1
|
Liu Y, Mo W, Sun W, Chen J, Chen J, Li Y, Han D, Dai W, Zhang R. NFAT2 Induces Tumor Cell Proliferation and Metastasis by Acting as a Transcriptional Co-activator of the TGF-β1/SMAD Signaling Pathway and Inducing the Epithelial-Mesenchymal Transition in Liver Cancer. Dig Dis Sci 2025:10.1007/s10620-025-08890-7. [PMID: 40038210 DOI: 10.1007/s10620-025-08890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND The role of NFAT2 in liver cancer is conflicting, with evidence suggesting both oncogenic and tumor-suppressive effects. A clear understanding of its expression, function, regulation, and mechanism of action in liver cancer remains critical. OBJECTIVES To examine the expression levels, biological functions, regulatory mechanisms, and downstream pathways of NFAT2 in liver cancer and its metastasis. METHODS The expression of NFAT2 was analyzed in liver cancer patients and correlated with clinical outcomes. Functional assays, including proliferation, migration, invasion, and xenograft models, were employed to assess the effects of NFAT2 upregulation and downregulation. Molecular analyses were conducted to identify key pathways and protein interactions underpinning NFAT2's effects. The therapeutic potential of NFAT2 inhibition in combination with sorafenib was also evaluated. RESULTS NFAT2 overexpression was associated with poor prognosis and shorter disease-free survival in liver cancer patients. Upregulation of NFAT2 promoted hepatoma cell proliferation, migration, and invasion, while its downregulation impaired these pro-oncogenic effects. Mechanistically, NFAT2 enhanced the epithelial-to-mesenchymal transition (EMT) by increasing mesenchymal marker expression (N-cadherin, vimentin, MMP9) and decreasing invasion inhibitors (E-cadherin, ZO-1). It physically interacted with SMAD3 and p300, thereby activating the TGF-β1/SMAD pathway to drive tumor progression. NFAT2 knockdown or inhibition re-sensitized tumor cells to sorafenib, indicating its promising therapeutic potential. CONCLUSION NFAT2 acts as a transcriptional co-activator of the TGF-β1/SMAD signaling pathway, promoting liver cancer progression and metastasis. Its inhibition could serve as a novel therapeutic strategy for the treatment of advanced liver cancer, particularly in combination with sorafenib.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, People's Republic of China
| | - Weijie Sun
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Jianqing Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, People's Republic of China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, People's Republic of China
| | - Yueyue Li
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, People's Republic of China
| | - Dengyu Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Yangpu District, Shanghai, People's Republic of China
| | - Ruling Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274, Zhijiangzhong Road, Jingan District, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Patterson SD, Massett ME, Huang X, Jørgensen HG, Michie AM. The MYC-NFATC2 axis maintains the cell cycle and mitochondrial function in acute myeloid leukaemia cells. Mol Oncol 2024; 18:2234-2254. [PMID: 38459421 PMCID: PMC11467801 DOI: 10.1002/1878-0261.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a clonal haematological malignancy affecting the myeloid lineage, with generally poor patient outcomes owing to the lack of targeted therapies. The histone lysine demethylase 4A (KDM4A) has been established as a novel therapeutic target in AML, due to its selective oncogenic role within leukaemic cells. We identify that the transcription factor nuclear factor of activated T cells 2 (NFATC2) is a novel binding and transcriptional target of KDM4A in the human AML THP-1 cell line. Furthermore, cytogenetically diverse AML cell lines, including THP-1, were dependent on NFATC2 for colony formation in vitro, highlighting a putative novel mechanism of AML oncogenesis. Our study demonstrates that NFATC2 maintenance of cell cycle progression in human AML cells was driven primarily by CCND1. Through RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq), NFATc2 was shown to bind to the promoter region of genes involved in oxidative phosphorylation and subsequently regulate their gene expression in THP-1 cells. Furthermore, our data show that NFATC2 shares transcriptional targets with the transcription factor c-MYC, with MYC knockdown phenocopying NFATC2 knockdown. These data suggest a newly identified co-ordinated role for NFATC2 and MYC in the maintenance of THP-1 cell function, indicative of a potential means of therapeutic targeting in human AML.
