1
|
Brunello L, Polanowska J, Le Tareau L, Maghames C, Georget V, Guette C, Chaoui K, Balor S, O'Donohue MF, Bousquet MP, Gleizes PE, Xirodimas DP. A nuclear protein quality control system for elimination of nucleolus-related inclusions. EMBO J 2025; 44:801-823. [PMID: 39690241 PMCID: PMC11791210 DOI: 10.1038/s44318-024-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions. UBA1 activity is essential only for the recovery process but dispensable for nuclear inclusion formation. Furthermore, the E3 ligase HUWE1 and HSP70 are components of the ubiquitin/chaperone systems that promote inclusion elimination. The recovery process also requires RNA Pol I-dependent production of the lncRNA IGS42 during stress. IGS42 localises within the formed inclusions and promotes their elimination by preserving the mobility of resident proteins. These findings reveal a protein quality control system that operates within the nucleus for the elimination of stress-induced nucleolus-related inclusions.
Collapse
Affiliation(s)
| | | | | | | | - Virginie Georget
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
- MRI, BioCampus, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Charlotte Guette
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Stéphanie Balor
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, 31000, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UT3, Toulouse, France
| | | |
Collapse
|
2
|
Ren H, Luan Z, Zhang R, Zhang H, Bian C. A novel approach to explore metabolic diseases: Neddylation. Pharmacol Res 2024; 210:107532. [PMID: 39637955 DOI: 10.1016/j.phrs.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Protein post translational modification (PTM) is the main regulatory mechanism for eukaryotic cell function, among which ubiquitination is based on the reversible degradation of proteins by the ubiquitin proteasome system to regulate cell homeostasis. The neural precursor cell expressed developmental downregulated gene 8 (NEDD8) is a kind of ubiquitin like protein that shares 80 % homology and 60 % identity with ubiquitin. The PTM process by covalently binding NEDD8 to lysine residues in proteins is called neddylation. The neddylation reaction could be regulated by NEDD8, its precursors, substrates, E1 activating enzymes, E2 binding enzymes, E3 ligases, de-neddylases, and its inhibitors, such as MLN4924. NEDD8 is widely expressed in the whole cell structure of multiple tissues and species, and neddylation related factors are highly expressed in metabolism related adrenal glands, thyroid glands, parathyroid glands, skeletal muscles, myocardium, and adipose tissues, related to metabolic cardiovascular, cerebrovascular and liver diseases, adipogenic and osteogenic differentiation, as well as tumor glycolysis and glucose metabolism resulting from angiogenesis and endothelial disfunction, hepatotoxicity, adipogenesis, osteogenesis, Warburg effect, and insulin function. This review provides researchers with a new approach to explore metabolic diseases via searching and analyzing the histological, cytological, and subcellular localization of neddylation specific molecules in databases, and exploring specific mechanism neddylation mediating metabolic diseases by searching for neddylation related terms with the development of pre-clinical neddylation pharmacological inhibitors.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haibo Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Wanka V, Fottner M, Cigler M, Lang K. Genetic Code Expansion Approaches to Decipher the Ubiquitin Code. Chem Rev 2024; 124:11544-11584. [PMID: 39311880 PMCID: PMC11503651 DOI: 10.1021/acs.chemrev.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications. The entirety of this complex system is coined the Ub code. Deciphering the Ub code is challenging due to the difficulty in reconstituting enzymatic machineries and generating defined Ub/Ubl-protein conjugates. This Review provides a comprehensive overview of recent advances in using GCE (genetic code expansion) techniques to study the Ub code. We highlight strategies to site-specifically ubiquitylate target proteins and discuss their advantages and disadvantages, as well as their various applications. Additionally, we review the potential of small chemical PTMs targeting Ub/Ubls and present GCE-based approaches to study this additional layer of complexity. Furthermore, we explore methods that rely on GCE to develop tools to probe interactors of the Ub system and offer insights into how future GCE-based tools could help unravel the complexity of the Ub code.
Collapse
Affiliation(s)
- Vera Wanka
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Fottner
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Marko Cigler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
4
|
Wang T, Zhang Q, Xu Y, Yan R, Pan Y, Xuan Y, Shen M, Chen X, Zhu H, Ke X, Qu Y, Zhang X. TRAF2 associates with cullin neddylation complex assembly. FEBS J 2024; 291:4473-4488. [PMID: 38978293 DOI: 10.1111/febs.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Cullin-based RING ligases (CRLs) comprise the largest family of ubiquitin E3 ligases. CRL activity is tightly regulated by cullin neddylation, which has been associated with various diseases. Although inhibitors of CRLs neddylation have been reported, there is a lack of small molecules that can selectively target individual cullins. Here, we identified a natural product, liquidambaric acid (LDA), with relatively selective inhibition properties against cullin (Cul) 2 neddylation, and found that its target, Tumor Necrosis Factor receptor-associated factor 2 (TRAF2) was required for the activity. TRAF2 associates with the Cul2 neddylation complex and regulates the machinery assembly, especially that of E2 (UBC12) and E3 (RBX1) enzymes. In addition, we demonstrated that by intervention of the associations between TRAF2 and the neddylation machinery, LDA disturbed NEDD8 transfer from E1 to E2, therefore blocking Cul2 neddylation. Taken together, we show that TRAF2 plays a positive role in neddylation cascades, and we have identified a small molecule capable of selective modulation of cullin neddylation.
Collapse
Affiliation(s)
- Tiantian Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Qi Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Yu Xu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Yuting Pan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Ying Xuan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Mengzhen Shen
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Xianzhi Chen
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Hongyan Zhu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
5
|
Papakyriacou I, Kutkaite G, Rúbies Bedós M, Nagarajan D, Alford LP, Menden MP, Mao Y. Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer. Nat Commun 2024; 15:3581. [PMID: 38678024 PMCID: PMC11055868 DOI: 10.1038/s41467-024-47987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Immune checkpoint blockade therapy aims to activate the immune system to eliminate cancer cells. However, clinical benefits are only recorded in a subset of patients. Here, we leverage genome-wide CRISPR/Cas9 screens in a Tumor-Immune co-Culture System focusing on triple-negative breast cancer (TNBC). We reveal that NEDD8 loss in cancer cells causes a vulnerability to nivolumab (anti-PD-1). Genetic deletion of NEDD8 only delays cell division initially but cell proliferation is unaffected after recovery. Since the NEDD8 gene is commonly essential, we validate this observation with additional CRISPR screens and uncover enhanced immunogenicity in NEDD8 deficient cells using proteomics. In female immunocompetent mice, PD-1 blockade lacks efficacy against established EO771 breast cancer tumors. In contrast, we observe tumor regression mediated by CD8+ T cells against Nedd8 deficient EO771 tumors after PD-1 blockade. In essence, we provide evidence that NEDD8 is conditionally essential in TNBC and presents as a synergistic drug target for PD-1/L1 blockade therapy.
Collapse
Affiliation(s)
- Irineos Papakyriacou
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ginte Kutkaite
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Marta Rúbies Bedós
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liam P Alford
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael P Menden
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Yumeng Mao
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
P T B, Sahu I. Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches. Biochem Soc Trans 2024; 52:627-637. [PMID: 38572966 DOI: 10.1042/bst20230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Functional consequences of protein ubiquitination have gone far beyond the degradation regulation as was initially imagined during its discovery 40 years back. The state-of-the-art has revealed the plethora of signaling pathways that are largely regulated by ubiquitination process in eukaryotes. To no surprise, ubiquitination is often dysregulated in many human diseases, including cancer, neurodegeneration and infection. Hence it has become a major focus with high-gain research value for many investigators to unravel new proteoforms, that are the targets of this ubiquitination modification. Despite many biochemical or proteomic approaches available for ubiquitination detection, mass-spectrometry stood out to be the most efficient and transformative technology to read this complex modification script. Here in this review, we have discussed how different ubiquitin codes can be decoded qualitatively and quantitatively following various sequential proteomic approaches to date reported and indicated the current limitations with scope for improvements.
