1
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
2
|
Xie H, Chen J, Ma C, Zhao J, Cui M. UBP43 promotes epithelial ovarian carcinogenesis via activation of β-catenin signaling pathway. Cell Biol Int 2023. [PMID: 37186433 DOI: 10.1002/cbin.12028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 03/17/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Dysregulation of the deubiquitinating protease, UBP43, has been implicated in many human diseases, including cancer. Here, we evaluated the functional significance and mechanism of action of UBP43 in epithelial ovarian cancer. We found that UBP43 was significantly upregulated in the tumor tissues of patients with epithelial ovarian cancer. Similar results were observed in OVCAR-3, Caov-3, TOV-112D, A2780, and SK-OV-3 cells. Furthermore, in vitro functional assays of A2780 and TOV-112D cells demonstrated that UBP43 overexpression promoted cell proliferation, migration, and invasion. Upregulation of UBP43 might result in epithelial-mesenchymal transition by inducing the nuclear transport of β-catenin, which was accompanied by enhanced N-cadherin but decreased E-cadherin expression. These malignant phenotypes were reversed by UBP43 silencing. Further investigation revealed that the knockdown of UBP43 inhibited cell proliferation by inducing a cell cycle arrest at the G2/M phase. The oncogenic characteristics of UBP43 were validated in a subcutaneous xenograft mouse model. In vivo, tumor growth was delayed in the UBP43-silenced group but accelerated after UBP43 overexpression. Finally, we demonstrated that β-catenin is a key protein in the UBP43-mediated malignant development of epithelial ovarian cancer. Specifically, overexpression of UBP43 decreased the ubiquitination degradation of β-catenin and enhanced its protein stability. Also, we observed that the downstream genes of beta-catenin such as cyclin D1, MMP2, and MMP9 were upregulated due to UBP43 overexpression. Thus, we concluded that UBP43 promoted epithelial ovarian cancer tumorigenesis and metastasis through activation of the β-catenin pathway, suggesting that UBP43 may be a potential therapeutic target for this intractable disease.
Collapse
Affiliation(s)
- Hongyang Xie
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Changyan Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jingjing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Ihle M, Biber S, Schroeder IS, Blattner C, Deniz M, Damia G, Gottifredi V, Wiesmüller L. Impact of the interplay between stemness features, p53 and pol iota on replication pathway choices. Nucleic Acids Res 2021; 49:7457-7475. [PMID: 34165573 PMCID: PMC8287946 DOI: 10.1093/nar/gkab526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Using human embryonic, adult and cancer stem cells/stem cell-like cells (SCs), we demonstrate that DNA replication speed differs in SCs and their differentiated counterparts. While SCs decelerate DNA replication, differentiated cells synthesize DNA faster and accumulate DNA damage. Notably, both replication phenotypes depend on p53 and polymerase iota (POLι). By exploring protein interactions and newly synthesized DNA, we show that SCs promote complex formation of p53 and POLι at replication sites. Intriguingly, in SCs the translocase ZRANB3 is recruited to POLι and required for slow-down of DNA replication. The known role of ZRANB3 in fork reversal suggests that the p53–POLι complex mediates slow but safe bypass of replication barriers in SCs. In differentiated cells, POLι localizes more transiently to sites of DNA synthesis and no longer interacts with p53 facilitating fast POLι-dependent DNA replication. In this alternative scenario, POLι associates with the p53 target p21, which antagonizes PCNA poly-ubiquitination and, thereby potentially disfavors the recruitment of translocases. Altogether, we provide evidence for diametrically opposed DNA replication phenotypes in SCs and their differentiated counterparts putting DNA replication-based strategies in the spotlight for the creation of therapeutic opportunities targeting SCs.
