BC cell proliferation and epithelial-mesenchymal transformation (EMT) and endowed BC cells with cancer stemness properties (CSPs). UBE2O knockdown in MDA-MB-231 cells suppressed tumour growth and lung metastasis in MDA-MB-231 xenograft mouse models. Mechanistically, UBE2O functioned as a ubiquitin enzyme of AMPKα2, promoting its ubiquitination and degradation and thus activating the mTORC1 signal pathway and contributing to BC oncogenesis and metastasis. Furthermore, as a downstream factor of the UBE2O/AMPKα2/mTORC1 axis, the oncoprotein MYC transcriptionally promoted UBE2O and formed a positive feedback loop in human BC. Collectively, our study demonstrated that UBE2O/AMPKα2/mTORC1-MYC forms a positive feedback loop in human BC cells that regulates BC cell proliferation and EMT and endows BC cells with CSPs.
Collapse
|
19
|
Zhang L, Yang Y, Chai L, Bu H, Yang Y, Huang H, Ran J, Zhu Y, Li L, Chen F, Li W. FRK plays an oncogenic role in non-small cell lung cancer by enhancing the stemness phenotype via induction of metabolic reprogramming. Int J Cancer 2019; 146:208-222. [PMID: 31251822 DOI: 10.1002/ijc.32530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 02/05/2023]
Abstract
The role of Fyn-related kinase (FRK) in malignant tumors remains controversial. Our study investigated the function of FRK in lung cancer. Immunohistochemistry staining and generating a knockout of FRK by CRISPR/Cas9 in H1299 (FRK-KO-H1299) cells were strategies used to explore the role of FRK. Immunohistochemistry staining indicated that FRK expression was elevated in 223 lung cancer tissues compared to 26 distant normal lung tissues. FRK contributed to poor survival status in lung cancer patients and acted as a predictor for poor prognosis of lung cancer. Knockout of FRK by CRISPR/Cas9 markedly inhibited proliferation, invasion, colony formation and epithelial-mesenchymal transition (EMT) process in the lung cancer cell line H1299. Further exploration indicated that FRK-KO damaged the stemness phenotype of H1299 by inhibiting CD44 and CD133 expression. Seahorse detection and a U-13 C flux assay revealed that FRK-KO induced metabolism reprogramming by inhibiting the Warburg effect and changing the energy type in H1299 cells. Epidermal growth factor stimulation recovered the expression of FRK and biological functions, metabolic reprogramming and stemness phenotype of H1299 cells. FRK plays an oncogenic role in lung cancer cells via a novel regulation mechanism of enhancing the stemness of H1299 cells by inducing metabolism reprogramming, which finally promotes EMT and metastasis. Our study also indicates that FRK could be used as a potential therapeutic target for drug development.
Collapse
Affiliation(s)
- Li Zhang
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongfeng Yang
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Chai
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hong Bu
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Yang
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hong Huang
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jingjing Ran
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yihan Zhu
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Li
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fei Chen
- Lab of Pathology, Key Lab of Transplantation Engineering and Immunology, Ministry of Health, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Weimin Li
- Department of Respiratory Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
20
|
Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells Int 2019; 2019:1569740. [PMID: 31428157 PMCID: PMC6681599 DOI: 10.1155/2019/1569740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.
Collapse
|
21
|
Bort A, Sánchez BG, Mateos-Gómez PA, Vara-Ciruelos D, Rodríguez-Henche N, Díaz-Laviada I. Targeting AMP-activated kinase impacts hepatocellular cancer stem cells induced by long-term treatment with sorafenib. Mol Oncol 2019; 13:1311-1331. [PMID: 30959553 PMCID: PMC6487713 DOI: 10.1002/1878-0261.12488] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. HCC treatment is hindered by the frequent emergence of chemoresistance to the multikinase inhibitor sorafenib, which has been related to the presence of cancer stem cells (CSCs) that self‐renew and often escape therapy. The key metabolic sensor AMP‐activated kinase (AMPK) has recently been recognized as a tumour growth regulator. In this study, we aimed to elucidate the role of AMPK in the development of a stem cell phenotype in HCC cells. To this end, we enriched the CSC population in HCC cell lines that showed increased expression of drug resistance (ALDH1A1, ABCB1A) and stem cell (CD133, Nanog, Oct4, alpha fetoprotein) markers and demonstrated their stemness phenotype. These cells were refractory to sorafenib‐induced cell death. We report that sorafenib‐resistant cells had lower levels of total and phosphorylated AMPK as well as its downstream substrate, ACC, compared with the parental cells. Interestingly, AMPK knockdown with siRNA or inhibition with dorsomorphin increased the expression of stem cell markers in parental cells and blocked sorafenib‐induced cell death. Conversely, the upregulation of AMPK, either by transfection or by pharmacological activation with A‐769662, decreased the expression of ALDH1A1, ABCB1A, CD133, Nanog, Oct4, and alpha fetoprotein, and restored sensitivity to sorafenib. Analysis of the underlying mechanism points to hypoxia‐inducible factor HIF‐1α as a regulator of stemness. In vivo studies in a xenograft mouse model demonstrated that stem‐like cells have greater tumourigenic capacity. AMPK activation reduced xenograft tumour growth and decreased the expression of stem cell markers. Taken together, these results indicate that AMPK may serve as a novel target to overcome chemoresistance in HCC.