Collapse
Affiliation(s)
- Brindhavanam P T
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Indrajit Sahu
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
7
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Hua Z. Deciphering the protein ubiquitylation system in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6487-6504. [PMID: 37688404 DOI: 10.1093/jxb/erad354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Protein ubiquitylation is a post-translational modification (PTM) process that covalently modifies a protein substrate with either mono-ubiquitin moieties or poly-ubiquitin chains often at the lysine residues. In Arabidopsis, bioinformatic predictions have suggested that over 5% of its proteome constitutes the protein ubiquitylation system. Despite advancements in functional genomic studies in plants, only a small fraction of this bioinformatically predicted system has been functionally characterized. To expand our understanding about the regulatory function of protein ubiquitylation to that rivalling several other major systems, such as transcription regulation and epigenetics, I describe the status, issues, and new approaches of protein ubiquitylation studies in plant biology. I summarize the methods utilized in defining the ubiquitylation machinery by bioinformatics, identifying ubiquitylation substrates by proteomics, and characterizing the ubiquitin E3 ligase-substrate pathways by functional genomics. Based on the functional and evolutionary analyses of the F-box gene superfamily, I propose a deleterious duplication model for the large expansion of this family in plant genomes. Given this model, I present new perspectives of future functional genomic studies on the plant ubiquitylation system to focus on core and active groups of ubiquitin E3 ligase genes.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
9
|
Vava A, Paccez JD, Wang Y, Gu X, Bhasin MK, Myers M, Soares NC, Libermann TA, Zerbini LF. DCUN1D1 Is an Essential Regulator of Prostate Cancer Proliferation and Tumour Growth That Acts through Neddylation of Cullin 1, 3, 4A and 5 and Deregulation of Wnt/Catenin Pathway. Cells 2023; 12:1973. [PMID: 37566052 PMCID: PMC10417424 DOI: 10.3390/cells12151973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Defective in cullin neddylation 1 domain containing 1 (DCUN1D1) is an E3 ligase for the neddylation, a post-translational process similar to and occurring in parallel to ubiquitin proteasome pathway. Although established as an oncogene in a variety of squamous cell carcinomas, the precise role of DCUN1D1 in prostate cancer (PCa) has not been previously explored thoroughly. Here, we investigated the role of DCUN1D1 in PCa and demonstrated that DCUN1D1 is upregulated in cell lines as well as human tissue samples. Inhibition of DCUN1D1 significantly reduced PCa cell proliferation and migration and remarkably inhibited xenograft formation in mice. Applying both genomics and proteomics approaches, we provide novel information about the DCUN1D1 mechanism of action. We identified CUL3, CUL4B, RBX1, CAND1 and RPS19 proteins as DCUN1D1 binding partners. Our analysis also revealed the dysregulation of genes associated with cellular growth and proliferation, developmental, cell death and cancer pathways and the WNT/β-catenin pathway as potential mechanisms. Inhibition of DCUN1D1 leads to the inactivation of β-catenin through its phosphorylation and degradation which inhibits the downstream action of β-catenin, reducing its interaction with Lef1 in the Lef1/TCF complex that regulates Wnt target gene expression. Together our data point to an essential role of the DCUN1D1 protein in PCa which can be explored for potential targeted therapy.
Collapse
Affiliation(s)
- Akhona Vava
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI 02912, USA;
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; (X.G.); (T.A.L.)
| | - Manoj K. Bhasin
- Department of Pediatrics Bioinformatics, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Michael Myers
- Protein Networks Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | - Nelson C. Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health, Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA/School/Faculdade de Lisboa, 1169-056 Lisbon, Portugal
| | - Towia A. Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; (X.G.); (T.A.L.)
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
| |
Collapse
|
10
|
Sengupta S, Pick E. The Ubiquitin-like Proteins of Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13050734. [PMID: 37238603 DOI: 10.3390/biom13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In this review, we present a comprehensive list of the ubiquitin-like modifiers (Ubls) of Saccharomyces cerevisiae, a common model organism used to study fundamental cellular processes that are conserved in complex multicellular organisms, such as humans. Ubls are a family of proteins that share structural relationships with ubiquitin, and which modify target proteins and lipids. These modifiers are processed, activated and conjugated to substrates by cognate enzymatic cascades. The attachment of substrates to Ubls alters the various properties of these substrates, such as function, interaction with the environment or turnover, and accordingly regulate key cellular processes, including DNA damage, cell cycle progression, metabolism, stress response, cellular differentiation, and protein homeostasis. Thus, it is not surprising that Ubls serve as tools to study the underlying mechanism involved in cellular health. We summarize current knowledge on the activity and mechanism of action of the S. cerevisiae Rub1, Smt3, Atg8, Atg12, Urm1 and Hub1 modifiers, all of which are highly conserved in organisms from yeast to humans.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
| | - Elah Pick
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 3600600, Israel
| |
Collapse
|
11
|
Kassouf T, Shrivastava R, Meszka I, Bailly A, Polanowska J, Trauchessec H, Mandrioli J, Carra S, Xirodimas DP. Targeting the NEDP1 enzyme to ameliorate ALS phenotypes through stress granule disassembly. SCIENCE ADVANCES 2023; 9:eabq7585. [PMID: 37000881 PMCID: PMC10065448 DOI: 10.1126/sciadv.abq7585] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The elimination of aberrant inclusions is regarded as a therapeutic approach in neurodegeneration. In amyotrophic lateral sclerosis (ALS), mutations in proteins found within cytoplasmic condensates called stress granules (SGs) are linked to the formation of pathological SGs, aberrant protein inclusions, and neuronal toxicity. We found that inhibition of NEDP1, the enzyme that processes/deconjugates the ubiquitin-like molecule NEDD8, promotes the disassembly of physiological and pathological SGs. Reduction in poly(ADP-ribose) polymerase1 activity through hyper-NEDDylation is a key mechanism for the observed phenotype. These effects are related to improved cell survival in human cells, and in C. elegans, nedp1 deletion ameliorates ALS phenotypes related to animal motility. Our studies reveal NEDP1 as potential therapeutic target for ALS, correlated to the disassembly of pathological SGs.
Collapse
Affiliation(s)
| | | | - Igor Meszka
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
| | | | | | | | - Jessica Mandrioli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia,G. Campi 287, 41125 Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia,G. Campi 287, 41125 Modena, Italy
| | | |
Collapse
|
12
|
Zou J, Wang W, Lu Y, Ayala J, Dong K, Zhou H, Wang J, Chen W, Weintraub NL, Zhou J, Li J, Su H. Neddylation is required for perinatal cardiac development through stimulation of metabolic maturation. Cell Rep 2023; 42:112018. [PMID: 36662623 PMCID: PMC10029150 DOI: 10.1016/j.celrep.2023.112018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Cardiac maturation is crucial for postnatal cardiac development and is increasingly known to be regulated by a series of transcription factors. However, post-translational mechanisms regulating this process remain unclear. Here we report the indispensable role of neddylation in cardiac maturation. Mosaic deletion of NAE1, an essential enzyme for neddylation, in neonatal hearts results in the rapid development of cardiomyopathy and heart failure. NAE1 deficiency disrupts transverse tubule formation, inhibits physiological hypertrophy, and represses fetal-to-adult isoform switching, thus culminating in cardiomyocyte immaturation. Mechanistically, we find that neddylation is needed for the perinatal metabolic transition from glycolytic to oxidative metabolism in cardiomyocytes. Further, we show that HIF1α is a putative neddylation target and that inhibition of neddylation accumulates HIF1α and impairs fatty acid utilization and bioenergetics in cardiomyocytes. Together, our data show neddylation is required for cardiomyocyte maturation through promoting oxidative metabolism in the developing heart.
Collapse
Affiliation(s)
- Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yi Lu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Juan Ayala
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongyi Zhou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jinxi Wang
- Department of Medicine, University of Iowa, 200 Hawkins Drive, CBRB 2270B, Iowa City, IA 52242, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiliang Zhou
- Department of Medicine, University of Iowa, 200 Hawkins Drive, CBRB 2270B, Iowa City, IA 52242, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
13
|
Farnung J, Tolmachova KA, Bode JW. Installation of electrophiles onto the C-terminus of recombinant ubiquitin and ubiquitin-like proteins. Chem Sci 2022; 14:121-129. [PMID: 36605735 PMCID: PMC9769091 DOI: 10.1039/d2sc04279g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin and related ubiquitin-like proteins (Ubls) influence a variety of cellular pathways including protein degradation and response to viral infections. The chemical interrogation of these complex enzymatic cascades relies on the use of tailored activity-based probes (ABPs). Herein, we report the preparation of ABPs for ubiquitin, NEDD8, SUMO2 and ISG15 by selective acyl hydrazide modification. Acyl hydrazides of Ubls are readily accessible by direct hydrazinolysis of Ubl-intein fusions. The suppressed pK a and superior nucleophilicity of the acyl hydrazides enables their selective modification at acidic pH with carboxylic acid anhydrides. The modification proceeds rapidly and efficiently, and does not require chromatographic purification or refolding of the probes. We modified Ubl-NHNH2 with various thiol-reactive electrophiles that couple selectively with E2s and DUBs. The ease of modification enables the rapid generation and screening of ubiquitin probes with various C-terminal truncations and warheads for the selection of the most suitable combination for a given E2 or DUB.