Collapse
Affiliation(s)
- Michaela Ihle
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Insa S Schroeder
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt 64291, Germany
| | - Christine Blattner
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Giovanna Damia
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS Milan, Milan 20156, Italy
| | - Vanesa Gottifredi
- Cell cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
4
|
Niu Q, Liu Z, Gao J, Wang Q. MiR-338-3p Enhances Ovarian Cancer Cell Sensitivity to Cisplatin by Downregulating WNT2B. Yonsei Med J 2019; 60:1146-1156. [PMID: 31769245 PMCID: PMC6881712 DOI: 10.3349/ymj.2019.60.12.1146] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Chemoresistance is a concern in ovarian cancer patients, in whom survival remains. MicroRNA, a novel class of small RNAs, have frequently been found to be dysregulated in human malignancies and to act as negative regulators of gene expression. This study aimed to explore the function of miR-338-3p in cisplatin resistance in ovarian cancer and potential molecular mechanisms thereof. MATERIALS AND METHODS The expression levels of miR-338-3p and WNT2B in ovarian cancer tissues and cells were estimated by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), transwell, and flow cytometry assays were used to assess biological role of miR-338-3p in vitro. Western blot assay was conducted to measure protein expression of WNT2B, epithelial-mesenchymal transition (EMT)-related proteins, and apoptosis-related proteins. The relationship between miR-338-3p and WNT2B was confirmed by dual-luciferase reporter. Finally, a xenograft tumor model was developed to explore the effects of overexpression of miR-338-3p on tumor growth in ovarian cancer in vivo. RESULTS MiR-338-3p was downregulated in cisplatin resistant ovarian cancer tissues and cells. Mechanistically, high expression of miR-338-3p enhanced cell sensitivity to cisplatin by inhibiting proliferation, motility, and EMT and by promoting apoptosis via targeting WNT2B expression in vitro. Furthermore, overexpression of miR-338-3p increased cisplatin sensitivity among ovarian cancer in an in vivo xenograft tumor model. CONCLUSION MiR-338-3p enhances the sensitivity of ovarian cancer cells to cisplatin by downregulating WNT2B.
Collapse
Affiliation(s)
- Qin Niu
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zhenghong Liu
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Jia Gao
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Qiao Wang
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
5
|
Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, Meles S, Angeli E, Ratajczak P, Lu H, Di Benedetto M, Bousquet G, Janin A. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci 2018; 19:E4036. [PMID: 30551640 PMCID: PMC6321478 DOI: 10.3390/ijms19124036] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cancers are heterogeneous at the cell level, and the mechanisms leading to cancer heterogeneity could be clonal evolution or cancer stem cells. Cancer stem cells are resistant to most anti-cancer treatments and could be preferential targets to reverse this resistance, either targeting stemness pathways or cancer stem cell surface markers. Gold nanoparticles have emerged as innovative tools, particularly for photo-thermal therapy since they can be excited by laser to induce hyperthermia. Gold nanoparticles can be functionalized with antibodies to specifically target cancer stem cells. Preclinical studies using photo-thermal therapy have demonstrated the feasibility of targeting chemo-resistant cancer cells to reverse clinical chemoresistance. Here, we review the data linking cancer stem cells and chemoresistance and discuss the way to target them to reverse resistance. We particularly focus on the use of functionalized gold nanoparticles in the treatment of chemo-resistant metastatic cancers.
Collapse
Affiliation(s)
- Toni Nunes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Diaddin Hamdan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Hôpital de La Porte Verte, F-78004 Versailles, France.
| | - Christophe Leboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Morad El Bouchtaoui
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Guillaume Gapihan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Thi Thuy Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Solveig Meles
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Eurydice Angeli
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Philippe Ratajczak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - He Lu
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Mélanie Di Benedetto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
| | - Guilhem Bousquet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
- Service d'Oncologie Médicale, AP-HP-Hôpital Avicenne, F-93008 Bobigny, France.
| | - Anne Janin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Service de Pathologie, AP-HP-Hôpital Saint-Louis, F-75010 Paris, France.
| |
Collapse
|
6
|
Mihanfar A, Aghazadeh Attari J, Mohebbi I, Majidinia M, Kaviani M, Yousefi M, Yousefi B. Ovarian cancer stem cell: A potential therapeutic target for overcoming multidrug resistance. J Cell Physiol 2018; 234:3238-3253. [PMID: 30317560 DOI: 10.1002/jcp.26768] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
The cancer stem cell (CSC) model encompasses an advantageous paradigm that in recent decades provides a better elucidation for many important biological aspects of cancer initiation, progression, metastasis, and, more important, development of multidrug resistance (MDR). Such several other hematological malignancies and solid tumors and the identification and isolation of ovarian cancer stem cells (OV-CSCs) show that ovarian cancer also follows this hierarchical model. Gaining a better insight into CSC-mediated resistance holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. Therefore, in this review, we will discuss some important mechanisms by which CSCs can escape chemotherapy, and then review the recent and growing body of evidence that supports the contribution of CSCs to MDR in ovarian cancer.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Iraj Mohebbi