Collapse
Affiliation(s)
- Shaun D. Patterson
- Paul O'Gorman Leukaemia Research Centre, Gartnavel General HospitalUniversity of GlasgowUK
| | - Matthew E. Massett
- Paul O'Gorman Leukaemia Research Centre, Gartnavel General HospitalUniversity of GlasgowUK
| | - Xu Huang
- Paul O'Gorman Leukaemia Research Centre, Gartnavel General HospitalUniversity of GlasgowUK
| | - Heather G. Jørgensen
- Paul O'Gorman Leukaemia Research Centre, Gartnavel General HospitalUniversity of GlasgowUK
| | - Alison M. Michie
- Paul O'Gorman Leukaemia Research Centre, Gartnavel General HospitalUniversity of GlasgowUK
| |
Collapse
|
3
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
4
|
Hasani S, Fathabadi F, Saeidi S, Mohajernoei P, Hesari Z. The role of NFATc1 in the progression and metastasis of prostate cancer: A review on the molecular mechanisms and signaling pathways. Cell Biol Int 2023; 47:1895-1904. [PMID: 37814550 DOI: 10.1002/cbin.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A common type of cancer among men is the prostate cancer that kills many people every year. The multistage of this disease and the involvement of the vital organs of the body have reduced the life span and quality of life of the people involved and turned the treatment process into a complex one. NFATc1 biomarker contributes significantly in the diagnosis and treatment of this disease by increasing its expression in prostate cancer and helping the proliferation, differentiation, and invasion of cancer cells through different signaling pathways. NFATc1 is also able to target the metabolism of cancer cells by inserting specific oncogene molecules such as c-myc that it causes cell growth and proliferation. Bone is a common tissue where prostate cancer cells metastasize. In this regard, the activity of NFATc1, through the regulation of different signaling cascades, including the RANKL/RANK signaling pathway, in turn, increases the activity of osteoclasts, and as a result, bone tissue is gradually ruined. Using Silibinin as a medicinal plant extract can inhibit the activity of osteoclasts related to prostate cancer by targeting NFATc. Undoubtedly, NFATc1 is one of the effective oncogenes related to prostate cancer, which has the potential to put this cancer on the path of progression and metastasis. In this review, we will highlight the role of NFATc1 in the progression and metastasis of prostate cancer. Furthermore, we will summarize signaling pathways and molecular mechanism, through which NFATc1 regulates the process of prostate cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Nursing, Faculty of Medical Sciences, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Farshid Fathabadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saman Saeidi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pouya Mohajernoei
- Department of Medicine and Surgery, Università degli Studi di Padova, Padua, Italy
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
5
|
Sant'Anna R, Robbs BK, de Freitas JA, Dos Santos PP, König A, Outeiro TF, Foguel D. The alpha-synuclein oligomers activate nuclear factor of activated T-cell (NFAT) modulating synaptic homeostasis and apoptosis. Mol Med 2023; 29:111. [PMID: 37596531 PMCID: PMC10439599 DOI: 10.1186/s10020-023-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Bruno K Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo, RJ, 28625-650, Brazil
| | - Júlia Araújo de Freitas
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Patrícia Pires Dos Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Debora Foguel
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
6
|
Canonical Wnt Pathway Is Involved in Chemoresistance and Cell Cycle Arrest Induction in Colon Cancer Cell Line Spheroids. Int J Mol Sci 2023; 24:ijms24065252. [PMID: 36982333 PMCID: PMC10049556 DOI: 10.3390/ijms24065252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The presence of cancer stem cells (CSCs) has been associated with the induction of drug resistance and disease recurrence after therapy. 5-Fluorouracil (5FU) is widely used as the first-line treatment of colorectal cancer (CRC). However, its effectiveness may be limited by the induction of drug resistance in tumor cells. The Wnt pathway plays a key role in the development and CRC progression, but it is not clearly established how it is involved in CSCs resistance to treatment. This work aimed to investigate the role played by the canonical Wnt/β-catenin pathway in CSCs resistance to 5FU treatment. Using tumor spheroids as a model of CSCs enrichment of CRC cell lines with different Wnt/β-catenin contexts, we found that 5FU induces in all CRC spheroids tested cell death, DNA damage, and quiescence, but in different proportions for each one: RKO spheroids were very sensitive to 5FU, while SW480 were less susceptible, and the SW620 spheroids, the metastatic derivative of SW480 cells, displayed the highest resistance to death, high clonogenic capacity, and the highest ability for regrowth after 5FU treatment. Activating the canonical Wnt pathway with Wnt3a in RKO spheroids decreased the 5FU-induced cell death. But the Wnt/β-catenin pathway inhibition with Adavivint alone or in combination with 5FU in spheroids with aberrant activation of this pathway produced a severe cytostatic effect compromising their clonogenic capacity and diminishing the stem cell markers expression. Remarkably, this combined treatment also induced the survival of a small cell subpopulation that could exit the arrest, recover SOX2 levels, and re-grow after treatment.
Collapse
|
7
|
Muñoz-Urbano M, Quintero-González DC, Vasquez G. T cell metabolism and possible therapeutic targets in systemic lupus erythematosus: a narrative review. Immunopharmacol Immunotoxicol 2022; 44:457-470. [PMID: 35352607 DOI: 10.1080/08923973.2022.2055568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the immunopathogenesis of systemic lupus erythematosus (SLE), there is a dysregulation of specific immune cells, including T cells. The metabolic reprogramming in T cells causes different effects. Metabolic programs are critical checkpoints in immune responses and are involved in the etiology of autoimmune disease. For instance, resting lymphocytes generate energy through oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO), whereas activated lymphocytes rapidly shift to the glycolytic pathway. Specifically, mitochondrial dysfunction, oxidative stress, abnormal metabolism (including glucose, lipid, and amino acid metabolism), and mTOR signaling are hallmarks of T lymphocyte metabolic dysfunction in SLE. Herein it is summarized how metabolic defects contribute to T cell responses in SLE, and some epigenetic alterations involved in the disease. Finally, it is shown how metabolic defects could be modified therapeutically.
Collapse
Affiliation(s)
| | | | - Gloria Vasquez
- Rheumatology Section, Universidad de Antioquia, Medellín, Colombia.,Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
8
|
Pangestu NS, Chueakwon P, Talabnin K, Khiaowichit J, Talabnin C. RNF43 overexpression attenuates the Wnt/β-catenin signalling pathway to suppress tumour progression in cholangiocarcinoma. Oncol Lett 2021; 22:846. [PMID: 34733364 PMCID: PMC8561214 DOI: 10.3892/ol.2021.13107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
RING finger protein 43 (RNF43) is a ubiquitin E3 ligase that negatively regulates Wnt/β-catenin signalling. Mutation, inactivation and downregulation of RNF43 in cholangiocarcinoma (CCA) are associated with a less favourable prognosis. Since the functional role of RNF43 in CCA has not yet been demonstrated, the present study aimed to assess the effect of its overexpression in mediating CCA suppression via Wnt/β-catenin signalling pathway inhibition. Accordingly, RNF43 was overexpressed, and various malignant phenotypic changes studied, including cell proliferation, cell migration, chemotherapeutic sensitivity and the expression of several Wnt/β-catenin target genes. Overexpression of RNF43 in the CCA cell-line KKU-213B hindered activation of Wnt/β-catenin signalling, evidenced by: i) Accumulation of β-catenin in the cytoplasmic fraction and downregulation of several known Wnt target genes at the mRNA level [AXIN2, survivin (BIRC5), CCND1, MMP-7, c-MYC and ABCB1 (MDR1)]; ii) a reduction of cell proliferation; iii) a significant decrease in KKU-213B cell migration with RNF43 overexpression via upregulation of E-cadherin (CDH1); and iv) a reduction in N-cadherin (CDH2), MMP-2, MMP-7 and MMP-9. In addition, overexpression of RNF43 increased 5-fluorouracil sensitivity and downregulation of ABC transporter genes [including ABCB1 and ABCC1 (MRP1)]. The current results demonstrate a functional role for RNF43 in CCA by: i) Blocking β-catenin nuclear translocation; and ii) the subsequent downregulation of Wnt/β-catenin target genes (the latter being involved in the progression of CCA and chemotherapeutic drug susceptibility). Therefore, the present findings suggest that RNF43 could serve a tumour suppressive role in CCA.