Collapse
Affiliation(s)
- Jakob Farnung
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH ZürichZürich 8093Switzerland
| | - Kateryna A. Tolmachova
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH ZürichZürich 8093Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH ZürichZürich 8093Switzerland
| |
Collapse
|
14
|
Gorka M, Magnussen HM, Kulathu Y. Chemical biology tools to study Deubiquitinases and Ubl proteases. Semin Cell Dev Biol 2022; 132:86-96. [PMID: 35216867 DOI: 10.1016/j.semcdb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
The reversible attachment of ubiquitin (Ub) and ubiquitin like modifiers (Ubls) to proteins are crucial post-translational modifications (PTMs) for many cellular processes. Not only do cells possess hundreds of ligases to mediate substrate specific modification with Ub and Ubls, but they also have a repertoire of more than 100 dedicated enzymes for the specific removal of ubiquitin (Deubiquitinases or DUBs) and Ubl modifications (Ubl-specific proteases or ULPs). Over the past two decades, there has been significant progress in our understanding of how DUBs and ULPs function at a molecular level and many novel DUBs and ULPs, including several new DUB classes, have been identified. Here, the development of chemical tools that can bind and trap active DUBs has played a key role. Since the introduction of the first activity-based probe for DUBs in 1986, several innovations have led to the development of more sophisticated tools to study DUBs and ULPs. In this review we discuss how chemical biology has led to the development of activity-based probes and substrates that have been invaluable to the study of DUBs and ULPs. We summarise our currently available toolbox, highlight the main achievements and give an outlook of how these tools may be applied to gain a better understanding of the regulatory mechanisms of DUBs and ULPs.
Collapse
Affiliation(s)
- Magdalena Gorka
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helge Magnus Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
15
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
16
|
Meszka I, Polanowska J, Xirodimas DP. Mixed in chains: NEDD8 polymers in the Protein Quality Control system. Semin Cell Dev Biol 2022; 132:27-37. [PMID: 35078718 DOI: 10.1016/j.semcdb.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
Post-translational modification of proteins with the Ubiquitin-like molecule NEDD8 is a critical regulatory mechanism for several biological processes and a potential target for therapeutic intervention. The role of NEDD8 has been mainly characterised through its modification as single moiety on the cullin family of proteins and control of Cullin-Ring-Ligases, but also on non-cullin substrates. In addition to monoNEDDylation, recent studies have now revealed that NEDD8 can also generate diverse polymers. This is either through modification of the 9 available lysines in NEDD8 and the formation of polyNEDD8 chains, or NEDDylation of Ubiquitin and SUMO-2 for the generation of hybrid NEDD8 chains. Here, we review recent findings that characterise the formation of NEDD8 polymers under distinct modes of protein NEDDylation (canonical/atypical) and their potential role as regulatory signals of the proteotoxic stress response and the Protein Quality Control system.
Collapse
Affiliation(s)
- Igor Meszka
- CRBM, Univ. Montpellier, CNRS, Montpellier, France
| | | | | |
Collapse
|
17
|
Elu N, Osinalde N, Ramirez J, Presa N, Rodriguez JA, Prieto G, Mayor U. Identification of substrates for human deubiquitinating enzymes (DUBs): An up-to-date review and a case study for neurodevelopmental disorders. Semin Cell Dev Biol 2022; 132:120-131. [PMID: 35042675 DOI: 10.1016/j.semcdb.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Similar to the reversal of kinase-mediated protein phosphorylation by phosphatases, deubiquitinating enzymes (DUBs) oppose the action of E3 ubiquitin ligases and reverse the ubiquitination of proteins. A total of 99 human DUBs, classified in 7 families, allow in this way for a precise control of cellular function and homeostasis. Ubiquitination regulates a myriad of cellular processes, and is altered in many pathological conditions. Thus, ubiquitination-regulating enzymes are increasingly regarded as potential candidates for therapeutic intervention. In this context, given the predicted easier pharmacological control of DUBs relative to E3 ligases, a significant effort is now being directed to better understand the processes and substrates regulated by each DUB. Classical studies have identified specific DUB substrate candidates by traditional molecular biology techniques in a case-by-case manner. Lately, single experiments can identify thousands of ubiquitinated proteins at a specific cellular context and narrow down which of those are regulated by a given DUB, thanks to the development of new strategies to isolate and enrich ubiquitinated material and to improvements in mass spectrometry detection capabilities. Here we present an overview of both types of studies, discussing the criteria that, in our view, need to be fulfilled for a protein to be considered as a high-confidence substrate of a given DUB. Applying these criteria, we have manually reviewed the relevant literature currently available in a systematic manner, and identified 650 high-confidence substrates of human DUBs. We make this information easily accessible to the research community through an updated version of the DUBase website (https://ehubio.ehu.eus/dubase/). Finally, in order to illustrate how this information can contribute to a better understanding of the physiopathological role of DUBs, we place a special emphasis on a subset of these enzymes that have been associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
18
|
The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int J Mol Sci 2022; 23:ijms23073480. [PMID: 35408841 PMCID: PMC8999128 DOI: 10.3390/ijms23073480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.
Collapse
|
19
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
20
|
Abstract
Selective degradation of protein aggregates by macroautophagy/autophagy is an essential homeostatic process of safeguarding cells from the effects of proteotoxicity. Among the ubiquitin-like proteins, NEDD8 conjugation to misfolded proteins is prominent in stress-induced protein aggregates, albeit the function of neddylation in autophagy is unclear. Here, we report that polyneddylation functions as a post-translational modification for autophagic degradation of proteotoxic-stress induced protein aggregates. We also show that HYPK functions as an autophagy receptor in the polyneddylation-dependent aggrephagy. The scaffolding function of HYPK is facilitated by its C-terminal ubiquitin-associated domain and N-terminal tyrosine-type LC3-interacting region which bind to NEDD8 and LC3 respectively. Both NEDD8 and HYPK are positive modulators of basal and proteotoxicity-induced autophagy, leading to protection of cells from protein aggregates, such as aggregates of mutant HTT exon 1. Thus, we propose an indispensable and additive role of neddylation and HYPK in clearance of protein aggregates by autophagy, resulting in cytoprotective effect during proteotoxic stress.Abbreviations: ATG5, autophagy related 5; ATG12, autophagy related 12; ATG14, autophagy related 14; BECN1, beclin 1; CBL, casitas B-lineage lymphoma; CBLB, Cbl proto-oncogene B; GABARAP, GABA type A receptor-associated protein; GABARAPL1, GABA type A receptor associated protein like 1; GABARAPL2, GABA type A receptor associated protein like 2; GFP, green fluorescent protein; HTT, huntingtin; HTT97Q exon 1, huntingtin 97-glutamine exon 1; HUWE1, HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; HYPK, huntingtin interacting protein K; IgG, immunoglobulin G; IMR-32, Institute for Medical Research-32; KD, knockdown; Kd, dissociation constant; LAMP1, lysosomal associated membrane protein 1; LIR, LC3 interacting region; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MAP1LC3A/LC3A, microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MARK1, microtubule affinity regulating kinase 1; MARK2, microtubule affinity regulating kinase 2; MARK3, microtubule affinity regulating kinase 3; MARK4, microtubule affinity regulating kinase 4; MCF7, Michigan Cancer Foundation-7; MTOR, mechanistic target of rapamycin kinase; NAE1, NEDD8 activating enzyme E1 subunit 1; NBR1, NBR1 autophagy cargo receptor; NEDD8, NEDD8 ubiquitin like modifier; Ni-NTA, nickel-nitrilotriacetic acid; NUB1, negative regulator of ubiquitin like proteins 1; PIK3C3, phosphatidylinositol 3-kinase catalytic subunit type 