- Department of Occupational Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Ricci F, Fratelli M, Guffanti F, Porcu L, Spriano F, Dell'Anna T, Fruscio R, Damia G. Patient-derived ovarian cancer xenografts re-growing after a cisplatinum treatment are less responsive to a second drug re-challenge: a new experimental setting to study response to therapy. Oncotarget 2018; 8:7441-7451. [PMID: 26910918 PMCID: PMC5352333 DOI: 10.18632/oncotarget.7465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023] Open
Abstract
Even if ovarian cancer patients are very responsive to a cisplatinum-based therapy, most will relapse with a resistant disease. New experimental animal models are needed to explore the mechanisms of resistance, to better tailor treatment and improve patient prognosis. To address these aims, seven patient-derived high-grade serous/endometrioid ovarian cancer xenografts were characterized for the antitumor response after one and two cycles of cisplatinum and classified as Very Responsive, Responsive, and Low Responsive to drug treatment. Xenografts re-growing after the first drug cycle were much less responsive to the second one. The expression of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) genes was investigated in cisplatinum-treated and not-treated tumors. We found that different EMT (TCF3, CAMK2N1, EGFR, and IGFBP4) and CSCs (SMO, DLL1, STAT3, and ITGA6) genes were expressed at higher levels in Low Responsive than in Responsive and Very Responsive xenografts. The expression of STAT3 was found to be associated with lower survival (HR = 13.7; p = 0.013) in the TCGA patient data set. MMP9, CD44, DLL4, FOXP1, MERTK, and PTPRC genes were found more expressed in tumors re-growing after cisplatinum treatment than in untreated tumors. We here describe a new in vivo ovarian carcinoma experimental setting that will be instrumental for specific trials of combination therapy to counteract cisplatinum resistance in order to improve the prognosis of ovarian patients.
Collapse
Affiliation(s)
- Francesca Ricci
- Department of Oncology, Laboratory of Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maddalena Fratelli
- Department of Biochemistry, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Federica Guffanti
- Department of Oncology, Laboratory of Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Luca Porcu
- Department of Oncology, Laboratory of Methodology for Biomedical Research, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Filippo Spriano
- Department of Oncology, Laboratory of Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Tiziana Dell'Anna
- Obstetrics and Gynecology Clinic, San Gerardo Hospital, Monza, Italy
| | - Robert Fruscio
- Obstetrics and Gynecology Clinic, San Gerardo Hospital, Monza, Italy
| | - Giovanna Damia
- Department of Oncology, Laboratory of Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
8
|
Deng J, Wang L, Chen H, Hao J, Ni J, Chang L, Duan W, Graham P, Li Y. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget 2018; 7:55771-55788. [PMID: 27304054 PMCID: PMC5342453 DOI: 10.18632/oncotarget.9908] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/30/2016] [Indexed: 12/29/2022] Open
Abstract
Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment.
Collapse
Affiliation(s)
- Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW, Australia.,Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Chen
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou University, Zhengzhou, Henan, China
| | - Jingli Hao
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Lei Chang
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW, Australia
| |
Collapse
|
9
|
Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. MEDICINES 2018; 5:medicines5010016. [PMID: 29389895 PMCID: PMC5874581 DOI: 10.3390/medicines5010016] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
Collapse
|
10
|
Sun Q, Dong M, Wang Z, Wang C, Sheng D, Li Z, Huang D, Yuan C. Selenium-enriched polysaccharides from Pyracantha fortuneana (Se-PFPs) inhibit the growth and invasive potential of ovarian cancer cells through inhibiting β-catenin signaling. Oncotarget 2017; 7:28369-83. [PMID: 27058760 PMCID: PMC5053732 DOI: 10.18632/oncotarget.8619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
Polysaccharides from medicinal plants exert antitumor activity in many cancers. Our previous study demonstrated that polysaccharides extracted from the selenium-enriched Pyracantha fortuneana (Se-PFPs) showed antiproliferative effect in breast cancer cell line. This study aimed to investigate the antitumor effect of Se-PFPs in ovarian cancer cells in vitro and in vivo. Se-PFPs could decrease cell viability, induce apoptosis, and inhibit migratory and invasive potentials in HEY and SKOV3 cells. These findings are supported by reduced expression of cyclin D1, Bcl-2 and MMP-9, enhanced cleavage of PARP and caspase-3, elevated activity of caspase-3 and caspase-9, and EMT (epithelial to mesenchymal transition) inhibition (elevated expression of E-cadherin and cytokeratin 19, and reduced expression of N-cadherin, vimentin, ZEB1 and ZEB2). Moreover, Se-PFPs inhibited xenografted tumor growth through inhibiting cell proliferation and inducing cell apoptosis. More importantly, Se-PFPs significantly reduced cytoplasmic β-catenin particularly nuclear β-catenin expression but increased β-catenin phosphorylation in a GSK-3β-dependent mechanism. Furthermore, β-catenin knockdown exerted similar effects on cell proliferation and invasion as seen in Se-PFPs-treated cells, while β-catenin overexpression neutralized the inhibitory effects of Se-PFPs on cell proliferation and invasion. Take together,Se-PFPs exert antitumor activity through inhibiting cell proliferation, migration, invasion and EMT, and inducing cell apoptosis. These effects are achieved by the inhibition of β-catenin signaling. Thus Se-PFPs can be used as potential therapeutic agents in the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qianling Sun