Collapse
Affiliation(s)
- Norma Sainstika Pangestu
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyasiri Chueakwon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Juthamas Khiaowichit
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
9
|
La T, Chen S, Guo T, Zhao XH, Teng L, Li D, Carnell M, Zhang YY, Feng YC, Cole N, Brown AC, Zhang D, Dong Q, Wang JY, Cao H, Liu T, Thorne RF, Shao FM, Zhang XD, Jin L. Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells. Theranostics 2021; 11:9605-9622. [PMID: 34646389 PMCID: PMC8490506 DOI: 10.7150/thno.63763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence.
Collapse
Affiliation(s)
- Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Tao Guo
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan 450003, China
| | - Michael Carnell
- Biomedical Imaging Facility, University of New South Wales, NSW, 2052, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Nicole Cole
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Alexandra C. Brown
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Didi Zhang
- Department of Orthopaedics, John Hunter Hospital, Hunter New England Health, NSW, 2305, Australia
| | - Qihan Dong
- Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Jenny Y. Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Feng-Min Shao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Lei Jin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| |
Collapse
|
10
|
Isagulieva AK, Soshnikova NV, Shtil AA. Inhibition of the c-Myc Oncogene by the Aureolic Acid Group Antibiotics. DOKL BIOCHEM BIOPHYS 2021; 500:308-311. [PMID: 34697733 DOI: 10.1134/s1607672921050094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
GC-rich stretches in the DNA minor groove are the established intracellular targets for the aureolic acid group of antibiotics such as olivomycin A and its semisynthetic analogue olivamide. We demonstrated here that both antibiotics at nanomolar concentrations inhibited transcription of the c-Myc oncogene in cultured human tumor cells. The mechanism of transcriptional inhibition did not require the full-length binding site for Sp1, a GC-dependent transcriptional factor. GC quartets with the nucleotide sequences optimal for drug binding are sufficient for c-Myc transcriptional block by the aureolic acid derivatives.
Collapse
Affiliation(s)
- A K Isagulieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Gause Institute of New Antibiotics, Moscow, Russia.
| | - N V Soshnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Shtil
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
11
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HAR, Lütge A, Hüllein J, Wagner L, Giacopelli B, Nadeu F, Delgado J, Campo E, Mangolini M, Ringshausen I, Böttcher M, Mougiakakos D, Jacobs A, Bodenmiller B, Dietrich S, Oakes CC, Zenz T, Huber W. Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. NATURE CANCER 2021; 2:853-864. [PMID: 34423310 PMCID: PMC7611543 DOI: 10.1038/s43018-021-00216-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/10/2021] [Indexed: 11/10/2022]
Abstract
Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.
Collapse
Affiliation(s)
- Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Ester Cannizzaro
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Sebastian Scheinost
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Peter-Martin Bruch
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Holly AR Giles
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Almut Lütge
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jennifer Hüllein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Lena Wagner
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Elías Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Jacobs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Sascha Dietrich
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
- Translational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
13
|
Kitamura N, Kaminuma O. Isoform-Selective NFAT Inhibitor: Potential Usefulness and Development. Int J Mol Sci 2021; 22:2725. [PMID: 33800389 PMCID: PMC7962815 DOI: 10.3390/ijms22052725] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT), which is the pharmacological target of immunosuppressants cyclosporine and tacrolimus, has been shown to play an important role not only in T cells (immune system), from which their name is derived, but also in many biological events. Therefore, functional and/or structural abnormalities of NFAT are linked to the pathogenesis of diseases in various organs. The NFAT protein family consists of five isoforms, and each isoform performs diverse functions and has unique expression patterns in the target tissues. This diversity has made it difficult to obtain ideal pharmacological output for immunosuppressants that inhibit the activity of almost all NFAT family members, causing serious and wide-ranging side effects. Moreover, it remains unclear whether isoform-selective NFAT regulation can be achieved by targeting the structural differences among NFAT isoforms and whether this strategy can lead to the development of better drugs than the existing ones. This review summarizes the role of the NFAT family members in biological events, including the development of various diseases, as well as the usefulness of and problems associated with NFAT-targeting therapies, including those dependent on current immunosuppressants. Finally, we propose a novel therapeutic strategy based on the molecular mechanisms that enable selective regulation of specific NFAT isoforms.
Collapse
Affiliation(s)
- Noriko Kitamura
- Laboratory of Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Osamu Kaminuma
- Laboratory of Allergy and Immunology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
14
|
Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, Liu Y, Azuma H, Yang J, Abdi R, Zhou H, Elkhal A, Tullius SG. Targeting age-specific changes in CD4 + T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell 2021; 20:e13299. [PMID: 33497523 PMCID: PMC7884034 DOI: 10.1111/acel.13299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Age impacts alloimmunity. Effects of aging on T-cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age-independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6-diazo-5-oxo-l-norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN-γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1- and Th17-driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2-deoxy-d-glucose, 2-DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age-specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age-specific approaches for immunosuppression.