3; PolyQ, poly-glutamine; PSMD8, proteasome 26S subunit, non-ATPase 8; RAD23A, RAD23 homolog A, nucleotide excision repair protein; RAD23B, RAD23 homolog B, nucleotide excision repair protein; RFP, red fluorescent protein; RPS27A, ribosomal protein S27a; RSC1A1, regulator of solute carriers 1; SNCA, synuclein alpha; SIK1, salt inducible kinase 1; siRNA, small interfering ribonucleic acid; SOD1, superoxide dismutase 1; SPR, surface plasmon resonance; SQSTM1, sequestosome 1; SUMO1, small ubiquitin like modifier 1; TAX1BP1, Tax1 binding protein 1; TDRD3, tudor domain containing 3; TNRC6C, trinucleotide repeat containing adaptor 6C; TOLLIP, toll interacting protein; TUBA, tubulin alpha; TUBB, tubulin beta class I; UBA, ubiquitin-associated; UBA1, ubiquitin like modifier activating enzyme 1; UBA5, ubiquitin like modifier activating enzyme 5; UBAC1, UBA domain containing 1; UBAC2, UBA domain containing 2; UBAP1, ubiquitin associated protein 1; UBAP2, ubiquitin associated protein 2; UBASH3B, ubiquitin associated and SH3 domain containing B; UBD/FAT10, ubiquitin D; UBE2K, ubiquitin conjugating enzyme E2 K; UBLs, ubiquitin-like proteins; UBL7, ubiquitin like 7; UBQLN1, ubiquilin 1; UBQLN2, ubiquilin 2; UBQLN3, ubiquilin 3; UBQLN4, ubiquilin 4; UBXN1, UBX domain protein 1; ULK1, unc-51 like autophagy activating kinase 1; URM1, ubiquitin related modifier 1; USP5, ubiquitin specific peptidase 5; USP13, ubiquitin specific peptidase 13; VPS13D, vacuolar protein sorting 13 homolog D.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
21
|
Stuber K, Schneider T, Werner J, Kovermann M, Marx A, Scheffner M. Structural and functional consequences of NEDD8 phosphorylation. Nat Commun 2021; 12:5939. [PMID: 34642328 PMCID: PMC9020517 DOI: 10.1038/s41467-021-26189-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin (Ub) and Ub-like proteins (Ubls) such as NEDD8 are best known for their function as covalent modifiers of other proteins but they are also themselves subject to post-translational modifications including phosphorylation. While functions of phosphorylated Ub (pUb) have been characterized, the consequences of Ubl phosphorylation remain unclear. Here we report that NEDD8 can be phosphorylated at S65 - the same site as Ub - and that S65 phosphorylation affects the structural dynamics of NEDD8 and Ub in a similar manner. While both pUb and phosphorylated NEDD8 (pNEDD8) can allosterically activate the Ub ligase Parkin, they have different protein interactomes that in turn are distinct from those of unmodified Ub and NEDD8. Among the preferential pNEDD8 interactors are HSP70 family members and we show that pNEDD8 stimulates HSP70 ATPase activity more pronouncedly than unmodified NEDD8. Our findings highlight the general importance of Ub/NEDD8 phosphorylation and support the notion that the function of pUb/pNEDD8 does not require their covalent attachment to other proteins. Both ubiquitin and NEDD8 can be phosphorylated, but the biological role of NEDD8 phosphorylation remains unclear. Here, the authors identify similarities and differences of ubiquitin and NEDD8 phosphorylation, showing that phosphorylated NEDD8 has a distinct interactome and regulates HSP70 proteins.
Collapse
Affiliation(s)
- Katrin Stuber
- Dept. of Biology, University of Konstanz, Konstanz, Germany.,Dept. of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Tobias Schneider
- Dept. of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jill Werner
- Dept. of Biology, University of Konstanz, Konstanz, Germany.,Dept. of Chemistry, University of Konstanz, Konstanz, Germany
| | - Michael Kovermann
- Dept. of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Andreas Marx
- Dept. of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Martin Scheffner
- Dept. of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
22
|
Vijayasimha K, Dolan BP. The Many Potential Fates of Non-Canonical Protein Substrates Subject to NEDDylation. Cells 2021; 10:2660. [PMID: 34685640 PMCID: PMC8534235 DOI: 10.3390/cells10102660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) is a ubiquitin-like protein (UBL) whose canonical function involves binding to, and thus, activating Cullin-Ring finger Ligases (CRLs), one of the largest family of ubiquitin ligases in the eukaryotic cell. However, in recent years, several non-canonical protein substrates of NEDD8 have been identified. Here we attempt to review the recent literature regarding non-canonical NEDDylation of substrates with a particular focus on how the covalent modification of NEDD8 alters the protein substrate. Like much in the study of ubiquitin and UBLs, there are no clear and all-encompassing explanations to satisfy the textbooks. In some instances, NEDD8 modification appears to alter the substrates localization, particularly during times of stress. NEDDylation may also have conflicting impacts upon a protein's stability: some reports indicate NEDDylation may protect against degradation whereas others show NEDDylation can promote degradation. We also examine how many of the in vitro studies measuring non-canonical NEDDylation were conducted and compare those conditions to those which may occur in vivo, such as cancer progression. It is likely that the conditions used to study non-canonical NEDDylation are similar to some types of cancers, such as glioblastoma, colon and rectal cancers, and lung adenocarcinomas. Although the full outcomes of non-canonical NEDDylation remain unknown, our review of the literature suggests that researchers keep an open mind to the situations where this modification occurs and determine the functional impacts of NEDD8-modification to the specific substrates which they study.
Collapse
Affiliation(s)
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
23
|
Kim S, Hwang Y, Kang HC. A protocol to visualize cytosolic aggresome-like bodies using confocal microscopy. STAR Protoc 2021; 2:100674. [PMID: 34337443 PMCID: PMC8313748 DOI: 10.1016/j.xpro.2021.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin stress-induced NEDDylation leads to the formation of aggresome-like bodies (ALBs) in the perinuclear region of cells. Therefore, imaging analysis is essential for characterizing the biological phenotypes of ALBs. Here, we describe a protocol to monitor ALBs induced by ubiquitin stress using immunocytochemistry and to quantify cells containing ALBs. This optimized protocol details the use of readily available materials and reagents and can be applied to explore diverse molecules involved in stress-induced ALBs. For complete details on the use and execution of this protocol, please refer to Kim et al. (2021). ALBs induced by ubiquitin stress can be monitored using immunocytochemistry Diverse types of aggresomes in cells can be quantified
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
- Corresponding author
| | - Yiseul Hwang
- Department of Physiology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
- Corresponding author
| |
Collapse
|
24
|
Chen DD, Jiang JY, Lu LF, Zhang C, Zhou XY, Li ZC, Zhou Y, Li S. Zebrafish Uba1 Degrades IRF3 through K48-Linked Ubiquitination to Inhibit IFN Production. THE JOURNAL OF IMMUNOLOGY 2021; 207:512-522. [PMID: 34193603 DOI: 10.4049/jimmunol.2100125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023]
Abstract
Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; .,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
25
|
The HSP70 chaperone as sensor of the NEDD8 cycle upon DNA damage. Biochem Soc Trans 2021; 49:1075-1083. [PMID: 34156462 DOI: 10.1042/bst20200381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Molecular chaperones are essential components of the protein quality control system and maintenance of homeostasis. Heat Shock Protein 70 (HSP70), a highly evolutionarily conserved family of chaperones is a key regulator of protein folding, oligomerisation and prevents the aggregation of misfolded proteins. HSP70 chaperone function depends on the so-called 'HSP70-cycle', where HSP70 interacts with and is released from substrates via ATP hydrolysis and the assistance of HSP70 co-factors/co-chaperones, which also provide substrate specificity. The identification of regulatory modules for HSP70 allows the elucidation of HSP70 specificity and target selectivity. Here, we discuss how the HSP70 cycle is functionally linked with the cycle of the Ubiquitin-like molecule NEDD8. Using as an example the DNA damage response, we present a model where HSP70 acts as a sensor of the NEDD8 cycle. The NEDD8 cycle acts as a regulatory module of HSP70 activity, where conversion of poly-NEDD8 chains into mono-NEDD8 upon DNA damage activates HSP70, facilitating the formation of the apoptosome and apoptosis execution.