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Mengmeng Dong
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Zhihui Wang
- Renhe Hospital of China Three Gorges University, Yichang, HuBei 443002, China
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Deqiao Sheng
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Zhihong Li
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Debin Huang
- Department of Pharmacology, Hubei Institute for Nationalities, Enshi, HuBei 445000, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| |
Collapse
|
11
|
Zanotti L, Romani C, Tassone L, Todeschini P, Tassi RA, Bandiera E, Damia G, Ricci F, Ardighieri L, Calza S, Marchini S, Beltrame L, Tognon G, D'Incalci M, Pecorelli S, Sartori E, Odicino F, Ravaggi A, Bignotti E. MAL gene overexpression as a marker of high-grade serous ovarian carcinoma stem-like cells that predicts chemoresistance and poor prognosis. BMC Cancer 2017; 17:366. [PMID: 28545541 PMCID: PMC5445497 DOI: 10.1186/s12885-017-3334-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/09/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The existence of cancer stem cells (CSCs) within a tumor bulk has been demonstrated for many solid tumors including epithelial ovarian carcinoma (EOC). CSCs have been associated to tumor invasion, metastasis and development of chemoresistant recurrences. In this context, we aim to characterize EOC CSCs from the molecular point of view in order to identify potential biomarkers associated with chemoresistance. METHODS We isolated a population of cells with stem-like characteristics (OVA-BS4 spheroids) from a primary human EOC cell line under selective conditions. OVA-BS4 spheroids were characterized for drug response by cytotoxicity assays and their molecular profile was investigated by microarray and RT-qPCR. Finally, we performed a gene expression study in a cohort of 74 high-grade serous EOC (HGSOC) patients by RT-qPCR. RESULTS Spheroids exhibited properties of self-renewal and a pronounced expression of well-known stem cell genes. Moreover, they demonstrated greater resistance towards several anticancer drugs compared to parent cell line, consistent with their higher ABCG2 gene expression. From microarray studies MAL (T-cell differentiation protein) emerged as the most up-regulated gene in spheroids, compared to parent cell line. In HGSOC patients, MAL was significantly overexpressed in platinum-resistant compared to platinum-sensitive patients and resulted as an independent prognostic marker of survival. CONCLUSIONS This investigation provides an important contribution to the identification of molecular markers of ovarian CSCs and chemoresistance. Successful translation of molecular findings would lead to a better comprehension of the mechanisms triggering chemoresistant recurrences, to the individuation of novel therapeutic targets and to the personalization of treatment regimens.
Collapse
Affiliation(s)
- Laura Zanotti
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
| | - Chiara Romani
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Laura Tassone
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Paola Todeschini
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Renata Alessandra Tassi
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Elisabetta Bandiera
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Giovanna Damia
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Francesca Ricci
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Laura Ardighieri
- Department of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sergio Marchini
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Luca Beltrame
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS, "Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Sergio Pecorelli
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Enrico Sartori
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Franco Odicino
- Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Antonella Ravaggi
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Obstetrics and Gynecology, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Eliana Bignotti
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
12
|
Lupia M, Cavallaro U. Ovarian cancer stem cells: still an elusive entity? Mol Cancer 2017; 16:64. [PMID: 28320418 PMCID: PMC5360065 DOI: 10.1186/s12943-017-0638-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed, ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC component.
Collapse
Affiliation(s)
- Michela Lupia
- Unit of Gynecological Oncology Research, European Institute of Oncology, Via G. Ripamonti 435, I-20141, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology, Via G. Ripamonti 435, I-20141, Milan, Italy.
| |
Collapse
|
13
|
Rolong A, Schmelz EM, Davalos RV. High-frequency irreversible electroporation targets resilient tumor-initiating cells in ovarian cancer. Integr Biol (Camb) 2017; 9:979-987. [DOI: 10.1039/c7ib00116a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Targeting resilient tumor-initiating cells with high-frequency irreversible electroporation could be driven by the bioelectromechanical properties of malignant cells.