Collapse
Affiliation(s)
- Yeqi Nian
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Urology Second Xiangya Hospital Central South University Changsha China
- Department of Kidney Transplantation Tianjin First Central Hospital Nankai University Tianjin China
| | - Jasper Iske
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Institute of Transplant Immunology Hannover Medical School Hannover Germany
| | - Ryoichi Maenosono
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Urology Osaka Medical College Osaka Japan
| | - Koichiro Minami
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Urology Osaka Medical College Osaka Japan
| | - Timm Heinbokel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Department of Pathology Charité – Universitätsmedizin Berlin Berlin Germany
| | - Markus Quante
- Department of General, Visceral‐ and Transplant Surgery University Hospital Tübingen Tubingen Germany
| | - Yang Liu
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
- Institute of Hepatobiliary Diseases Zhongnan Hospital of Wuhan University Wuhan China
| | | | - Jinrui Yang
- Department of Urology Second Xiangya Hospital Central South University Changsha China
| | - Reza Abdi
- Renal Division Transplantation Research Center Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory Brigham and Women's Hospital Harvard Medical School Boston MA USA
| |
Collapse
|
15
|
Dulong J, Kouakou C, Mesloub Y, Rorteau J, Moratille S, Chevalier FP, Vinasco-Sandoval T, Martin MT, Lamartine J. NFATC2 Modulates Radiation Sensitivity in Dermal Fibroblasts From Patients With Severe Side Effects of Radiotherapy. Front Oncol 2020; 10:589168. [PMID: 33392083 PMCID: PMC7772431 DOI: 10.3389/fonc.2020.589168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Although it is well established that 5 to 15% of radiotherapy patients exhibit severe side-effects in non-cancerous tissues, the molecular mechanisms involved are still poorly known, and the links between cellular and tissue radiosensitivity are still debated. We here studied fibroblasts from non-irradiated skin of patients with severe sequelae of radiotherapy, to determine whether specific basal cell activities might be involved in susceptibility to side-effects in normal tissues. Compared to control cells, patient fibroblasts exhibited higher radiosensitivity together with defects in DNA repair. Transcriptome profiling of dermal fibroblasts from 16 radiotherapy patients with severe side-effects and 8 healthy individuals identified 540 genes specifically deregulated in the patients. Nuclear factor of activated T cells 2 (NFATC2) was the most differentially expressed gene, poorly expressed at both transcript and protein level, whereas the NFATC2 gene region was hypermethylated. Furthermore, NFATC2 expression correlated with cell survival after irradiation. Finally, silencing NFATC2 in normal cells by RNA interference led to increased cellular radiosensitivity and defects in DNA repair. This study demonstrates that patients with clinical hypersensitivity also exhibit intrinsic cellular radiosensitivity in their normal skin cells. It further reveals a new role for NFATC2 as a potential regulator of cellular sensitivity to ionizing radiation.
Collapse
Affiliation(s)
- Joshua Dulong
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Clara Kouakou
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Yasmina Mesloub
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Julie Rorteau
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Sandra Moratille
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Fabien P. Chevalier
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| | - Tatiana Vinasco-Sandoval
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Michèle T. Martin
- CEA, Genomics and Radiobiology of Keratinopoiesis, DRF/IBFJ/iRCM, Université Paris-Saclay, Evry, France
| | - Jérôme Lamartine
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR5305, University of Lyon, Claude Bernard University Lyon I, IBCP, Lyon, France
| |
Collapse
|
16
|
Abstract
T cells are an essential component of the immune system that provide antigen-specific acute and long lasting immune responses to infections and tumors, ascertain the maintenance of immunological tolerance and, on the flipside, mediate autoimmunity in a variety of diseases. The activation of T cells through antigen recognition by the T cell receptor (TCR) results in transient and sustained Ca2+ signals that are shaped by the opening of Ca2+ channels in the plasma membrane and cellular organelles. The dynamic regulation of intracellular Ca2+ concentrations controls a variety of T cell functions on the timescale of seconds to days after signal initiation. Among the more recently identified roles of Ca2+ signaling in T cells is the regulation of metabolic pathways that control the function of many T cell subsets. In this review, we discuss how Ca2+ regulates several metabolic programs in T cells such as the activation of AMPK and the PI3K-AKT-mTORC1 pathway, aerobic glycolysis, mitochondrial metabolism including tricarboxylic acid (TCA) cycle function and oxidative phosphorylation (OXPHOS), as well as lipid metabolism.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Anthony Tao
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Martin Vaeth
- Institute of Systems Immunology, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Walls JF, Subleski JJ, Palmieri EM, Gonzalez-Cotto M, Gardiner CM, McVicar DW, Finlay DK. Metabolic but not transcriptional regulation by PKM2 is important for natural killer cell responses. eLife 2020; 9:59166. [PMID: 32812866 PMCID: PMC7467725 DOI: 10.7554/elife.59166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/15/2020] [Indexed: 12/25/2022] Open
Abstract
Natural Killer (NK) cells have an important role in immune responses to viruses and tumours. Integrating changes in signal transduction pathways and cellular metabolism is essential for effective NK cells responses. The glycolytic enzyme Pyruvate Kinase Muscle 2 (PKM2) has described roles in regulating glycolytic flux and signal transduction, particularly gene transcription. While PKM2 expression is robustly induced in activated NK cells, mice lacking PKM2 in NK cells showed no defect in NK cell metabolism, transcription or antiviral responses to MCMV infection. NK cell metabolism was maintained due to compensatory PKM1 expression in PKM2-null NK cells. To further investigate the role of PKM2, we used TEPP-46, which increases PKM2 catalytic activity while inhibiting any PKM2 signalling functions. NK cells activated with TEPP-46 had reduced effector function due to TEPP-46-induced increases in oxidative stress. Overall, PKM2-regulated glycolytic metabolism and redox status, not transcriptional control, facilitate optimal NK cells responses.