Collapse
Affiliation(s)
- Alicia Bort
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Belén G Sánchez
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Pedro A Mateos-Gómez
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Diana Vara-Ciruelos
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, UK
| | - Nieves Rodríguez-Henche
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Inés Díaz-Laviada
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain.,Chemical Research Institute 'Andrés M. del Río' (IQAR), Alcalá University, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
22
|
Hsu YC, Wu YT, Tsai CL, Wei YH. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood) 2019; 243:563-575. [PMID: 29557214 DOI: 10.1177/1535370218759636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammalian cells, there are seven members of the sirtuin protein family (SIRT1-7). SIRT1, SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3, SIRT4, and SIRT5 are in the mitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprogramming through the miR-34a-SIRT1-p53 axis. SIRT2 can regulate the function of pluripotent stem cells through GSK3β. SIRT3 can positively regulate PPAR gamma coactivator 1-alpha (PGC-1α) expression during the differentiation of stem cells. SIRT4 has no direct role in regulating reprogramming but may have the potential to prevent senescence of somatic cells and to facilitate the reprogramming of iPSCs. SIRT5 can deacetylate STAT3, which is an important transcription factor in regulating pluripotency and differentiation of stem cells. SIRT6 can enhance the reprogramming efficiency of iPSCs from aged skin fibroblasts through miR-766 and increase the expression levels of the reprogramming genes including Sox2, Oct4, and Nanog through acetylation of histone H3 lysine 56. SIRT7 plays a regulatory role in the process of mesenchymal-to-epithelial transition (MET), which has been suggested to be a crucial process in the generation of iPSCs from fibroblasts. In this review, we summarize recent findings of the roles of sirtuins in the metabolic reprogramming and differentiation of stem cells and discuss the bidirectional changes in the gene expression and activities of sirtuins in the commitment of differentiation of mesenchymal stem cells (MSCs) and reprogramming of somatic cells to iPSCs, respectively. Thus, understanding the molecular basis of the interplay between different sirtuins and mitochondrial function will provide new insights into the regulation of differentiation of stem cells and iPSCs formation, respectively, and may help design effective stem cell therapies for regenerative medicine. Impact statement This is an extensive review of the recent advances in our understanding of the roles of some members of the sirtuins family, such as SIRT1, SIRT2, SIRT3, and SIRT6, in the regulation of intermediary metabolism during stem cell differentiation and in the reprogramming of somatic cells to form induced pluripotent stem cells (iPSCs). This article provides an updated integrated view on the mechanisms by which sirtuins-mediated posttranslational protein modifications regulate mitochondrial biogenesis, bioenergetics, and antioxidant defense in the maintenance and differentiation of stem cells and in iPSCs formation, respectively.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,*These two authors made equal contributions
| | - Yu-Ting Wu
- 2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan.,*These two authors made equal contributions
| | - Chia-Ling Tsai
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan
| | - Yau-Huei Wei
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
23
|
Sun L, Cao J, Chen K, Cheng L, Zhou C, Yan B, Qian W, Li J, Duan W, Ma J, Qi D, Wu E, Wang Z, Liu Q, Ma Q, Xu Q. Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int J Oncol 2018; 54:98-110. [PMID: 30365057 PMCID: PMC6254859 DOI: 10.3892/ijo.2018.4604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs), which are found in various types of human cancer, including pancreatic cancer, possess elevated metastatic potential, lead to tumor recurrence and cause chemoradiotherapy resistance. Alterations in cellular bioenergetics through the regulation of 5′ adenosine monophosphate-activated protein kinase (AMPK) signaling may be a prerequisite to stemness. Betulinic acid (BA) is a well-known bioactive compound with antiretroviral and anti-inflammatory potential, which has been reported to exert anticancer effects on various types of cancer, including pancreatic cancer. The present study aimed to investigate whether BA could inhibit pancreatic CSCs via regulation of AMPK signaling. The proliferation of pancreatic cancer cells was examined by MTT and colony formation assays. The migratory and invasive abilities of pancreatic cancer cells were assessed using wound-scratch and Transwell invasion assays. In addition, the expression levels of candidate genes were measured by reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that BA inhibited the proliferation and tumorsphere formation of pancreatic cancer cells, suppressed epithelial-mesenchymal transition (EMT), migration and invasion, and reduced the expression of three pluripotency factors [SRY-box 2 (Sox2), octamer-binding protein 4 (Oct4) and Nanog]. Furthermore, immunohistochemical analysis confirmed that there was a significant inverse association between the expression levels of phosphorylated (P)-AMPK and Sox2 in pancreatic cancer, and it was revealed that BA may activate AMPK signaling. Notably, knockdown of AMPK reversed the suppressive effects of BA on EMT and stemness of pancreatic cancer cells. In addition, BA reversed the effects of gemcitabine on stemness and enhanced the sensitivity of pancreatic cancer cells to gemcitabine. Collectively, these results indicated that BA may effectively inhibit pluripotency factor expression (Sox2, Oct4 and Nanog), EMT and the stem-like phenotype of pancreatic cancer cells via activating AMPK signaling. Therefore, BA may be considered an attractive therapeutic candidate and an effective inhibitor of the stem-like phenotype in pancreatic cancer cells. Further investigation into the development of BA as an anticancer drug is warranted.
Collapse
Affiliation(s)
- Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bin Yan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Qi
- 3Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
| | - Erxi Wu
- 3Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qinhong Xu
- Department of Geriatric Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
24
|
Skvortsova EV, Sinenko SA, Tomilin AN. Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state. Oncotarget 2018; 9:35241-35250. [PMID: 30443291 PMCID: PMC6219659 DOI: 10.18632/oncotarget.26235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/06/2018] [Indexed: 12/21/2022] Open
Abstract
To date different cell types of various mammalian species have been reprogrammed to induced pluripotent stem cells (iPSCs) using Yamanaka's cocktail of transcription factors (Oct4, Klf4, Sox2, and cMyc). It has been shown that several primary human cancer cell lines could be reprogrammed to iPSCs. We sought if immortalized mouse fibroblast cell lines could also be reprogrammed to iPSCs. The approach of generating iPSCs from such cells should be valuable in different experimental settings as it allows clonally derive cell lines carrying mutations whose impact on reprogramming could be next evaluated. Therefore, we investigated reprogramming of widely used immortalized cell lines (NIH3T and STO), as well as of de novo immortalized fibroblast line (tKM) with the use of highly effective lentiviral polycistronic OKSM expression system. Our reprogramming experiments have shown that in contrast to mouse embryonic fibroblasts (MEFs), none of the immortalized cell lines can be reprogrammed to pluripotent state. Contrary to colonies derived from MEFs, those derived from the immortalized cells lines (1) developed much later, (2) contained large round cells, not typical for iPSCs, and (3) were negative for trusted markers of matured iPSCs, Nanog and SSEA1. Immortalized cell lines NIH3T and STO are known to be mostly aneuploid, whereas tKM population includes cells with normal karyotype, however, neither cell type can be reprogrammed. Thus our data argue that aneuploidy per se is not a reason for the observed refractoriness of mouse immortalized cells to reprogramming to pluripotent state.