Collapse
|
26
|
Vijayasimha K, Tran MV, Leestemaker-Palmer AL, Dolan BP. Direct Conjugation of NEDD8 to the N-Terminus of a Model Protein Can Induce Degradation. Cells 2021; 10:854. [PMID: 33918652 PMCID: PMC8069691 DOI: 10.3390/cells10040854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
While the role of ubiquitin in protein degradation is well established, the role of other ubiquitin-like proteins (UBLs) in protein degradation is less clear. Neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8) is the UBL with the highest level of amino acids identified when compared to ubiquitin. Here we tested if the N-terminal addition of NEDD8 to a protein of interest could lead to degradation. Mutation of critical glycine residues required for normal NEDD8 processing resulted in a non-cleavable fusion protein that was rapidly degraded within the cells by both the proteasome and autophagy. Both degradation pathways were dependent on a functional ubiquitin-conjugation system as treatment with MLN7243 increased levels of non-cleavable NEDD8-GFP. The degradation of non-cleavable, N-terminal NEDD8-GFP was not due to a failure of GFP folding as different NEDD8-GFP constructs with differing abilities to fold and fluoresce were similarly degraded. Though the fusion of NEDD8 to a protein resulted in degradation, treatment of cells with MLN4924, an inhibitor of the E1 activating enzyme for NEDD8, failed to prevent degradation of other destabilized substrates. Taken together these data suggest that under certain conditions, such as the model system described here, the covalent linkage of NEDD8 to a protein substrate may result in the target proteins degradation.
Collapse
Affiliation(s)
| | | | | | - Brian P. Dolan
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (K.V.); (M.V.T.); (A.L.L.-P.)
| |
Collapse
|
27
|
Harshuk-Shabso D, Castel N, Israeli R, Harari S, Pick E. Saccharomyces cerevisiae as a Toolkit for COP9 Signalosome Research. Biomolecules 2021; 11:biom11040497. [PMID: 33806190 PMCID: PMC8065851 DOI: 10.3390/biom11040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 11/16/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved eukaryotic multi-subunit enzyme, regulating cullin RING ligase activities and accordingly, substrate ubiquitination and degradation. We showed that the CSN complex of Saccharomyces cerevisiae that is deviated in subunit composition and in sequence homology harbors a highly conserved cullin deneddylase enzymatic core complex. We took advantage of the non-essentiality of the S. cerevisiae CSN-NEDD8/Rub1 axis, together with the enzyme-substrate cross-species activity, to develop a sensitive fluorescence readout assay, suitable for biochemical assessment of cullin deneddylation by CSNs from various origins. We also demonstrated that the yeast catalytic subunit, CSN5/Jab1, is targeted by an inhibitor that was selected for the human orthologue. Treatment of yeast by the inhibitor led to the accumulation of neddylated cullins and the formation of reactive oxygen species. Overall, our data revealed S. cerevisiae as a general platform that can be used for studies of CSN deneddylation and for testing the efficacy of selected CSN inhibitors.
Collapse
Affiliation(s)
- Dana Harshuk-Shabso
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel;
| | - Noam Castel
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel;
| | - Ran Israeli
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 36006, Israel; (R.I.); (S.H.)
| | - Sheri Harari
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 36006, Israel; (R.I.); (S.H.)
| | - Elah Pick
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel;
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel;
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 36006, Israel; (R.I.); (S.H.)
- Correspondence:
| |
Collapse
|
28
|
Protein feature analysis of heat shock induced ubiquitination sites reveals preferential modification site localization. J Proteomics 2021; 239:104182. [PMID: 33705978 DOI: 10.1016/j.jprot.2021.104182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Protein aggregation is indicative of failing protein quality control systems. These systems are responsible for the refolding or degradation of aberrant and misfolded proteins. Heat stress can cause proteins to misfold, triggering cellular responses including a marked increase in the ubiquitination of proteins. This response has been characterized in yeast, however more studies are needed within mammalian cells. Herein, we examine proteins that become ubiquitinated during heat shock in human tissue culture cells using diGly enrichment coupled with mass spectrometry. A majority of these proteins are localized in the nucleus or cytosol. Proteins which are conjugated under stress display longer sequence lengths, more interaction partners, and more hydrophobic patches than controls but do not show lower melting temperatures. Furthermore, heat-induced conjugation sites occur less frequently in disordered regions and are closer to hydrophobic patches than other ubiquitination sites; perhaps providing novel insight into the molecular mechanism mediating this response. Nuclear and cytosolic pools of modified proteins appear to have different protein features. Using a pulse-SILAC approach, we found that both long-lived and newly-synthesized proteins are conjugated under stress. Modified long-lived proteins are predominately nuclear and were distinct from newly-synthesized proteins, indicating that different pathways may mediate the heat-induced increase of polyubiquitination. SIGNIFICANCE: The maintenance of protein homeostasis requires a balance of protein synthesis, folding, and degradation. Under stress conditions, the cell must rapidly adapt by increasing its folding capacity to eliminate aberrant proteins. A major pathway for proteolysis is mediated by the ubiquitin proteasome system. While increased ubiquitination after heat stress was observed over 30 years ago, it remains unclear which proteins are conjugated during heat shock in mammalian cells and by what means this conjugation occurs. In this study, we combined SILAC-based mass spectrometry with computational analyses to reveal features associated to proteins ubiquitinated while under heat shock. Interestingly, we found that conjugation sites induced by the stress are less often located within disordered regions and more often located near hydrophobic patches. Our study showcases how proteomics can reveal distinct feature associated to a cohort of proteins that are modified post translationally and how the ubiquitin conjugation sites are preferably selected in these conditions. Our work opens a new path for delineating the molecular mechanisms leading to the heat stress response and the regulation of protein homeostasis.
Collapse
|
29
|
Kim S, Kwon M, Hwang Y, Yoon J, Park S, Kang HC. Stress-induced NEDDylation promotes cytosolic protein aggregation through HDAC6 in a p62-dependent manner. iScience 2021; 24:102146. [PMID: 33665565 PMCID: PMC7903351 DOI: 10.1016/j.isci.2021.102146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Stress-coupled NEDDylation potentially regulates the aggregation of nuclear proteins, which could protect the nuclear ubiquitin-proteasome system from proteotoxic stress. However, it remains unclear how NEDDylation controls protein-aggregation responses to diverse stress conditions. Here, we identified HDAC6 as a direct NEDD8-binding partner that regulates the formation of aggresome-like bodies (ALBs) containing NEDDylated cytosolic protein aggregates during ubiquitin stress. HDAC6 colocalizes with stress-induced ALBs, and HDAC6 inhibition suppresses ALBs formation, but not stress-induced NEDDylation, suggesting that HDAC6 carries NEDDylated-proteins to generate ALBs. Then, we monitored the ALBs-associated proteostasis network and found that p62 directly controls ALBs formation as an acceptor of NEDDylated cytosolic aggregates. Interestingly, we also observed that ALBs are highly condensed in chloroquine-treated cells with impaired autophagic flux, indicating that ALBs rely on autophagy. Collectively, our data suggest that NEDD8, HDAC6, and p62 are involved in the management of proteotoxic stress by forming cytosolic ALBs coupled to the aggresome-autophagy flux. NEDD8 directly binds to HDAC6 and regulates the formation of aggresome-like body (ALB) HDAC6 carries NEDDylated cytosolic protein aggregates into ALBs under ubiquitin stress p62 directly controls ALBs formation as an acceptor of NEDDylated cytosolic aggregates The NEDD8-HDAC6-p62 axis controls proteostasis by forming ALB-coupled autophagy
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Mira Kwon
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yiseul Hwang
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Junghyun Yoon
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sangwook Park
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| |
Collapse
|
30
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
31
|
Lobato-Gil S, Heidelberger JB, Maghames C, Bailly A, Brunello L, Rodriguez MS, Beli P, Xirodimas DP. Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation. Cell Rep 2021; 34:108635. [PMID: 33472076 DOI: 10.1016/j.celrep.2020.108635] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions.
Collapse
Affiliation(s)
| | | | | | - Aymeric Bailly
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | | | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS, Toulouse, France; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany.
| | | |
Collapse
|
32
|
Li J, Zou J, Littlejohn R, Liu J, Su H. Neddylation, an Emerging Mechanism Regulating Cardiac Development and Function. Front Physiol 2020; 11:612927. [PMID: 33391028 PMCID: PMC7773599 DOI: 10.3389/fphys.2020.612927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rodney Littlejohn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
33
|
Functional impacts of the ubiquitin-proteasome system on DNA damage recognition in global genome nucleotide excision repair. Sci Rep 2020; 10:19704. [PMID: 33184426 PMCID: PMC7665181 DOI: 10.1038/s41598-020-76898-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6-4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.