Collapse
Affiliation(s)
- Jessica F Walls
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Jeff J Subleski
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Erika M Palmieri
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Marieli Gonzalez-Cotto
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniel W McVicar
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, United States
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Berry CT, Liu X, Myles A, Nandi S, Chen YH, Hershberg U, Brodsky IE, Cancro MP, Lengner CJ, May MJ, Freedman BD. BCR-Induced Ca 2+ Signals Dynamically Tune Survival, Metabolic Reprogramming, and Proliferation of Naive B Cells. Cell Rep 2020; 31:107474. [PMID: 32294437 PMCID: PMC7301411 DOI: 10.1016/j.celrep.2020.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
B cell receptor (BCR) engagement induces naive B cells to differentiate and perform critical immune-regulatory functions. Acquisition of functional specificity requires that a cell survive, enter the cell cycle, and proliferate. We establish that quantitatively distinct Ca2+ signals triggered by variations in the extent of BCR engagement dynamically regulate these transitions by controlling nuclear factor κB (NF-κB), NFAT, and mTORC1 activity. Weak BCR engagement induces apoptosis by failing to activate NF-κB-driven anti-apoptotic gene expression. Stronger signals that trigger more robust Ca2+ signals promote NF-κB-dependent survival and NFAT-, mTORC1-, and c-Myc-dependent cell-cycle entry and proliferation. Finally, we establish that CD40 or TLR9 costimulation circumvents these Ca2+-regulated checkpoints of B cell activation and proliferation. As altered BCR signaling is linked to autoimmunity and B cell malignancies, these results have important implications for understanding the pathogenesis of aberrant B cell activation and differentiation and therapeutic approaches to target these responses.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satabdi Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA; Department of Human Biology, Faculty of Sciences, University of Haifa, Haifa 3498838, Israel
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University of Pennsylvania Institute for Regenerative Medicine, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Pathak T, Gueguinou M, Walter V, Delierneux C, Johnson MT, Zhang X, Xin P, Yoast RE, Emrich SM, Yochum GS, Sekler I, Koltun WA, Gill DL, Hempel N, Trebak M. Dichotomous role of the human mitochondrial Na +/Ca2 +/Li + exchanger NCLX in colorectal cancer growth and metastasis. eLife 2020; 9:59686. [PMID: 32914752 PMCID: PMC7529464 DOI: 10.7554/elife.59686] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Despite the established role of mitochondria in cancer, the mechanisms by which mitochondrial Ca2+ (mtCa2+) regulates tumorigenesis remain incompletely understood. The crucial role of mtCa2+ in tumorigenesis is highlighted by altered expression of proteins mediating mtCa2+ uptake and extrusion in cancer. Here, we demonstrate decreased expression of the mitochondrial Na+/Ca2+/Li+ exchanger NCLX (SLC8B1) in human colorectal tumors and its association with advanced-stage disease in patients. Downregulation of NCLX causes mtCa2+ overload, mitochondrial depolarization, decreased expression of cell-cycle genes and reduced tumor size in xenograft and spontaneous colorectal cancer mouse models. Concomitantly, NCLX downregulation drives metastatic spread, chemoresistance, and expression of epithelial-to-mesenchymal, hypoxia, and stem cell pathways. Mechanistically, mtCa2+ overload leads to increased mitochondrial reactive oxygen species, which activate HIF1α signaling supporting metastasis of NCLX-null tumor cells. Thus, loss of NCLX is a novel driver of metastasis, indicating that regulation of mtCa2+ is a novel therapeutic approach in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Maxime Gueguinou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Vonn Walter
- Department of Public Health Sciences, The Pennsylvania State University College of MedicineHersheyUnited States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHersheyUnited States,Penn State Cancer Institute. The Pennsylvania State University College of MedicineHersheyUnited States
| | - Celine Delierneux
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Ping Xin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Scott M Emrich
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Gregory S Yochum
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHersheyUnited States,Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Walter A Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Nadine Hempel
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States,Penn State Cancer Institute. The Pennsylvania State University College of MedicineHersheyUnited States,Department of Pharmacology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| |
Collapse
|
20
|
Moreno-Felici J, Hyroššová P, Aragó M, Rodríguez-Arévalo S, García-Rovés PM, Escolano C, Perales JC. Phosphoenolpyruvate from Glycolysis and PEPCK Regulate Cancer Cell Fate by Altering Cytosolic Ca 2. Cells 2019; 9:E18. [PMID: 31861674 PMCID: PMC7017135 DOI: 10.3390/cells9010018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Changes in phosphoenolpyruvate (PEP) concentrations secondary to variations in glucose availability can regulate calcium signaling in T cells as this metabolite potently inhibits the sarcoplasmic reticulum Ca2+/ATPase pump (SERCA). This regulation is critical to assert immune activation in the tumor as T cells and cancer cells compete for available nutrients. We examined here whether cytosolic calcium and the activation of downstream effector pathways important for tumor biology are influenced by the presence of glucose and/or cataplerosis through the phosphoenolpyruvate carboxykinase (PEPCK) pathway, as both are hypothesized to feed the PEP pool. Our data demonstrate that cellular PEP parallels extracellular glucose in two human colon carcinoma cell lines, HCT-116 and SW480. PEP correlated with cytosolic calcium and NFAT activity, together with transcriptional up-regulation of canonical targets PTGS2 and IL6 that was fully prevented by CsA pre-treatment. Similarly, loading the metabolite directly into the cell increased cytosolic calcium and NFAT activity. PEP-stirred cytosolic calcium was also responsible for the calmodulin (CaM) dependent phosphorylation of c-Myc at Ser62, resulting in increased activity, probably through enhanced stabilization of the protein. Protein expression of several c-Myc targets also correlated with PEP levels. Finally, the participation of PEPCK in this axis was interrogated as it should directly contribute to PEP through cataplerosis from TCA cycle intermediates, especially in glucose starvation conditions. Inhibition of PEPCK activity showed the expected regulation of PEP and calcium levels and consequential downstream modulation of NFAT and c-Myc activities. Collectively, these results suggest that glucose and PEPCK can regulate NFAT and c-Myc activities through their influence on the PEP/Ca2+ axis, advancing a role for PEP as a second messenger communicating metabolism, calcium cell signaling, and tumor biology.