Collapse
Affiliation(s)
- Elena V Skvortsova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation.,Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC "Kurchatov Institute", Orlova Roscha, Gatchina, Russian Federation
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation.,St Petersburg State University, St Petersburg, Russian Federation
| |
Collapse
|
25
|
Puscheck EE, Bolnick A, Awonuga A, Yang Y, Abdulhasan M, Li Q, Secor E, Louden E, Hüttemann M, Rappolee DA. Why AMPK agonists not known to be stressors may surprisingly contribute to miscarriage or hinder IVF/ART. J Assist Reprod Genet 2018; 35:1359-1366. [PMID: 29882092 PMCID: PMC6086802 DOI: 10.1007/s10815-018-1213-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Here we examine recent evidence suggesting that many drugs and diet supplements (DS), experimental AMP-activated protein kinase (AMPK) agonists as well as energy-depleting stress, lead to decreases in anabolism, growth or proliferation, and potency of cultured oocytes, embryos, and stem cells in an AMPK-dependent manner. Surprising data for DS and drugs that have some activity as AMPK agonists in in vitro experiments show possible toxicity. This needs to be balanced against a preponderance of evidence in vivo that these drugs and DS are beneficial for reproduction. We here discuss and analyze data that leads to two possible conclusions: First, although DS and drugs that have some of their therapeutic mechanisms mediated by AMPK activity associated with low ATP levels, some of the associated health problems in vivo and in vitro fertilization/assisted reproductive technologies (IVF/ART) may be better-treated by increasing ATP production using CoQ10 (Ben-Meir et al., Aging Cell 14:887-895, 2015). This enables high developmental trajectories simultaneous with solving stress by energy-requiring responses. In IVF/ART, it is ultimately best to maintain handling and culture of gametes and embryos in the quietest state with low metabolic activity (Leese et al., Mol Hum Reprod 14:667-672, 2008; Leese, Bioessays 24 (9):845-849, 2002) using back-to-nature or simplex algorithms to identify optima (Biggers, Reprod Biomed Online 4 Suppl 1:30-38, 2002). Stress markers, such as checkpoint proteins like TRP53 (aka p53) (Ganeshan et al., Exp Cell Res 358:227-233, 2017); Ganeshan et al., Biol Reprod 83:958-964, 2010) and a small set of kinases from the protein kinome that mediate enzymatic stress responses, can also be used to define optima. But, some gametes or embryos may have been stressed in vivo prior to IVF/ART or IVF/ART optimized for one outcome may be suboptimal for another. Increasing nutrition or adding CoQ10 to increase ATP production (Yang et al., Stem Cell Rev 13:454-464, 2017), managing stress enzyme levels with inhibitors (Xie et al., Mol Hum Reprod 12:217-224, 2006), or adding growth factors such as GM-CSF (Robertson et al., J Reprod Immunol 125:80-88, 2018); Chin et al., Hum Reprod 24:2997-3009, 2009) may increase survival and health of cultured embryos during different stress exposure contexts (Puscheck et al., Adv Exp Med Biol 843:77-128, 2015). We define "stress" as negative stimuli which decrease normal magnitude and speed of development, and these can be stress hormones, reactive oxygen species, inflammatory cytokines, or physical stimuli such as hypoxia. AMPK is normally activated by high AMP, commensurate with low ATP, but it was recently shown that if glucose is present inside the cell, AMPK activation by low ATP/high AMP is suppressed (Zhang et al., Nature 548:112-116, 2017). As we discuss in more detail below, this may also lead to greater AMPK agonist toxicity observed in two-cell embryos that do not import glucose. Stress in embryos and stem cells increases AMPK in large stimulation indexes but also direness indexes; the fastest AMPK activation occurs when stem cells are shifted from optimal oxygen to lower or high levels (Yang et al., J Reprod Dev 63:87-94, 2017). CoQ10 use may be better than risking AMPK-dependent metabolic and developmental toxicity when ATP is depleted and AMPK activated. Second, the use of AMPK agonists, DS, and drugs may best be rationalized when insulin resistance or obesity leads to aberrant hyperglycemia and hypertriglyceridemia, and obesity that negatively affect fertility. Under these conditions, beneficial effects of AMPK on increasing triglyceride and fatty acid and glucose uptake are important, as long as AMPK agonist exposures are not too high or do not occur during developmental windows of sensitivity. During these windows of sensitivity suppression of anabolism, proliferation, and stemness/potency due to AMPK activity, or overexposure may stunt or kill embryos or cause deleterious epigenetic changes.