Collapse
Affiliation(s)
- A. Rolong
- Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences
- Blacksburg
- USA
| | - E. M. Schmelz
- Virginia Tech
- Department of Human Nutrition
- Foods
- and Exercise
- Virginia Tech
| | - R. V. Davalos
- Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences
- Blacksburg
- USA
| |
Collapse
|
14
|
Arend RC, Londoño-Joshi AI, Gangrade A, Katre AA, Kurpad C, Li Y, Samant RS, Li PK, Landen CN, Yang ES, Hidalgo B, Alvarez RD, Michael Straughn J, Forero A, Buchsbaum DJ. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 2016; 7:86803-86815. [PMID: 27888804 PMCID: PMC5349955 DOI: 10.18632/oncotarget.13466] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer mortality worldwide. Platinum-based therapy is the standard first line treatment and while most patients initially respond, resistance to chemotherapy usually arises. Major signaling pathways frequently upregulated in chemoresistant cells and important in the maintenance of cancer stem cells (CSCs) include Wnt/β-catenin, mTOR, and STAT3. The major objective of our study was to investigate the treatment of ovarian cancer with targeted agents that inhibit these three pathways. Here we demonstrate that niclosamide, a salicylamide derivative, and two synthetically manufactured niclosamide analogs (analog 11 and 32) caused significant inhibition of proliferation of two chemoresistant ovarian cancer cell lines (A2780cp20 and SKOV3Trip2), tumorspheres isolated from the ascites of EOC patients, and cells from a chemoresistant patient-derived xenograft (PDX). This work shows that all three agents significantly decreased the expression of proteins in the Wnt/β-catenin, mTOR and STAT3 pathways and preferentially targeted cells that expressed the ovarian CSC surface protein CD133. It also illustrates the potential of drug repurposing for chemoresistant EOC and can serve as a basis for pathway-oriented in vivo studies.
Collapse
Affiliation(s)
- Rebecca C. Arend
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Birmingham, AL, USA
| | | | - Abhishek Gangrade
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Ashwini A. Katre
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Chandrika Kurpad
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Yonghe Li
- Southern Research Institute, Department of Oncology, Birmingham, AL, USA
| | - Rajeev S. Samant
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular & Cellular Pathology, Birmingham, AL, USA
| | - Pui-Kai Li
- Ohio State University, Department of Medicinal Chemistry and Pharmacognosy, Columbus, OH, USA
| | - Charles N. Landen
- University of Virginia, Department of Oncology, Division of Gynecologic Oncology, Charlottesville, VA, USA
| | - Eddy S. Yang
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| | - Bertha Hidalgo
- University of Alabama at Birmingham, Department of Epidemiology, Birmingham, AL, USA
| | - Ronald D. Alvarez
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Birmingham, AL, USA
| | - John Michael Straughn
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Birmingham, AL, USA
| | - Andres Forero
- University of Alabama at Birmingham, Department of Medicine, Division of Hematology & Oncology, Birmingham, AL, USA
| | - Donald J. Buchsbaum
- University of Alabama at Birmingham, Department of Radiation Oncology, Birmingham, AL, USA
| |
Collapse
|
15
|
Virant-Klun I, Stimpfel M. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Sci Rep 2016; 6:34730. [PMID: 27703207 PMCID: PMC5050448 DOI: 10.1038/srep34730] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in "healthy" ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from "healthy" ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget 2016; 6:40005-25. [PMID: 26503466 PMCID: PMC4741876 DOI: 10.18632/oncotarget.5552] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023] Open
Abstract
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.