Collapse
Affiliation(s)
- Juan Moreno-Felici
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet del Llobregat, Spain; (J.M.-F.); (P.H.); (M.A.); (P.M.G.-R.)
| | - Petra Hyroššová
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet del Llobregat, Spain; (J.M.-F.); (P.H.); (M.A.); (P.M.G.-R.)
| | - Marc Aragó
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet del Llobregat, Spain; (J.M.-F.); (P.H.); (M.A.); (P.M.G.-R.)
| | - Sergio Rodríguez-Arévalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain; (S.R.-A.); (C.E.)
| | - Pablo M. García-Rovés
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet del Llobregat, Spain; (J.M.-F.); (P.H.); (M.A.); (P.M.G.-R.)
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain; (S.R.-A.); (C.E.)
| | - Jose C. Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet del Llobregat, Spain; (J.M.-F.); (P.H.); (M.A.); (P.M.G.-R.)
- IDIBELL, Gran Via de l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
21
|
Shakhova I, Li Y, Yu F, Kaneko Y, Nakamura Y, Ohira M, Izumi H, Mae T, Varfolomeeva SR, Rumyantsev AG, Nakagawara A. PPP3CB contributes to poor prognosis through activating nuclear factor of activated T-cells signaling in neuroblastoma. Mol Carcinog 2018; 58:426-435. [PMID: 30457174 DOI: 10.1002/mc.22939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
We previously identified a gain-of-function mutation in PPP3CB in a neuroblastoma (NB) with MYCN amplification. Here we investigated the functional and clinical role of PPP3CB in NB. High PPP3CB expression was an independent indicator predicting poor prognosis of NB. Overexpression of wildtype or mutated PPP3CB (PPP3CBmut) promoted cell growth, but PPP3CB knockdown decreased cell growth in NB cells. Forced expressions of PPP3CB and PPP3CBmut activated NFAT2 and NFAT4 transcription factors and inhibited GSK3β activity, resulting in the increase in the expressions of c-Myc, MYCN, and β-catenin, which were downregulated in response to PPP3CB knockdown. Treatment with calcineurin inhibitor cyclosporin A (CsA) or FK506 suppressed cell proliferation and induced apoptotic cell death in both MYCN-amplified and MYCN-non-amplified NB cell lines. Expression of PPP3CB protein was decreased in response to two calcineurin inhibitors. c-Myc, MYCN, and β-catenin were downregulated at the mRNA and protein levels in CsA or FK506-treated NB cells. Our data indicate that elevated expression of PPP3CB and the expression of its constitutively active mutant contribute to the aggressive behavior of NB tumors and therefore suggest that inhibition of calcineurin activity might have therapeutic potential for high-risk NB.
Collapse
Affiliation(s)
- Irina Shakhova
- Chiba Cancer Center Research Institute, Chiba, Japan.,Federal Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | - Yuanyuan Li
- Chiba Cancer Center Research Institute, Chiba, Japan.,Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| | - Fan Yu
- Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | - Miki Ohira
- Chiba Cancer Center Research Institute, Chiba, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Hideki Izumi
- Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| | - Takao Mae
- Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| | - Svetlana R Varfolomeeva
- Federal Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | - Alexander G Rumyantsev
- Federal Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | - Akira Nakagawara
- Chiba Cancer Center Research Institute, Chiba, Japan.,Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| |
Collapse
|
22
|
Abstract
Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca
2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
23
|
Pallet N, Fernández-Ramos AA, Loriot MA. Impact of Immunosuppressive Drugs on the Metabolism of T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:169-200. [DOI: 10.1016/bs.ircmb.2018.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Malsy M, Graf B, Almstedt K. Interaction between NFATc2 and the transcription factor Sp1 in pancreatic carcinoma cells PaTu 8988t. BMC Mol Biol 2017; 18:20. [PMID: 28774282 PMCID: PMC5543739 DOI: 10.1186/s12867-017-0097-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nuclear factors of activated T-cells (NFATs) have been mainly characterized in the context of immune response regulation because, as transcription factors, they have the ability to induce gene transcription. NFAT proteins are found in several types of tumors, for instance, pancreatic carcinoma. The role of NFATs in carcinogenesis is regulating central genes in cell differentiation and cell growth. NFAT proteins are primarily located in cytoplasm and only transported to the cell nucleus after activation. Here, they interact with other transcription factors cooperating with NFAT proteins, thus influencing the selection and regulation of NFAT-controlled genes. To identify and characterize possible interaction partners of the transcription factor NFATc2 in pancreatic carcinoma cells PaTu 8988t. METHODS NFATc2 expression and the mode of action of Ionomycin in the pancreatic tumor cell lines PaTu 8988t were shown with Western blotting and immunofluorescence tests. Potential partner proteins were verified by means of immunoprecipitation and binding partners, their physical interactions with DNA pull-down assays, siRNA technologies, and GST pull-down assays. Functional evidence was complemented by reporter-promoter analyses. RESULTS NFATc2 and Sp1 are co-localized in cell nuclei and physically interact at the NFAT target sequence termed NFAT-responsive promotor construct. Sp1 increases the functional activity of its binding partner NFATc2. This interaction is facilitated by Ionomycin in the early stimulation phase (up to 60 min). CONCLUSIONS Oncological therapy concepts are becoming more and more specific, aiming at the efficient modulation of specific signal and transcription pathways. The oncogenic transcription partner Sp1 is important for the transcriptional and functional activity of NFATc2 in pancreatic carcinoma. The binding partners interact in cells. Further studies are necessary to identify the underlying mechanisms and establish future therapeutic options for treating this aggressive type of tumor.