Collapse
|
34
|
Zou T, Zhang J. Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J 2020; 288:3884-3912. [PMID: 33025631 DOI: 10.1111/febs.15584] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Neddylation is one type of protein post-translational modification by conjugating a ubiquitin-like protein neural precursor cell-expressed developmentally downregulated protein 8 to substrate proteins via a cascade involving E1, E2, and E3 enzymes. The best-characterized substrates of neddylation are cullins, essential components of cullin-RING E3 ubiquitin-ligase complexes. The discovery of noncullin neddylation targets indicates that neddylation may have diverse biological functions. Indeed, neddylation has been implicated in various cellular processes including cell cycle progression, metabolism, immunity, and tumorigenesis. Here, we summarized the reported neddylation substrates and also discuss the functions of neddylation in the immune system and metabolism.
Collapse
Affiliation(s)
- Tao Zou
- Beijing Institute of Brain Sciences, China
| | | |
Collapse
|
35
|
Pick E. The necessity of NEDD8/Rub1 for vitality and its association with mitochondria-derived oxidative stress. Redox Biol 2020; 37:101765. [PMID: 33099217 PMCID: PMC7582104 DOI: 10.1016/j.redox.2020.101765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Access of molecular oxygen to the respiratory electron transport chain at the mitochondria costs in the generation of reactive oxygen-derived species (ROS). ROS induces progressive damage to macromolecules in all living cells, hence, rapid defense mechanisms to maintain cellular redox homeostasis are vital. NEDD8/Rub1 is a highly conserved ubiquitin-like modifier that has recently been identified as a key regulator of cellular redox homeostasis. In this review, I will present NEDD8/Rub1, its modification cascade of enzymes, substrates and hydrolases. After introduction, I will show that the NEDD8/Rub1 pathway is linked with mitochondria physiology, namely, oxidative stress. In the rest of the review, I will approach the Ascomycota phylum of the kingdom fungi instrumentally, to present existing links between NEDD8/Rub1 vitality and the aerobic lifestyle of model species belonging to three subphyla: Saccharomycotina (S. cerevisiae and C. albicans), Pezizomycotina (A. nidulans and N. crassa), and Taphrinomycotina (S. pombe). NEDD8/Rub1 is a key regulator of cellular redox homeostasis. Ascomycota species that produce mitochondria-derived ROS during glycolysis require NEDD8/Rub1for viability. NEDD8/Rub1 essentiality correlates with the existence of NEDP1 in the organism genome.
Collapse
Affiliation(s)
- Elah Pick
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, 3600600, Israel.
| |
Collapse
|
36
|
Yao J, Liang X, Liu Y, Zheng M. Neddylation: A Versatile Pathway Takes on Chronic Liver Diseases. Front Med (Lausanne) 2020; 7:586881. [PMID: 33195347 PMCID: PMC7604315 DOI: 10.3389/fmed.2020.586881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Neddylation is a ubiquitin-like posttranslational modification that conjugates neural precursor cell expressed developmentally downregulated-8 (Nedd8) to specific substrates for regulation of protein activity. In light of current researches, the neddylation pathway is aberrant in the pathogenesis of many diseases. In our review, we summarize the versatile roles of neddylation in chronic liver diseases (CLDs). CLDs are one of the leading causes of chronic disease-associated deaths worldwide. There are diverse etiologic agents causing CLDs, mainly including hepatitis B virus (HBV) infection, nonalcoholic fatty liver disease (NAFLD), chronic exposure to alcohol or drugs, and autoimmune causes. So far, however, there remains a paucity of effective therapeutic approach to CLDs. In this review, we summarized the role of the neddylation pathway which runs through the chronic hepatitis B/NAFLD-liver fibrosis-cirrhosis-hepatocellular carcinoma (HCC) axis, a canonical pattern in the process of CLD development and progression. The dysregulation of neddylation may provide a better understanding of CLD pathology and even a novel therapeutic strategy. Correspondingly, inhibiting neddylation via MLN4924, a small molecule compound targeting NEDD8-activating enzyme (NAE), can potently alleviate CLD progression and improve the outcome. On this basis, profiling and characterization of the neddylation pathway can provide new insights into the CLD pathology as well as novel therapeutic strategies, independently of the etiology of CLD.
Collapse
Affiliation(s)
- Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Liang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Bailly AP, Perrin A, Serrano-Macia M, Maghames C, Leidecker O, Trauchessec H, Martinez-Chantar ML, Gartner A, Xirodimas DP. The Balance between Mono- and NEDD8-Chains Controlled by NEDP1 upon DNA Damage Is a Regulatory Module of the HSP70 ATPase Activity. Cell Rep 2020; 29:212-224.e8. [PMID: 31577950 PMCID: PMC6899524 DOI: 10.1016/j.celrep.2019.08.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin and ubiquitin-like chains are finely balanced by conjugating and de-conjugating enzymes. Alterations in this balance trigger the response to stress conditions and are often observed in pathologies. How such changes are detected is not well understood. We identify the HSP70 chaperone as a sensor of changes in the balance between mono- and poly-NEDDylation. Upon DNA damage, the induction of the de-NEDDylating enzyme NEDP1 restricts the formation of NEDD8 chains, mainly through lysines K11/K48. This promotes APAF1 oligomerization and apoptosis induction, a step that requires the HSP70 ATPase activity. HSP70 binds to NEDD8, and, in vitro, the conversion of NEDD8 chains into mono-NEDD8 stimulates HSP70 ATPase activity. This effect is independent of NEDD8 conjugation onto substrates. The study indicates that the NEDD8 cycle is a regulatory module of HSP70 function. These findings may be important in tumorigenesis, as we find decreased NEDP1 levels in hepatocellular carcinoma with concomitant accumulation of NEDD8 conjugates. Restriction of NEDD8 chains by NEDP1 is required for DNA damage-induced apoptosis The HSP70 chaperone is a sensor of the balance between mono- and NEDD8 chains Mono-NEDD8 stimulates HSP70 activity, which allows the formation of the apoptosome NEDP1 levels are downregulated in mouse hepatocellular carcinoma
Collapse
Affiliation(s)
- Aymeric P Bailly
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France.
| | - Aurelien Perrin
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Marina Serrano-Macia
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Chantal Maghames
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Orsolya Leidecker
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Helene Trauchessec
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - M L Martinez-Chantar
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
38
|
The COP9 Signalosome: A Multi-DUB Complex. Biomolecules 2020; 10:biom10071082. [PMID: 32708147 PMCID: PMC7407660 DOI: 10.3390/biom10071082] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The COP9 signalosome (CSN) is a signaling platform controlling the cellular ubiquitylation status. It determines the activity and remodeling of ~700 cullin-RING ubiquitin ligases (CRLs), which control more than 20% of all ubiquitylation events in cells and thereby influence virtually any cellular pathway. In addition, it is associated with deubiquitylating enzymes (DUBs) protecting CRLs from autoubiquitylation and rescuing ubiquitylated proteins from degradation. The coordination of ubiquitylation and deubiquitylation by the CSN is presumably important for fine-tuning the precise formation of defined ubiquitin chains. Considering its intrinsic DUB activity specific for deneddylation of CRLs and belonging to the JAMM family as well as its associated DUBs, the CSN represents a multi-DUB complex. Two CSN-associated DUBs, the ubiquitin-specific protease 15 (USP15) and USP48 are regulators in the NF-κB signaling pathway. USP15 protects CRL1β-TrCP responsible for IκBα ubiquitylation, whereas USP48 stabilizes the nuclear pool of the NF-κB transcription factor RelA upon TNF stimulation by counteracting CRL2SOCS1. Moreover, the CSN controls the neddylation status of cells by its intrinsic DUB activity and by destabilizing the associated deneddylation enzyme 1 (DEN1). Thus, the CSN is a master regulator at the intersection between ubiquitylation and neddylation.