Collapse
|
17
|
Virant-Klun I, Kenda-Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res 2016; 9:12. [PMID: 26940129 PMCID: PMC4778328 DOI: 10.1186/s13048-016-0221-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/22/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In previous studies it has been found that in cell cultures of human adult ovaries there is a population of small stem cells with diameters of 2-4 μm, which are present mainly in the ovarian surface epithelium and are comparable to very small embryonic-like stem cells (VSELs) from bone marrow. These cells are not observed by histopathologists in the ovarian tissue due to their small size and unknown clinical significance. Because these cells express a degree of pluripotency, they might be involved in the manifestation of ovarian cancer. Therefore we studied the ovarian tissue sections in women with borderline ovarian cancer and serous ovarian carcinoma to perhaps identify the small putative stem cells in situ. METHODS In 27 women with borderline ovarian cancer and 20 women with high-grade serous ovarian carcinoma the ovarian tissue sections were stained, per standard practice, with eosin and hematoxylin staining and on NANOG, SSEA-4 and SOX2 markers, related to pluripotency, using immunohistochemistry. We focused on the presence and localization of small putative stem cells with diameters of up to 5 μm and with the nuclei spread over nearly the full cell volume. RESULTS In ovarian sections of both borderline ovarian cancer and serous ovarian carcinoma patients we were able to identify the presence of small round cells complying with the above criteria. Some of these small cells were NANOG-positive, were located among epithelial cells in the ovarian surface epithelium and as a single cell or groups of cells/clusters in typical "chambers", were found only in the presence of ovarian cancer and not in healthy ovaries and are comparable to those in fetal ovaries. We envision that these small cells could be related to NANOG-positive tumor-like structures and oocyte-like cells in similar "chambers" found in sections of cancerous ovaries, which could support their stemness and pluripotency. Further immunohistochemistry revealed a similar population of SSEA-4 and SOX2-positive cells. CONCLUSIONS We may conclude that putative small stem cells expressing markers, related to pluripotency, are present in the ovarian tissue sections of women with borderline ovarian cancer and high-grade serous ovarian carcinoma thus indicating their potential involvement in ovarian cancer.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Natasa Kenda-Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Boone JD, Arend RC, Johnston BE, Cooper SJ, Gilchrist SA, Oelschlager DK, Grizzle WE, McGwin G, Gangrade A, Straughn JM, Buchsbaum DJ. Targeting the Wnt/β-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. J Transl Med 2016; 96:249-59. [PMID: 26658453 DOI: 10.1038/labinvest.2015.150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 01/18/2023] Open
Abstract
Preclinical studies in ovarian cancer have demonstrated upregulation of the Wnt/β-catenin pathway promoting tumor proliferation and chemoresistance. Our objective was to evaluate the effect of the Wnt/β-catenin pathway inhibitor, WNT974, in primary ovarian cancer ascites cells. Ascites cells from patients with papillary serous ovarian cancer were isolated and treated with 1 μM WNT974±100 μM carboplatin. Viability was evaluated with the ATPlite assay. The IC50 was calculated using a dose-response analysis. Immunohistochemistry (IHC) was performed on ascites cells and tumor. Expression of R-spondin 2 (RSPO2), RSPO3, PORCN, WLS, AXIN2, and three previously characterized RSPO fusion transcripts were assessed using Taqman assays. Sixty ascites samples were analyzed for response to WNT974. The ascites samples that showed a decrease in ATP concentration after treatment demonstrated no difference from the untreated cells in percent viability with trypan blue staining. Flow cytometry demonstrated fewer cells in the G2 phase and more in the G1 and S phases after treatment with WNT974. Combination therapy with WNT974 and carboplatin resulted in a higher percentage of samples that showed ≥30% reduction in ATP concentration than either single drug treatment. IHC analysis of Wnt pathway proteins suggests cell cycle arrest rather than cytotoxicity after WNT974 treatment. QPCR indicated that RSPO fusions are not prevalent in ovarian cancer tissues or ascites. However, higher PORCN expression correlated to sensitivity to WNT974 (P=0.0073). In conclusion, WNT974 produces cytostatic effects in patient ascites cells with primary ovarian cancer through inhibition of the Wnt/β-catenin pathway. The combination of WNT974 and carboplatin induces cytotoxicity plus cell cycle arrest in a higher percentage of ascites samples than with single drug treatment. RSPO fusions do not contribute to WNT974 sensitivity; however, higher PORCN expression indicates increased WNT974 sensitivity.
Collapse
Affiliation(s)
- Jonathan D Boone
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Scott A Gilchrist
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Denise K Oelschlager
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerald McGwin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhishek Gangrade
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Straughn
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Yan B, Dong L, Neuzil J. Mitochondria: An intriguing target for killing tumour-initiating cells. Mitochondrion 2016; 26:86-93. [DOI: 10.1016/j.mito.2015.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
|
20
|
Navakauskienė R, Mori M, Christodoulou MS, Zentelytė A, Botta B, Via LD, Ricci F, Damia G, Passarella D, Zilio C, Martinet N. Histone demethylating agents as potential S-adenosyl-l-methionine-competitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00170j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Histone H3 methylation on K9 and/or K27 depends on histone lysine methyltransferases (KMTs).