Collapse
Affiliation(s)
- Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Kaleida Women's and Children's Hospital Buffalo New York, Buffalo, NY, USA
| | - Awoniyi Awonuga
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Yu Yang
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Quanwen Li
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Eric Secor
- Department of Medicine, Integrative Medicine, Hartford Hospital and University of Connecticut, Hartford, CT, 06102, USA
| | - Erica Louden
- Augusta University of Health Sciences, Augusta, GA, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
26
|
Cuyàs E, Verdura S, Folguera-Blasco N, Bastidas-Velez C, Martin ÁG, Alarcón T, Menendez JA. Mitostemness. Cell Cycle 2018; 17:918-926. [PMID: 29886796 DOI: 10.1080/15384101.2018.1467679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Unraveling the key mechanisms governing the retention versus loss of the cancer stem cell (CSC) state would open new therapeutic avenues to eradicate cancer. Mitochondria are increasingly recognized key drivers in the origin and development of CSC functional traits. We here propose the new term "mitostemness" to designate the mitochondria-dependent signaling functions that, evolutionary rooted in the bacterial origin of mitochondria, regulate the maintenance of CSC self-renewal and resistance to differentiation. Mitostemness traits, namely mitonuclear communication, mitoproteome components, and mitochondrial fission/fusion dynamics, can be therapeutically exploited to target the CSC state. We briefly review the pre-clinical evidence of action of investigational compounds on mitostemness traits and discuss ongoing strategies to accelerate the clinical translation of new mitostemness drugs. The recognition that the bacterial origin of present-day mitochondria can drive decision-making signaling phenomena may open up a new therapeutic dimension against life-threatening CSCs. New therapeutics aimed to target mitochondria not only as biochemical but also as biophysical and morpho-physiological hallmarks of CSC might certainly guide improvements to cancer treatment.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | - Sara Verdura
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | | | | | | | - Tomás Alarcón
- c Centre de Recerca Matemàtica , Barcelona , Spain.,e Barcelona Graduate School of Mathematics (BGSMath) , Barcelona , Spain.,f ICREA , Barcelona , Spain.,g Departament de Matemàtiques , Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Javier A Menendez
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| |
Collapse
|
27
|
Grigorash BB, Suvorova II, Pospelov VA. AICAR-Dependent Activation of AMPK Kinase Is Not Accompanied by G1/S Block in Mouse Embryonic Stem Cells. Mol Biol 2018. [DOI: 10.1134/s0026893318030056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Gao J, Ye J, Ying Y, Lin H, Luo Z. Negative regulation of TGF-β by AMPK and implications in the treatment of associated disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:523-531. [PMID: 29873702 DOI: 10.1093/abbs/gmy028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β) regulates a large number of biological processes, including proliferation, differentiation, immune response, and development. In addition, TGF-β plays important roles in some pathological processes, for instance, it is upregulated and activated in fibrosis and advanced cancer. Adenosine monophosphate-activated protein kinase (AMPK) acts as a fuel gauge that is activated when cells sense shortage of ATP and increase in AMP or AMP:ATP ratio. Activation of AMPK slows down anabolic processes and stimulates catabolic processes, leading to increased production of ATP. Furthermore, the functions of AMPK have been extended beyond energy homeostasis. In fact, AMPK has been shown to exert a tumor suppressive effect. Recent studies have demonstrated negative impacts of AMPK on TGF-β function. Therefore, in this review, we will discuss the differences in the biological functions of TGF-β and AMPK, and some pathological processes such as fibrosis, epithelial-mesenchymal transition (EMT) and cancer metastasis, as well as angiogenesis and heterotopic ossifications where TGF-β and AMPK exert opposite effects.
Collapse
Affiliation(s)
- Jiayu Gao
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Jinhui Ye
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| |
Collapse
|
29
|
Lisowski P, Kannan P, Mlody B, Prigione A. Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 2018; 19:embr.201745432. [PMID: 29661859 DOI: 10.15252/embr.201745432] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The maintenance of cellular identity requires continuous adaptation to environmental changes. This process is particularly critical for stem cells, which need to preserve their differentiation potential over time. Among the mechanisms responsible for regulating cellular homeostatic responses, mitochondria are emerging as key players. Given their dynamic and multifaceted role in energy metabolism, redox, and calcium balance, as well as cell death, mitochondria appear at the interface between environmental cues and the control of epigenetic identity. In this review, we describe how mitochondria have been implicated in the processes of acquisition and loss of stemness, with a specific focus on pluripotency. Dissecting the biological functions of mitochondria in stem cell homeostasis and differentiation will provide essential knowledge to understand the dynamics of cell fate modulation, and to establish improved stem cell-based medical applications.
Collapse
Affiliation(s)
- Pawel Lisowski
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Centre for Preclinical Research and Technology (CePT), Warsaw Medical University, Warsaw, Poland
| | - Preethi Kannan
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany
| | - Barbara Mlody
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany
| | | |
Collapse
|
30
|
Vazquez-Martin A, Van den Haute C, Cufí S, Corominas-Faja B, Cuyàs E, Lopez-Bonet E, Rodriguez-Gallego E, Fernández-Arroyo S, Joven J, Baekelandt V, Menendez JA. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging (Albany NY) 2017; 8:1330-52. [PMID: 27295498 PMCID: PMC4993334 DOI: 10.18632/aging.100976] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022]
Abstract
Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine.
Collapse
Affiliation(s)
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Sílvia Cufí
- Josep Carreras Leukemia Research Institute, Stem Cell Lab, Barcelona, Spain
| | - Bruna Corominas-Faja
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Catalonia, Spain
| | - Esther Rodriguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| |
Collapse
|
31
|
Paiva-Oliveira DI, Martins-Neves SR, Abrunhosa AJ, Fontes-Ribeiro C, Gomes CMF. Therapeutic potential of the metabolic modulator Metformin on osteosarcoma cancer stem-like cells. Cancer Chemother Pharmacol 2017; 81:49-63. [PMID: 29086064 DOI: 10.1007/s00280-017-3467-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Osteosarcoma is the most common primary bone tumour appearing in children and adolescents. Recent studies demonstrate that osteosarcoma possesses a stem-like cell subset, so-called cancer stem-like cells, refractory to conventional chemotherapeutics and pointed out as responsible for relapses frequently observed in osteosarcoma patients. Here, we explored the therapeutic potential of Metformin on osteosarcoma stem-like cells, alone and as a chemosensitizer of doxorubicin. METHODS Stem-like cells were isolated from human osteosarcoma cell lines, MNNG/HOS and MG-63, using the sphere-forming assay. Metformin cytotoxicity alone and combined with doxorubicin were evaluated using MTT/BrdU assays. Protein levels of AMPK and AKT were evaluated by Western Blot. Cellular metabolic status was assessed based on [18F]-FDG uptake and lactate production measurements. Sphere-forming efficiency and expression of pluripotency transcription factors analysed by qRT-PCR were tested as readout of Metformin effects on stemness features. RESULTS Metformin induced a concentration-dependent decrease in the metabolic activity and proliferation of sphere-forming cells and improved doxorubicin-induced cytotoxicity. This drug also down-regulated the expression of master regulators of pluripotency (OCT4, SOX2, NANOG), and decreased spheres' self-renewal ability. Metformin effects on mitochondria led to the activation and phosphorylation of the energetic sensor AMPK along with an upregulation of the pro-survival AKT pathway in both cell populations. Furthermore, Metformin-induced mitochondrial stress increased [18F]-FDG uptake and lactate production in parental cells but not in the quiescent stem-like cells, suggesting the inability of the latter to cope with the energy crisis induced by metformin. CONCLUSIONS This preclinical study suggests that Metformin may be a potentially useful therapeutic agent and chemosensitizer of osteosarcoma stem-like cells to doxorubicin.