Collapse
|
39
|
Santonico E. Old and New Concepts in Ubiquitin and NEDD8 Recognition. Biomolecules 2020; 10:biom10040566. [PMID: 32272761 PMCID: PMC7226360 DOI: 10.3390/biom10040566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications by ubiquitin and ubiquitin-like proteins (Ubls) have known roles in a myriad of cellular processes. Ubiquitin- and Ubl-binding domains transmit the information conferred by these post-translational modifications by recognizing functional surfaces and, when present, different chain structures. Numerous domains binding to ubiquitin have been characterized and their structures solved. Analogously, motifs selectively interacting with SUMO (small ubiquitin-like modifier) have been identified in several proteins and their role in SUMO-dependent processes investigated. On the other hand, proteins that specifically recognize other Ubl modifications are known only in a few cases. The high sequence identity between NEDD8 and ubiquitin has made the identification of specific NEDD8-binding domains further complicated due to the promiscuity in the recognition by several ubiquitin-binding domains. Two evolutionarily related domains, called CUBAN (cullin-binding domain associating with NEDD8) and CoCUN (cousin of CUBAN), have been recently described. The CUBAN binds monomeric NEDD8 and neddylated cullins, but it also interacts with di-ubiquitin chains. Conversely, the CoCUN domain only binds ubiquitin. CUBAN and CoCUN provide an intriguing example of how nature solved the issue of promiscuity versus selectivity in the recognition of these two highly related molecules. The structural information available to date suggests that the ancestor of CUBAN and CoCUN was a three-helix bundle domain that diversified in KHNYN (KH and NYN domain-containing) and N4BP1 (NEDD4-binding protein-1) by acquiring different features. Indeed, these domains diverged towards two recognition modes, that recall respectively the electrostatic interaction utilized by the E3-ligase RBX1/2 in the interaction with NEDD8, and the hydrophobic features described in the recognition of ubiquitin by CUE (coupling ubiquitin conjugation to ER degradation) domains. Intriguingly, CUBAN and CoCUN domains are only found in KHNYN and N4BP1, respectively, both proteins belonging to the PRORP family whose members are characterized by the combination of protein modules involved in RNA metabolism with domains mediating ubiquitin/NEDD8 recognition. This review recapitulates the current knowledge and recent findings of CUBAN and CoCUN domains and the proteins containing them.
Collapse
Affiliation(s)
- Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| |
Collapse
|
40
|
McGrail DJ, Garnett J, Yin J, Dai H, Shih DJH, Lam TNA, Li Y, Sun C, Li Y, Schmandt R, Wu JY, Hu L, Liang Y, Peng G, Jonasch E, Menter D, Yates MS, Kopetz S, Lu KH, Broaddus R, Mills GB, Sahni N, Lin SY. Proteome Instability Is a Therapeutic Vulnerability in Mismatch Repair-Deficient Cancer. Cancer Cell 2020; 37:371-386.e12. [PMID: 32109374 PMCID: PMC7337255 DOI: 10.1016/j.ccell.2020.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
Deficient DNA mismatch repair (dMMR) induces a hypermutator phenotype that can lead to tumorigenesis; however, the functional impact of the high mutation burden resulting from this phenotype remains poorly explored. Here, we demonstrate that dMMR-induced destabilizing mutations lead to proteome instability in dMMR tumors, resulting in an abundance of misfolded protein aggregates. To compensate, dMMR cells utilize a Nedd8-mediated degradation pathway to facilitate clearance of misfolded proteins. Blockade of this Nedd8 clearance pathway with MLN4924 causes accumulation of misfolded protein aggregates, ultimately inducing immunogenic cell death in dMMR cancer cells. To leverage this immunogenic cell death, we combined MLN4924 treatment with PD1 inhibition and found the combination was synergistic, significantly improving efficacy over either treatment alone.
Collapse
Affiliation(s)
- Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jeannine Garnett
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David J H Shih
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Nguyen Anh Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chaoyang Sun
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongsheng Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosemarie Schmandt
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Yuan Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yulong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melinda S Yates
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Russell Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans 2020; 47:1867-1879. [PMID: 31845722 PMCID: PMC6925526 DOI: 10.1042/bst20190527] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
Protein modification by ubiquitin is one of the most versatile posttranslational regulations and counteracted by almost 100 deubiquitinating enzymes (DUBs). USP8 was originally identified as a growth regulated ubiquitin-specific protease and is like many other DUBs characterized by its multidomain architecture. Besides the catalytic domain, specific protein-protein interaction modules were characterized which contribute to USP8 substrate recruitment, regulation and targeting to distinct protein complexes. Studies in mice and humans impressively showed the physiological relevance and non-redundant function of USP8 within the context of the whole organism. USP8 knockout (KO) mice exhibit early embryonic lethality while induced deletion in adult animals rapidly causes lethal liver failure. Furthermore, T-cell specific ablation disturbs T-cell development and function resulting in fatal autoimmune inflammatory bowel disease. In human patients, somatic mutations in USP8 were identified as the underlying cause of adrenocorticotropic hormone (ACTH) releasing pituitary adenomas causing Cushing's disease (CD). Here we provide an overview of the versatile molecular, cellular and pathology associated function and regulation of USP8 which appears to depend on specific protein binding partners, substrates and the cellular context.
Collapse
|
42
|
A Quantitative Genetic Interaction Map of HIV Infection. Mol Cell 2020; 78:197-209.e7. [PMID: 32084337 DOI: 10.1016/j.molcel.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/16/2022]
Abstract
We have developed a platform for quantitative genetic interaction mapping using viral infectivity as a functional readout and constructed a viral host-dependency epistasis map (vE-MAP) of 356 human genes linked to HIV function, comprising >63,000 pairwise genetic perturbations. The vE-MAP provides an expansive view of the genetic dependencies underlying HIV infection and can be used to identify drug targets and study viral mutations. We found that the RNA deadenylase complex, CNOT, is a central player in the vE-MAP and show that knockout of CNOT1, 10, and 11 suppressed HIV infection in primary T cells by upregulating innate immunity pathways. This phenotype was rescued by deletion of IRF7, a transcription factor regulating interferon-stimulated genes, revealing a previously unrecognized host signaling pathway involved in HIV infection. The vE-MAP represents a generic platform that can be used to study the global effects of how different pathogens hijack and rewire the host during infection.
Collapse
|
43
|
Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nat Struct Mol Biol 2020; 27:210-220. [PMID: 32015554 DOI: 10.1038/s41594-019-0370-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023]
Abstract
Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin-RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-εGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization.
Collapse
|
44
|
Pérez Berrocal DA, Witting KF, Ovaa H, Mulder MPC. Hybrid Chains: A Collaboration of Ubiquitin and Ubiquitin-Like Modifiers Introducing Cross-Functionality to the Ubiquitin Code. Front Chem 2020; 7:931. [PMID: 32039151 PMCID: PMC6987259 DOI: 10.3389/fchem.2019.00931] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
The Ubiquitin CODE constitutes a unique post-translational modification language relying on the covalent attachment of Ubiquitin (Ub) to substrates, with Ub serving as the minimum entity to generate a message that is translated into different cellular pathways. The creation of this message is brought about by the dedicated action of writers, erasers, and readers of the Ubiquitin CODE. This CODE is greatly expanded through the generation of polyUb chains of different architectures on substrates thus regulating their fate. Through additional post-translational modification by Ub-like proteins (UbL), hybrid Ub/UbL chains, which either alter the originally encrypted message or encode a completely new one, are formed. Hybrid Ub/UbL chains are generated under both stress or physiological conditions and seem to confer improved specificity and affinity toward their cognate receptors. In such a manner, their formation must play a specific, yet still undefined role in cellular signaling and thus understanding the UbCODE message is crucial. Here, we discuss the evidence for the existence of hybrid Ub/UbL chains in addition to the current understanding of its biology. The modification of Ub by another UbL complicates the deciphering of the spatial and temporal order of events warranting the development of a hybrid chain toolbox. We discuss this unmet need and expand upon the creation of tailored tools adapted from our previously established toolkit for the Ubiquitin Proteasome System to specifically target these hybrid Ub/UbL chains.