Collapse
Affiliation(s)
- R. Navakauskienė
- Department of Molecular Cell Biology
- Institute of Biochemistry
- Vilnius University
- LT-08662 Vilnius
- Lithuania
| | - M. Mori
- Center for Life Nano Science@Sapienza
- Istituto Italiano di Tecnologia
- 00161 Rome
- Italy
| | | | - A. Zentelytė
- Department of Molecular Cell Biology
- Institute of Biochemistry
- Vilnius University
- LT-08662 Vilnius
- Lithuania
| | - B. Botta
- Dipartimento di Chimica e Tecnologie del Farmaco
- Università degli Studi di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - L. Dalla Via
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - F. Ricci
- Mario Negri Institute for Pharmacological Research
- 20156 Milano
- Italy
| | - G. Damia
- Mario Negri Institute for Pharmacological Research
- 20156 Milano
- Italy
| | - D. Passarella
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - C. Zilio
- Institute of Chemistry
- UMR CNRS 7272
- Nice 06108
- France
| | - N. Martinet
- Institute of Chemistry
- UMR CNRS 7272
- Nice 06108
- France
| |
Collapse
|
21
|
Walters Haygood CL, Arend RC, Gangrade A, Chettiar S, Regan N, Hassmann CJ, Li PK, Hidalgo B, Straughn JM, Buchsbaum DJ. Niclosamide Analogs for Treatment of Ovarian Cancer. Int J Gynecol Cancer 2015; 25:1377-85. [PMID: 26186072 DOI: 10.1097/igc.0000000000000506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Niclosamide has shown activity against ovarian cancer in vitro; however, it has low bioavailability in vivo. Therefore, we investigated the cytotoxicity of niclosamide analogs in combination with carboplatin against ovarian cancer patient ascites cells and tissue slices. MATERIALS/METHODS Tumorspheres were isolated from ascites collected from patients undergoing ovarian cancer surgery and plated at 10,000 cells per 50 μL into low attachment plates. Tumor slices were also processed at the time of surgery. These were treated concurrently with niclosamide or analogs (0.1-5 μM) and carboplatin (5-150 μM). At 48 hours, cell viability was assessed with ATPlite assay. Western blotting was used to determine expression of Wnt/β-catenin proteins in ascites cells. RESULTS Cytotoxicity of niclosamide and its analogs in combination with carboplatin was demonstrated in 24 patient ascites samples. Increased cytotoxicity was seen with 2 analogs in 23 patient ascites samples when compared with niclosamide. Similar cytotoxicity was produced in an ex vivo tumor slice model. Western blot analysis showed decreased expression of Wnt/β-catenin proteins with niclosamide and analog treatment in a dose-dependent fashion. CONCLUSIONS The niclosamide-like analogs produced cytotoxicity both alone and in combination with carboplatin against tumorspheres from patient ascites and slices from solid tumor samples. Tumor slices showed similar cytotoxicity to matched ascites samples. Western blots showed down-regulation of Wnt pathway-associated proteins in patient samples treated with niclosamide analogs. These results suggest that more soluble niclosamide analogs may be useful for the treatment of ovarian cancer in combination with chemotherapy.
Collapse
Affiliation(s)
- Christen L Walters Haygood
- Departments of *Obstetrics and Gynecology and †Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL; ‡Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH; and §Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fumagalli G, Mazza D, Christodoulou MS, Damia G, Ricci F, Perdicchia D, Stella B, Dosio F, Sotiropoulou PA, Passarella D. Cyclopamine-Paclitaxel-Containing Nanoparticles: Internalization in Cells Detected by Confocal and Super-Resolution Microscopy. Chempluschem 2015; 80:1380-1383. [DOI: 10.1002/cplu.201500156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/17/2022]
|
23
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
24
|
Christodoulou MS, Mori M, Pantano R, Alfonsi R, Infante P, Botta M, Damia G, Ricci F, Sotiropoulou PA, Liekens S, Botta B, Passarella D. Click Reaction as a Tool to Combine Pharmacophores: The Case of Vismodegib. Chempluschem 2015; 80:938-943. [PMID: 31973263 DOI: 10.1002/cplu.201402435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Indexed: 11/12/2022]
Abstract
The design and the preparation of a small library of 1,4-diphenyl-1,2,3-triazole derivatives is reported, with the aim to obtain a new class of Hedgehog pathway inhibitors. The smoothened protein is part of the hedgehog signaling pathway that is inhibited by the lead compound Vismodegib. Based on molecular modeling simulations, seven triazole derivatives of Vismodegib are synthesized and their biological effect on different endothelial, cancer, and cancer stem cell lines is reported.