Collapse
Affiliation(s)
- Daniela I Paiva-Oliveira
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Sara R Martins-Neves
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Célia M F Gomes
- Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, Coimbra, Portugal. .,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
32
|
McMurtrey RJ. Roles of Diffusion Dynamics in Stem Cell Signaling and Three-Dimensional Tissue Development. Stem Cells Dev 2017; 26:1293-1303. [PMID: 28707964 PMCID: PMC5610402 DOI: 10.1089/scd.2017.0066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Recent advancements in the ability to construct three-dimensional (3D) tissues and organoids from stem cells and biomaterials have not only opened abundant new research avenues in disease modeling and regenerative medicine but also have ignited investigation into important aspects of molecular diffusion in 3D cellular architectures. This article describes fundamental mechanics of diffusion with equations for modeling these dynamic processes under a variety of scenarios in 3D cellular tissue constructs. The effects of these diffusion processes and resultant concentration gradients are described in the context of the major molecular signaling pathways in stem cells that both mediate and are influenced by gas and nutrient concentrations, including how diffusion phenomena can affect stem cell state, cell differentiation, and metabolic states of the cell. The application of these diffusion models and pathways is of vital importance for future studies of developmental processes, disease modeling, and tissue regeneration.
Collapse
|
33
|
CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death. J Assist Reprod Genet 2017; 34:1595-1607. [PMID: 28900834 DOI: 10.1007/s10815-017-1027-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE We tested whether mitochondrial electron transport chain electron carrier coenzyme Q10 (CoQ10) increases ATP during bovine IVM and increases %M2 oocytes, mitochondrial polarization/mass, and Oct4, and decreases pAMPK and oocyte death. METHODS Bovine oocytes were aspirated from ovaries and cultured in IVM media for 24 h with 0, 20, 40, or 60 μM CoQ10. Oocytes were assayed for ATP by luciferase-based luminescence. Oocyte micrographs were quantitated for Oct4, pAMPK (i.e., activity), polarization by JC1 staining, and mitochondrial mass by MitoTracker Green staining. RESULTS CoQ10 at 40 μM was optimal. Oocytes at 40 μM enabled 1.9-fold more ATP than 0 μM CoQ10. There was 4.3-fold less oocyte death, 1.7-fold more mitochondrial charge polarization, and 3.1-fold more mitochondrial mass at 40 μM than at 0 μM CoQ10. Increased ATP was associated with 2.2-fold lower AMPK thr172P activation and 2.1-fold higher nuclear Oct4 stemness/potency protein at 40 μM than at 0 μM CoQ10. CoQ10 is hydrophobic, and at all doses, 50% was lost from media into oil by ~ 12 h. Replenishing CoQ10 at 12 h did not significantly diminish dead oocytes. CONCLUSIONS The data suggest that CoQ10 improves mitochondrial function in IVM where unwanted stress, higher AMPK activity, and Oct4 potency loss are induced.
Collapse
|
34
|
Gibson GE, Thakkar A. Mitochondria/metabolic reprogramming in the formation of neurons from peripheral cells: Cause or consequence and the implications to their utility. Neurochem Int 2017. [PMID: 28627365 DOI: 10.1016/j.neuint.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of pluripotent stem cells (iPSC) from differentiated cells such as fibroblasts and their subsequent conversion to neural progenitor cells (NPC) and finally to neurons is intriguing scientifically, and its potential to medicine is nearly infinite, but unrealized. A better understanding of the changes at each step of the transformation will enable investigators to better model neurological disease. Each step of conversion from a differentiated cell to an iPSC to a NPC to neurons requires large changes in glycolysis including aerobic glycolysis, the pentose shunt, the tricarboxylic acid cycle, the electron transport chain and in the production of reactive oxygen species (ROS). These mitochondrial/metabolic changes are required and their manipulation modifies conversions. These same mitochondrial/metabolic processes are altered in common neurological diseases so that factors related to the disease may alter the cellular transformation at each step including the final phenotype. A lack of understanding of these interactions could compromise the validity of the disease comparisons in iPSC derived neurons. Both the complexity and potential of iPSC derived cells for understanding and treating disease remain great.
Collapse
Affiliation(s)
- Gary E Gibson
- Weil Cornell Medicine, Brain and Mind Research Institute, Burke Medical Research, White Plains, NY 10605, United States.
| | - Ankita Thakkar
- Weil Cornell Medicine, Brain and Mind Research Institute, Burke Medical Research, White Plains, NY 10605, United States
| |
Collapse
|
35
|
Finley J. Elimination of cancer stem cells and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking inhibition of tumorigenesis and the potential eradication of HIV-1. Med Hypotheses 2017; 104:133-146. [PMID: 28673572 DOI: 10.1016/j.mehy.2017.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/26/2017] [Indexed: 12/25/2022]
Abstract
Although promising treatments are currently in development to slow disease progression and increase patient survival, cancer remains the second leading cause of death in the United States. Cancer treatment modalities commonly include chemoradiation and therapies that target components of aberrantly activated signaling pathways. However, treatment resistance is a common occurrence and recent evidence indicates that the existence of cancer stem cells (CSCs) may underlie the limited efficacy and inability of current treatments to effectuate a cure. CSCs, which are largely resistant to chemoradiation therapy, are a subpopulation of cancer cells that exhibit characteristics similar to embryonic stem cells (ESCs), including self-renewal, multi-lineage differentiation, and the ability to initiate tumorigenesis. Interestingly, intracellular mechanisms that sustain quiescence and promote self-renewal in adult stem cells (ASCs) and CSCs likely also function to maintain latency of HIV-1 in CD4+ memory T cells. Although antiretroviral therapy is highly effective in controlling HIV-1 replication, the persistence of latent but replication-competent proviruses necessitates the development of compounds that are capable of selectively reactivating the latent virus, a method known as the "shock and kill" approach. Homeostatic proliferation in central CD4+ memory T (TCM) cells, a memory T cell subset that exhibits limited self-renewal and differentiation and is a primary reservoir for latent HIV-1, has been shown to reinforce and stabilize the latent reservoir in the absence of T cell activation and differentiation. HIV-1 has also been found to establish durable and long-lasting latency in a recently discovered subset of CD4+ T cells known as T memory stem (TSCM) cells. TSCM cells, compared to TCM cells, exhibit stem cell properties that more closely match those of ESCs and ASCs, including self-renewal and differentiation into all memory T cell subsets. It is our hypothesis that activation of AMPK, a master regulator of cellular metabolism that plays a critical role in T cell activation and differentiation of ESCs and ASCs, will lead to both T cell activation-induced latent HIV-1 reactivation, facilitating virus destruction, as well as "activation", differentiation, and/or apoptosis of CSCs, thus inhibiting tumorigenesis. We also propose the novel observation that compounds that have been shown to both facilitate latent HIV-1 reactivation and promote CSC differentiation/apoptosis (e.g. bryostatin-1, JQ1, metformin, butyrate, etc.) likely do so through a common mechanism of AMPK activation.