Collapse
Affiliation(s)
- Manuela Malsy
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Bernhard Graf
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Katrin Almstedt
- Department of Obstetrics and Gynecology, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
25
|
Zhou J, Gao G, Hou P, Li CM, Guo D. Regulation of the Alternative Splicing and Function of Cyclin T1 by the Serine-Arginine-Rich Protein ASF/SF2. J Cell Biochem 2017; 118:4020-4032. [PMID: 28422315 DOI: 10.1002/jcb.26058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
Abstract
Positive transcription elongation factor-b (P-TEFb) is required for the release of RNA polymerase II (RNAPII) from its pause near the gene promoters and thus for efficient proceeding to the transcription elongation. It consists of two core subunits-CDK9 and one of T-typed or K-typed cyclin, of which, cyclin T1/CDK9 is the major and most studied combination. We have previously identified a novel splice variant of cyclin T1, cyclin T1b, which negatively regulates the transcription elongation of HIV-1 genes as well as several host genes. In this study, we revealed the serine-arginine-rich protein, ASF/SF2, as a regulatory factor of the alternative splicing of cyclin T1 gene. ASF/SF2 promotes the production of cyclin T1b versus cyclin T1a and regulates the expression of cyclin T1-depedent genes at the transcription level. We further found that a cis-element on exon 8 is responsible for the skipping of exon 7 mediated by ASF/SF2. Collectively, ASF/SF2 is identified as a splicing regulator of cyclin T1, which contributes to the control of the subsequent transcription events. J. Cell. Biochem. 118: 4020-4032, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jieqiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guozhen Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Panpan Hou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chun-Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Han S, Meng L, Jiang Y, Cheng W, Tie X, Xia J, Wu A. Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br J Cancer 2017; 116:1302-1311. [PMID: 28359080 PMCID: PMC5482734 DOI: 10.1038/bjc.2017.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background: We previously showed that activation of the nuclear factor of activated T cells (NFAT)1/Fas ligand (FasL) pathway induces glioma cell death. Lithium (Li) is an inhibitor of glycogen synthase kinase (GSK)-3 that activates NFAT1/FasL signalling. Temozolomide (TMZ) inhibits GSK-3 and activates Fas in tumour protein (TP)53 wild-type (TP53wt) glioma cells. The present study investigated the combinational effects of TMZ and low-dose Li on TP53wt glioma cells. Methods: The combined effect of TMZ and Li was examined in TP53wt U87 and primary glioma cells and a mouse xenograft model. Results: Combination with 1.2 mM Li potentiated TMZ-induced cell death in TP53wt glioma cells, as determined by neurosphere formation and apoptosis assays. Temozolomide combined with Li treatment inhibited GSK-3 activation, promoted NFAT1 nuclear translocation and upregulated Fas/FasL expression. Targeted knockdown of NFAT1 expression blocked the induction of cell death by TMZ and Li via FasL inhibition. In vivo, combined treatment with TMZ and Li suppressed tumour growth and prolonged the survival of tumour-bearing mice. However, the combination of TMZ and Li did not produce a statistically significant effect in TP53mut glioma cells. Conclusions: Temozolomide combined with low-dose Li induces TP53wt glioma cell death via NFAT1/FasL signalling. This represents a potential therapeutic strategy for TP53wt glioma treatment.
Collapse
Affiliation(s)
- Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Lingxuan Meng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Xinxin Tie
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Junzhe Xia
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| |
Collapse
|
27
|
Chen P, Shan Z, Zhao J, Li F, Zhang W, Yang L, Huang Z. NFAT1 promotes cell motility through MMP-3 in esophageal squamous cell carcinoma. Biomed Pharmacother 2017; 86:541-546. [DOI: 10.1016/j.biopha.2016.12.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
|
28
|
Qin JJ, Wang W, Voruganti S, Wang H, Zhang WD, Zhang R. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget 2016; 6:33106-19. [PMID: 26461225 PMCID: PMC4741752 DOI: 10.18632/oncotarget.5851] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/28/2015] [Indexed: 01/22/2023] Open
Abstract
Transcription factor NFAT1 has been recently identified as a new regulator of the MDM2 oncogene. Targeting the NFAT1-MDM2 pathway represents a novel approach to cancer therapy. We have recently identified a natural product MDM2 inhibitor, termed JapA. As a specific and potent MDM2 inhibitor, JapA inhibits MDM2 at transcriptional and post-translational levels. However, the molecular mechanism remains to be fully elucidated for its inhibitory effects on MDM2 transcription. Herein, we reported that JapA inhibited NFAT1 and NFAT1-mediated MDM2 transcription, which contributed to the anticancer activity of JapA. Its effects on the expression and activity of NFAT1 were examined in various breast cancer cell lines in vitro and in MCF-7 and MDA-MB-231 xenograft tumors in vivo. The specificity of JapA in targeting NFAT1 and NFAT1-MDM2 pathway and the importance of NFAT1 inhibition in JapA's anticancer activity were demonstrated using NFAT1 overexpression and knockdown cell lines and the pharmacological activators and inhibitors of NFAT1 signaling. Our results indicated that JapA inhibited NFAT1 signaling in breast cancer cells in vitro and in vivo, which plays a pivotal role in its anticancer activity. JapA inhibited the nuclear localization of NFAT1, disrupted the NFAT1-MDM2 P2 promoter complex, and induced NFAT1 proteasomal degradation, resulting in the repression of MDM2 transcription. In conclusion, JapA is a novel NFAT1 inhibitor and the NFAT1 inhibition is responsible for the JapA-induced repression of MDM2 transcription, contributing to its anticancer activity. The results may pave an avenue for validating the NFAT1-MDM2 pathway as a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hui Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
29
|
The effect of immunosuppressive molecules on T-cell metabolic reprogramming. Biochimie 2016; 127:23-36. [DOI: 10.1016/j.biochi.2016.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
|
30
|
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7:e2199. [PMID: 27100893 PMCID: PMC4855676 DOI: 10.1038/cddis.2016.97] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.