Collapse
Affiliation(s)
- David A Pérez Berrocal
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Katharina F Witting
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| |
Collapse
|
45
|
Cannito S, Foglia B, Villano G, Turato C, C Delgado T, Morello E, Pin F, Novo E, Napione L, Quarta S, Ruvoletto M, Fasolato S, Zanus G, Colombatto S, Lopitz-Otsoa F, Fernández-Ramos D, Bussolino F, Sutti S, Albano E, Martínez-Chantar ML, Pontisso P, Parola M. SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -1α and -2α in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. Cancers (Basel) 2019; 11:1933. [PMID: 31817100 PMCID: PMC6966556 DOI: 10.3390/cancers11121933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
SerpinB3 (SB3) is a hypoxia and hypoxia-inducible factor (HIF)-2α-dependent cysteine-protease inhibitor up-regulated in hepatocellular carcinoma (HCC), released by cancer cells and able to stimulate proliferation and epithelial-to-mesenchymal-transition. Methods: In the study we employed transgenic and knock out SerpinB3 mice, liver cancer cell line, human HCC specimens, and mice receiving diethyl-nitrosamine (DEN) administration plus choline-deficient L-amino acid refined (CDAA) diet (DEN/CDAA protocol). Results: We provide detailed and mechanistic evidence that SB3 can act as a paracrine mediator able to affect the behavior of surrounding cells by differentially up-regulating, in normoxic conditions, HIF-1α and HIF-2α. SB3 acts by (i) up-regulating HIF-1α transcription, facilitating cell survival in a harsh microenvironment and promoting angiogenesis, (ii) increasing HIF-2α stabilization via direct/selective NEDDylation, promoting proliferation of liver cancer cells, and favoring HCC progression. Moreover (iii) the highest levels of NEDD8-E1 activating enzyme (NAE1) mRNA were detected in a subclass of HCC patients expressing the highest levels of HIF-2α transcripts; (iv) mice undergoing DEN/CDAA carcinogenic protocol showed a positive correlation between SB3 and HIF-2α transcripts with the highest levels of NAE1 mRNA detected in nodules expressing the highest levels of HIF-2α transcripts. Conclusions: These data outline either HIF-2α and NEDDylation as two novel putative therapeutic targets to interfere with the procarcinogenic role of SerpinB3 in the development of HCC.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Gianmarco Villano
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Cristian Turato
- Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy;
| | - Teresa C Delgado
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Elisabetta Morello
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Lucia Napione
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
- Laboratory of Vascular Oncology Candiolo Cancer Institute—FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy;
| | - Santina Quarta
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.Q.); (P.P.)
| | - Mariagrazia Ruvoletto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Silvano Fasolato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Giacomo Zanus
- Hepatobiliary Surgery, University of Padova, 35128 Padova, Italy;
| | | | - Fernando Lopitz-Otsoa
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - David Fernández-Ramos
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Federico Bussolino
- Laboratory of Vascular Oncology Candiolo Cancer Institute—FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy;
- Department of Oncology, University of Torino, 10125 Torino, Italy;
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Maria Luz Martínez-Chantar
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.Q.); (P.P.)
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| |
Collapse
|
46
|
Lachiondo-Ortega S, Mercado-Gómez M, Serrano-Maciá M, Lopitz-Otsoa F, Salas-Villalobos TB, Varela-Rey M, Delgado TC, Martínez-Chantar ML. Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. Cells 2019; 8:1575. [PMID: 31817258 PMCID: PMC6953033 DOI: 10.3390/cells8121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like (Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as novel and more effective therapeutic approaches. On this basis, in the last years, several studies have described how changes in the intermediates of the Ubl cascades are altered during liver fibrosis and how specific targeting of particular enzymes mediating these ubiquitin-like modifications can improve liver fibrosis, mainly in in vitro models of hepatic stellate cells, the main fibrogenic cell type, and in pre-clinical mouse models of liver fibrosis. The development of novel inhibitors of the Ubl modifications as well as novel strategies to assess the modified proteome can provide new insights into the overall role of Ubl modifications in liver fibrosis.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | | | - Tanya B Salas-Villalobos
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 66450, Mexico;
| | - Marta Varela-Rey
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Teresa C. Delgado
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| |
Collapse
|
47
|
Li J, Johnson JA, Su H. Ubiquitin and Ubiquitin-like proteins in cardiac disease and protection. Curr Drug Targets 2019; 19:989-1002. [PMID: 26648080 DOI: 10.2174/1389450117666151209114608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/01/2015] [Indexed: 01/10/2023]
Abstract
Post-translational modification represents an important mechanism to regulate protein function in cardiac cells. Ubiquitin (Ub) and ubiquitin-like proteins (UBLs) are a family of protein modifiers that share a certain extent of sequence and structure similarity. Conjugation of Ub or UBLs to target proteins is dynamically regulated by a set of UBL-specific enzymes and modulates the physical and physiological properties of protein substrates. Ub and UBLs control a strikingly wide spectrum of cellular processes and not surprisingly are involved in the development of multiple human diseases including cardiac diseases. Further identification of novel UBL targets will expand our understanding of the functional diversity of UBL pathways in physiology and pathology. Here we review recent findings on the mechanisms, proteome and functions of a subset of UBLs and highlight their potential impacts on the development and progression of various forms of cardiac diseases.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - John A Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
48
|
Formation of the Alarmones Diadenosine Triphosphate and Tetraphosphate by Ubiquitin- and Ubiquitin-like-Activating Enzymes. Cell Chem Biol 2019; 26:1535-1543.e5. [PMID: 31492597 DOI: 10.1016/j.chembiol.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023]
Abstract
Diadenosine polyphosphates (ApnAs) such as diadenosine tri- and tetraphosphates are formed in prokaryotic as well as eukaryotic cells. Since upon stress intracellular ApnA concentrations increase, it was postulated that ApnAs are alarmones triggering stress-adaptive processes. The major synthesis pathway of ApnAs is assumed to be a side reaction of amino acid activation. How this process is linked to stress adaptation remains enigmatic. The first step of one of the most prominent eukaryotic post-translational modification systems-the conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubl) to target proteins-involves the formation of an adenylate as intermediate. Like ApnA formation, Ub and Ubl conjugation is significantly enhanced during stress conditions. Here, we demonstrate that diadenosine tri- and tetraphosphates are indeed synthesized during activation of Ub and Ubls. This links one of the most prevalent eukaryotic protein-modification systems to ApnA formation for the first time.
Collapse
|
49
|
Mattern M, Sutherland J, Kadimisetty K, Barrio R, Rodriguez MS. Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends Biochem Sci 2019; 44:599-615. [PMID: 30819414 DOI: 10.1016/j.tibs.2019.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) by ubiquitin (Ub) are versatile, highly dynamic, and involved in nearly all aspects of eukaryote biological function. The reversibility and heterogeneity of Ub chains attached to protein substrates have complicated their isolation, quantification, and characterization. Strategies have emerged to isolate endogenous ubiquitylated targets, including technologies based on the use of Ub-binding peptides, such as tandem-repeated Ub-binding entities (TUBEs). TUBEs allow the identification and characterization of Ub chains, and novel substrates for deubiquitylases (DUBs) and Ub ligases (E3s). Here we review their impact on purification, analysis of pan or chain-selective polyubiquitylated proteins and underline the biological relevance of this information. Together with peptide aptamers and other Ub affinity-based approaches, TUBEs will contribute to unraveling the secrets of the Ub code.
Collapse
Affiliation(s)
- Michael Mattern
- Progenra Inc., 277 Great Valley Parkway, Malvern 19355, Pennsylvania, USA; These authors contributed equally
| | - James Sutherland
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain; These authors contributed equally
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Malvern 19355, Pennsylvania, USA
| | - Rosa Barrio
- CIC bioGUNE, Technology Park of Bizkaia, Bldg. 801A, 48160 Derio, Spain
| | - Manuel S Rodriguez
- ITAV-IPBS-UPS CNRS USR3505, 1 place Pierre Potier, Oncopole entrée B, 31106 Toulouse, France.
| |
Collapse
|
50
|
Keuss MJ, Hjerpe R, Hsia O, Gourlay R, Burchmore R, Trost M, Kurz T. Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death. EMBO J 2019; 38:embj.2018100024. [PMID: 30804002 PMCID: PMC6418418 DOI: 10.15252/embj.2018100024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
NEDD8 is a ubiquitin‐like protein that activates cullin‐RING E3 ubiquitin ligases (CRLs). Here, we identify a novel role for NEDD8 in regulating the activity of poly(ADP‐ribose) polymerase 1 (PARP‐1) in response to oxidative stress. We show that treatment of cells with H2O2 results in the accumulation of NEDD8 chains, likely by directly inhibiting the deneddylase NEDP1. One chain type, an unanchored NEDD8 trimer, specifically bound to the second zinc finger domain of PARP‐1 and attenuated its activation. In cells in which Nedp1 is deleted, large amounts of tri‐NEDD8 constitutively form, resulting in inhibition of PARP‐1 and protection from PARP‐1‐dependent cell death. Surprisingly, these NEDD8 trimers are additionally acetylated, as shown by mass spectrometry analysis, and their binding to PARP‐1 is reduced by the overexpression of histone de‐acetylases, which rescues PARP‐1 activation. Our data suggest that trimeric, acetylated NEDD8 attenuates PARP‐1 activation after oxidative stress, likely to delay the initiation of PARP‐1‐dependent cell death.
Collapse
Affiliation(s)
- Matthew J Keuss
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Roland Hjerpe
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Oliver Hsia
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard Burchmore
- Glasgow Polyomics, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Trost
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thimo Kurz
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|