Collapse
Affiliation(s)
- Jahahreeh Finley
- Finley BioSciences, 9900 Richmond Avenue, #823, Houston, TX 77042-4539, United States.
| |
Collapse
|
36
|
Mitochondrial Dynamics: In Cell Reprogramming as It Is in Cancer. Stem Cells Int 2017; 2017:8073721. [PMID: 28484497 PMCID: PMC5412136 DOI: 10.1155/2017/8073721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/19/2017] [Indexed: 12/29/2022] Open
Abstract
Somatic cells can be reprogrammed into a pluripotent cellular state similar to that of embryonic stem cells. Given the significant physiological differences between the somatic and pluripotent cells, cell reprogramming is associated with a profound reorganization of the somatic phenotype at all levels. The remodeling of mitochondrial morphology is one of these dramatic changes that somatic cells have to undertake during cell reprogramming. Somatic cells transform their tubular and interconnected mitochondrial network to the fragmented and isolated organelles found in pluripotent stem cells early during cell reprogramming. Accordingly, mitochondrial fission, the process whereby the mitochondria divide, plays an important role in the cell reprogramming process. Here, we present an overview of the importance of mitochondrial fission in both cell reprogramming and cellular transformation.
Collapse
|
37
|
He M, Chen Z, Martin M, Zhang J, Sangwung P, Woo B, Tremoulet AH, Shimizu C, Jain MK, Burns JC, Shyy JYJ. miR-483 Targeting of CTGF Suppresses Endothelial-to-Mesenchymal Transition: Therapeutic Implications in Kawasaki Disease. Circ Res 2017; 120:354-365. [PMID: 27923814 PMCID: PMC5391835 DOI: 10.1161/circresaha.116.310233] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Endothelial-mesenchymal transition (EndoMT) is implicated in myofibroblast-like cell-mediated damage to the coronary arterial wall in acute Kawasaki disease (KD) patients, as evidenced by positive staining for connective tissue growth factor (CTGF) and EndoMT markers in KD autopsy tissues. However, little is known about the molecular basis of EndoMT involved in KD. OBJECTIVE We investigated the microRNA (miRNA) regulation of CTGF and the consequent EndoMT in KD pathogenesis. As well, the modulation of this process by statin therapy was studied. METHODS AND RESULTS Sera from healthy children and KD subjects were incubated with human umbilical vein endothelial cells. Cardiovascular disease-related miRNAs, CTGF, and EndoMT markers were quantified using reverse transcriptase quantitative polymerase chain reaction, ELISA, and Western blotting. Compared with healthy controls, human umbilical vein endothelial cell incubated with sera from acute KD patients had decreased miR-483, increased CTGF, and increased EndoMT markers. Bioinformatics analysis followed by functional validation demonstrated that Krüppel-like factor 4 (KLF4) transactivates miR-483, which in turn targets the 3' untranslated region of CTGF mRNA. Overexpression of KLF4 or pre-miR-483 suppressed, whereas knockdown of KLF4 or anti-miR-483 enhanced, CTGF expression in endothelial cells in vitro and in vivo. Furthermore, atorvastatin, currently being tested in a phase I/IIa clinical trial in KD children, induced KLF4-miR-483, which suppressed CTGF and EndoMT in endothelial cells. CONCLUSIONS KD sera suppress the KLF4-miR-483 axis in endothelial cells, leading to increased expression of CTGF and induction of EndoMT. This detrimental process in the endothelium may contribute to coronary artery abnormalities in KD patients. Statin therapy may benefit acute KD patients, in part, through the restoration of KLF4-miR-483 expression. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01431105.
Collapse
Affiliation(s)
- Ming He
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Zhen Chen
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Marcy Martin
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Jin Zhang
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Panjamaporn Sangwung
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Brian Woo
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Adriana H Tremoulet
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Chisato Shimizu
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Mukesh K Jain
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Jane C Burns
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.).
| | - John Y-J Shyy
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.).
| |
Collapse
|
38
|
Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice. PLoS One 2016; 11:e0168670. [PMID: 28002460 PMCID: PMC5176295 DOI: 10.1371/journal.pone.0168670] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Background and aims The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Methods Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Results Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Conclusions Metformin supplementation promotes secretory cell lineage differentiation, suppresses inflammation and improves epithelial barrier function in IL10KO mice likely through activation of AMPK, showing its beneficial effects on gut epithelial.
Collapse
|
39
|
Yang Y, Jiang Z, Bolnick A, Dai J, Puscheck EE, Rappolee DA. Departure from optimal O 2 level for mouse trophoblast stem cell proliferation and potency leads to most rapid AMPK activation. J Reprod Dev 2016; 63:87-94. [PMID: 27867161 PMCID: PMC5320434 DOI: 10.1262/jrd.2016-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies showed that cultured mouse trophoblast stem cells (mTSCs) have the most rapid proliferation, normal maintenance of stemness/potency, the
least spontaneous differentiation, and the lowest level of stress-activated protein kinase (SAPK) when incubated at 2% O2 rather than at the
traditional 20% O2 or hypoxic (0.5% and 0% O2) conditions. Switching from 2% O2 induced fast SAPK responses. Here we tested the
dose response of AMP-activated protein kinase (AMPK) in its active form (pAMPK Thr172P) at O2 levels from 20–0%, and also tested whether pAMPK levels
show similar rapid changes when mTSC cultures were switched from the optimal 2% O2 to other O2 conditions. There was a delayed increase in
pAMPK levels ~6–8 h after switching conditions from 20% to 2%, 0.5%, or 0% O2. Altering O2 conditions from 2% to either 20%, 0.5%, or 0%
led to rapid increase in pAMPK levels within 1 h, similar to the previously reported SAPK response in mTSC cells removed from 2% O2. Twelve hours of
0.5% O2 exposure led to cell program changes in terms of potency loss and suppressed biosynthesis, as indicated by levels of phosphorylated inactive
acetyl CoA carboxylase (pACC). Phosphorylation of ACC was inhibited by the AMPK inhibitor Compound C. However, unlike other stressors, AMPK does not mediate
hypoxia-induced potency loss in mTSCs. These results suggest an important aspect of stem cell biology, which demands rapid stress enzyme activation to cope with
sudden changes in external environment, e.g., from least stressful (2% O2) to more stressful conditions.