Collapse
|
31
|
NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains. Mol Cell Biol 2015; 36:119-31. [PMID: 26483414 DOI: 10.1128/mcb.00501-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4(+) T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions.
Collapse
|
32
|
Perotti V, Baldassari P, Molla A, Vegetti C, Bersani I, Maurichi A, Santinami M, Anichini A, Mortarini R. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene 2015; 35:2862-72. [DOI: 10.1038/onc.2015.355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022]
|
33
|
Gibbons GS, Owens SR, Fearon ER, Nikolovska-Coleska Z. Regulation of Wnt signaling target gene expression by the histone methyltransferase DOT1L. ACS Chem Biol 2015; 10:109-14. [PMID: 25361163 DOI: 10.1021/cb500668u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The histone methyltransferase DOT1L, solely responsible for histone H3 lysine 79 (H3K79) methylation, is associated with gene activation. Human leukemias carrying MLL gene rearrangements aberrantly recruit DOT1L to leukemogenic genes leading to increased H3K79 methylation and their transcriptional activation. Recent studies suggest that Wnt-targeted genes also depend on H3K79 methylation. Employing a chemical biology approach, the requirement for H3K79 methylation was investigated in Wnt pathway-inducible HEK293 cells and human colon adenocarcinoma-derived cell lines by inhibiting DOT1L with EPZ004777, a selective and potent S-adenosylmethionine competitive inhibitor. Our findings indicate that H3K79 methylation is not essential for the canonical Wnt signaling pathway, in particular for maintenance or activation of Wnt pathway target gene expression. Furthermore, H3K79 methylation is not elevated in human colon carcinoma samples in comparison with normal colon tissue. Therefore, our findings indicate that inhibition of DOT1L histone methyltransferase activity is likely not a viable therapeutic strategy in colon cancer.
Collapse
Affiliation(s)
- Garrett S. Gibbons
- Department
of Pathology, ‡Departments of Internal Medicine and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Scott R. Owens
- Department
of Pathology, ‡Departments of Internal Medicine and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Eric R. Fearon
- Department
of Pathology, ‡Departments of Internal Medicine and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Zaneta Nikolovska-Coleska
- Department
of Pathology, ‡Departments of Internal Medicine and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One 2014; 9:e102977. [PMID: 25057852 PMCID: PMC4109958 DOI: 10.1371/journal.pone.0102977] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six i(7)(q10)-positive HSTL cases, including HSTL-derived cell line (DERL-2), and three cases with ring 7 [r(7)], the recently identified rare variant aberration. Using high resolution array CGH, we profiled all cases and mapped the common deleted region (CDR) at 7p22.1p14.1 (34.88 Mb; 3506316-38406226 bp) and the common gained region (CGR) at 7q22.11q31.1 (38.77 Mb; 86259620–124892276 bp). Interestingly, CDR spans a smaller region of 13 Mb (86259620–99271246 bp) constantly amplified in cases with r(7). In addition, we found that TCRG (7p14.1) and TCRB (7q32) are involved in formation of r(7), which seems to be a byproduct of illegitimate somatic rearrangement of both loci. Further transcriptomic analysis has not identified any CDR-related candidate tumor suppressor gene. Instead, loss of 7p22.1p14.1 correlated with an enhanced expression of CHN2 (7p14.1) and the encoded β2-chimerin. Gain and amplification of 7q22.11q31.1 are associated with an increased expression of several genes postulated to be implicated in cancer, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any disease-defining mutation or gene fusion. Thus, chromosome 7 imbalances remain the only driver events detected in this tumor. We hypothesize that the Δ7p22.1p14.1-associated enhanced expression of CHN2/β2-chimerin leads to downmodulation of the NFAT pathway and a proliferative response, while upregulation of the CGR-related genes provides growth advantage for neoplastic δγT-cells and underlies their intrinsic chemoresistance. Finally, our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes, including three located on chromosome 7 (CHN2, ABCB1 and PPP1R9A), distinguishing HSTL from other malignancies.
Collapse
|
35
|
The transcription factor NFAT1 induces apoptosis through cooperation with Ras/Raf/MEK/ERK pathway and upregulation of TNF-α expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2016-28. [DOI: 10.1016/j.bbamcr.2013.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 12/26/2022]
|
36
|
Saikosaponin-d Enhances the Anticancer Potency of TNF-α via Overcoming Its Undesirable Response of Activating NF-Kappa B Signalling in Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:745295. [PMID: 23573150 PMCID: PMC3610377 DOI: 10.1155/2013/745295] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/07/2013] [Indexed: 12/04/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) was reported as anticancer therapy due to its cytotoxic effect against an array of tumor cells. However, its undesirable responses of TNF-α on activating NF-κB signaling and pro-metastatic property limit its clinical application in treating cancers. Therefore, sensitizing agents capable of overcoming this undesirable effect must be valuable for facilitating the usage of TNF-α-mediated apoptosis therapy for cancer patients. Previously, saikosaponin-d (Ssd), a triterpene saponin derived from the medicinal plant, Bupleurum falcatum L. (Umbelliferae), showed to exhibit a variety of pharmacological activities such as antiinflammation, antibacteria, antivirus and anticancer. Recently, we found that Ssd could inhibit the activated T lymphocytes via suppression of NF-κB, NF-AT and AP-1 signaling. Here, we showed that Ssd significantly potentiated TNF-α-mediated cell death in HeLa and HepG2 cancer cells via suppression of TNF-α-induced NF-κB activation and its target genes expression involving cancer cell proliferation, invasion, angiogenesis and survival. Also, Ssd revealed a significant potency of abolishing TNF-α-induced cancer cell invasion and angiogenesis in HUVECs while inducing apoptosis via enhancing the loss of mitochondrial membrane potential in HeLa cells. Collectively, these findings indicate that Ssd has a significant potential to be developed as a combined adjuvant remedy with TNF-α for cancer patients.
Collapse
|