Collapse
Affiliation(s)
- Yu Yang
- Ob/Gyn, Wayne State University Medical School, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
40
|
Daugan M, Dufaÿ Wojcicki A, d’Hayer B, Boudy V. Metformin: An anti-diabetic drug to fight cancer. Pharmacol Res 2016; 113:675-685. [DOI: 10.1016/j.phrs.2016.10.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
|
41
|
Abstract
The Nobel prized discovery of nuclear reprogramming is swiftly providing mechanistic evidence of a role for metabolism in the generation of cancer stem cells (CSC). Traditionally, the metabolic demands of tumors have been viewed as drivers of the genetic programming detected in cancer tissues. Beyond the energetic requirements of specific cancer cell states, it is increasingly recognized that metabolism per se controls epi-transcriptional networks to dictate cancer cell fate, i.e., metabolism can define CSC. Here I review the CSC-related metabolic features found in induced pluripotent stem (iPS) cells to provide an easily understandable framework in which the infrastructure and functioning of cellular metabolism might control the efficiency and kinetics of reprogramming in the re-routing of non-CSC to CSC-like cellular states. I suggest exploring how metabolism-dependent regulation of epigenetics can play a role in directing CSC states beyond conventional energetic demands of stage-specific cancer cell states, opening a new dimension of cancer in which the "physiological state" of CSC might be governed not only by cell-autonomous cues but also by local micro-environmental and systemic metabolo-epigenetic interactions. Forthcoming studies should decipher how specific metabolites integrate and mediate the overlap between the CSC-intrinsic "micro-epigenetics" and the "upstream" local and systemic "macro-epigenetics," thus paving the way for targeted epigenetic regulation of CSCs through metabolic modulation including "smart foods" or systemic "metabolic nichotherapies."
Collapse
Affiliation(s)
- Javier A Menendez
- a Metabolism & Cancer Group; Translational Research Laboratory ; Catalan Institute of Oncology ; Girona , Spain.,b Molecular Oncology Group ; Girona Biomedical Research Institute ; Girona , Spain
| |
Collapse
|
42
|
Iglesias JM, Gumuzio J, Martin AG. Linking Pluripotency Reprogramming and Cancer. Stem Cells Transl Med 2016; 6:335-339. [PMID: 28191771 PMCID: PMC5442824 DOI: 10.5966/sctm.2015-0225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/04/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor development and the generation of induced pluripotent stem cells are highly comparable processes with striking similarities. Cellular plasticity is inherent to tumor evolution, rendering cells that acquire a stem cell-like phenotype, for which Sox2 activation has proved instrumental for the plastic acquisition of stemness properties in tumor cells. Understanding the molecular mechanisms underlying both events might uncover novel approaches for the development of anticancer therapeutics and constitute model systems for understanding tumor generation and ensuring the biosafety of cell-based therapies. Stem Cells Translational Medicine 2017;6:335-339.
Collapse
|
43
|
Bolnick A, Abdulhasan M, Kilburn B, Xie Y, Howard M, Andresen P, Shamir AM, Dai J, Puscheck EE, Rappolee DA. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. J Assist Reprod Genet 2016; 33:1027-39. [PMID: 27230877 PMCID: PMC4974229 DOI: 10.1007/s10815-016-0735-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development. METHODS The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts. RESULT(S) Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50-85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60-90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively. CONCLUSION These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Brian Kilburn
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Yufen Xie
- Fertility and Surgical Associates of California, Thousand Oaks, CA, 91361, USA
| | - Mindie Howard
- EmbryoTech Laboratories, 140 Hale Street, Haverhill, MA, 01830, USA
| | - Paul Andresen
- Ob/Gyn, IVF Clinic, University Physician Group, Wayne State University School of Medicine, 26400 W 12 Mile Road, Suite 140, Southfield, MI, 48034, USA
| | - Alexandra M Shamir
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| | - Jing Dai
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
44
|
Istomine R, Pavey N, Piccirillo CA. Posttranscriptional and Translational Control of Gene Regulation in CD4+ T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 196:533-40. [PMID: 26747571 DOI: 10.4049/jimmunol.1501337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune system is under strict regulatory control to ensure homeostasis of inflammatory responses, lying dormant when not needed but quick to act when called upon. Small changes in gene expression can lead to drastic changes in lineage commitment, cellular function, and immunity. Conventional assessment of these changes centered on the analysis of mRNA levels through a variety of methodologies, including microarrays. However, mRNA synthesis does not always correlate directly to protein synthesis and downstream functional activity. Work conducted in recent years has begun to shed light on the various posttranscriptional changes that occur in response to a dynamic external environment that a given cell type encounters. We provide a critical review of key posttranscriptional mechanisms (i.e., microRNA) and translational mechanisms of regulation of gene expression in the immune system, with a particular emphasis on these regulatory processes in various CD4(+) T cell subsets.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada;Translational Immunology Unit, Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; andFederation of Clinical Immunology Societies Center of Excellence, McGill University and the Research Institute of the McGill University Health Center, Montreal, Quebec H3H 2R9, Canada
| | - Nils Pavey
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada;Translational Immunology Unit, Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; andFederation of Clinical Immunology Societies Center of Excellence, McGill University and the Research Institute of the McGill University Health Center, Montreal, Quebec H3H 2R9, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada;Translational Immunology Unit, Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; andFederation of Clinical Immunology Societies Center of Excellence, McGill University and the Research Institute of the McGill University Health Center, Montreal, Quebec H3H 2R9, Canada
| |
Collapse
|
45
|
Ruiz LM, Jensen EL, Rossel Y, Puas GI, Gonzalez-Ibanez AM, Bustos RI, Ferrick DA, Elorza AA. Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562. Mitochondrion 2016; 29:18-30. [PMID: 27094959 DOI: 10.1016/j.mito.2016.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
Copper is integral to the mitochondrial respiratory complex IV and contributes to proliferation and differentiation, metabolic reprogramming and mitochondrial function. The K562 cell line was exposed to a non-cytotoxic copper overload to evaluate mitochondrial dynamics, function and cell fate. This induced higher rates of mitochondrial turnover given by an increase in mitochondrial fusion and fission events and in the autophagic flux. The appearance of smaller and condensed mitochondria was also observed. Bioenergetics activity included more respiratory complexes, higher oxygen consumption rate, superoxide production and ATP synthesis, with no decrease in membrane potential. Increased cell proliferation and inhibited differentiation also occurred. Non-cytotoxic copper levels can modify mitochondrial metabolism and cell fate, which could be used in cancer biology and regenerative medicine.
Collapse
Affiliation(s)
- Lina M Ruiz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Centro de Investigación Biomédica, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Erik L Jensen
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | - Yancing Rossel
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | - German I Puas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Alvaro M Gonzalez-Ibanez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile
| | - Rodrigo I Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile
| | | | - Alvaro A Elorza
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146, Santiago, Chile; Millennium Institute of Immunology and Immunotherapy, 8331150 Santiago, Chile.
| |
Collapse
|
46
|
Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, Patti ME. Insulin Resistance in Human iPS Cells Reduces Mitochondrial Size and Function. Sci Rep 2016; 6:22788. [PMID: 26948272 PMCID: PMC4780029 DOI: 10.1038/srep22788] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance, a critical component of type 2 diabetes (T2D), precedes and predicts T2D onset. T2D is also associated with mitochondrial dysfunction. To define the cause-effect relationship between insulin resistance and mitochondrial dysfunction, we compared mitochondrial metabolism in induced pluripotent stem cells (iPSC) from 5 healthy individuals and 4 patients with genetic insulin resistance due to insulin receptor mutations. Insulin-resistant iPSC had increased mitochondrial number and decreased mitochondrial size. Mitochondrial oxidative function was impaired, with decreased citrate synthase activity and spare respiratory capacity. Simultaneously, expression of multiple glycolytic enzymes was decreased, while lactate production increased 80%. These perturbations were accompanied by an increase in ADP/ATP ratio and 3-fold increase in AMPK activity, indicating energetic stress. Insulin-resistant iPSC also showed reduced catalase activity and increased susceptibility to oxidative stress. Thus, insulin resistance can lead to mitochondrial dysfunction with reduced mitochondrial size, oxidative activity, and energy production.
Collapse
Affiliation(s)
- Alison M Burkart
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Kelly Tan
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Laura Warren
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Salvatore Iovino
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Katelyn J Hughes
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - C Ronald Kahn
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
47
|
Energy Metabolism Plays a Critical Role in Stem Cell Maintenance and Differentiation. Int J Mol Sci 2016; 17:253. [PMID: 26901195 PMCID: PMC4783982 DOI: 10.3390/ijms17020253] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Various stem cells gradually turned to be critical players in tissue engineering and regenerative medicine therapies. Current evidence has demonstrated that in addition to growth factors and the extracellular matrix, multiple metabolic pathways definitively provide important signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of each type of stem cell can vary according to the properties of each cell type, and they share some common points. Clearly defining the metabolic flux alterations in stem cells may help to shed light on stemness features and differentiation pathways that control the fate of stem cells.
Collapse
|
48
|
Abstract
AMPK is important in numerous physiological systems but plays a vital role in embryonic and placental development. The placenta is a unique organ that is the essential lifeline between the mother and baby during pregnancy and gestation. During placental development, oxygen concentrations are very low until cells differentiate to establish the appropriate lineages that take on new functions required for placental and embryonic survival. Balancing the oxygen regulatory environment with the demands for energy and need to maintain metabolism during this process places AMPK at the center of maintaining placental cellular homeostasis as it integrates and responds to numerous complex stimuli. AMPK plays a critical role in sensing metabolic and energy changes. Once activated, it turns on pathways that produce energy and shuts down catabolic processes. AMPK coordinates cell growth, differentiation, and nutrient transport to maintain cell survival. Appropriate regulation of AMPK is essential for normal placental and embryonic development, and its dysregulation may lead to pregnancy-associated disorders such as intrauterine growth restriction, placental insufficiency, or preeclampsia.
Collapse
Affiliation(s)
- Melissa R Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Highway, 457 Neuroscience Engineering Collaboration Building, Dayton, OH, 45435, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Highway, 457 Neuroscience Engineering Collaboration Building, Dayton, OH, 45435, USA.
| |
Collapse
|
49
|
Qiu H, Fang X, Luo Q, Ouyang G. Cancer stem cells: a potential target for cancer therapy. Cell Mol Life Sci 2015; 72:3411-24. [PMID: 25967289 PMCID: PMC11113644 DOI: 10.1007/s00018-015-1920-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.
Collapse
Affiliation(s)
- Hong Qiu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| | - Xiaoguang Fang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
50
|
Wanet A, Arnould T, Najimi M, Renard P. Connecting Mitochondria, Metabolism, and Stem Cell Fate. Stem Cells Dev 2015; 24:1957-71. [PMID: 26134242 PMCID: PMC4543487 DOI: 10.1089/scd.2015.0117] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases.
Collapse
Affiliation(s)
- Anaïs Wanet
- 1 Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur) , Namur, Belgium
| | - Thierry Arnould
- 1 Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur) , Namur, Belgium
| | - Mustapha Najimi
- 2 Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC), Université Catholique de Louvain , Brussels, Belgium
| | - Patricia Renard
- 1 Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur) , Namur, Belgium
| |
Collapse
|