Collapse
Affiliation(s)
- Michael S Christodoulou
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano (Italy), Fax: (+39) 02-50314078
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Roma (Italy)
| | - Rebecca Pantano
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano (Italy), Fax: (+39) 02-50314078
| | - Romina Alfonsi
- Department of Molecular Medicine, University La Sapienza, 00161 Rome (Italy)
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Roma (Italy)
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena (Italy).,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg. Suite 333, 1900 N 12th Street, Philadelphia, PA 19122 (USA)
| | - Giovanna Damia
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano (Italy)
| | - Francesca Ricci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano (Italy)
| | | | - Sandra Liekens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, blok x-bus 1030, 3000 Leuven (Belgium)
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Roma (Italy)
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano (Italy), Fax: (+39) 02-50314078
| |
Collapse
|
25
|
|
26
|
Xia Y, Zhang YL, Yu C, Chang T, Fan HY. YAP/TEAD co-activator regulated pluripotency and chemoresistance in ovarian cancer initiated cells. PLoS One 2014; 9:e109575. [PMID: 25369529 PMCID: PMC4219672 DOI: 10.1371/journal.pone.0109575] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/01/2014] [Indexed: 01/06/2023] Open
Abstract
Recent evidence suggests that some solid tumors, including ovarian cancer, contain distinct populations of stem cells that are responsible for tumor initiation, growth, chemo-resistance, and recurrence. The Hippo pathway has attracted considerable attention and some investigators have focused on YAP functions for maintaining stemness and cell differentiation. In this study, we successfully isolated the ovarian cancer initiating cells (OCICs) and demonstrated YAP promoted self-renewal of ovarian cancer initiated cell (OCIC) through its downstream co-activator TEAD. YAP and TEAD families were required for maintaining the expression of specific genes that may be involved in OCICs' stemness and chemoresistance. Taken together, our data first indicate that YAP/TEAD co-activator regulated ovarian cancer initiated cell pluripotency and chemo-resistance. It proposed a new mechanism on the drug resistance in cancer stem cell that Hippo-YAP signal pathway might serve as therapeutic targets for ovarian cancer treatment in clinical.
Collapse
Affiliation(s)
- Yan Xia
- Assisted Reproductive Centre, Shaanxi Maternal and Child Care Service Hospital, Xi′an, China
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Yin-Li Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi′an, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
27
|
Ricci F, Bizzaro F, Cesca M, Guffanti F, Ganzinelli M, Decio A, Ghilardi C, Perego P, Fruscio R, Buda A, Milani R, Ostano P, Chiorino G, Bani MR, Damia G, Giavazzi R. Patient-derived ovarian tumor xenografts recapitulate human clinicopathology and genetic alterations. Cancer Res 2014; 74:6980-90. [PMID: 25304260 DOI: 10.1158/0008-5472.can-14-0274] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. On the basis of its histopathology and molecular-genomic changes, ovarian cancer has been divided into subtypes, each with distinct biology and outcome. The aim of this study was to develop a panel of patient-derived EOC xenografts that recapitulate the molecular and biologic heterogeneity of human ovarian cancer. Thirty-four EOC xenografts were successfully established, either subcutaneously or intraperitoneally, in nude mice. The xenografts were histologically similar to the corresponding patient tumor and comprised all the major ovarian cancer subtypes. After orthotopic transplantation in the bursa of the mouse ovary, they disseminate into the organs of the peritoneal cavity and produce ascites, typical of ovarian cancer. Gene expression analysis and mutation status indicated a high degree of similarity with the original patient and discriminate different subsets of xenografts. They were very responsive, responsive, and resistant to cisplatin, resembling the clinical situation in ovarian cancer. This panel of patient-derived EOC xenografts that recapitulate the recently type I and type II classification serves to study the biology of ovarian cancer, identify tumor-specific molecular markers, and develop novel treatment modalities.
Collapse
Affiliation(s)
- Francesca Ricci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Francesca Bizzaro
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marta Cesca
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Federica Guffanti
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Monica Ganzinelli
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandra Decio
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Carmen Ghilardi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Robert Fruscio
- Obstetrics and Gynecology Clinic, San Gerardo Hospital, Monza, Italy
| | - Alessandro Buda
- Obstetrics and Gynecology Clinic, San Gerardo Hospital, Monza, Italy
| | - Rodolfo Milani
- Obstetrics and Gynecology Clinic, San Gerardo Hospital, Monza, Italy
| | - Paola Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Maria Rosa Bani
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanna Damia
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | - Raffaella Giavazzi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
28
|
The pharmacological point of view of resistance to therapy in tumors. Cancer Treat Rev 2014; 40:909-16. [PMID: 24969326 DOI: 10.1016/j.ctrv.2014.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Resistance to therapy is a challenging clinical problem, whose solution is far from being reached. Gains in current knowledge have identified key elements at the basis of drug resistance and have suggested possible ways to overcome it. However, some points have always to be kept in mind whatever the type of tumor or drug (cytotoxic or targeted agent) when considering treatment resistance in tumors. In this review we discuss these points and their impact in resistance to cancer therapy: the importance of reaching active tumor drug concentration, reviewing the various micro- and macro-components of the host that can influence their concentrations and activity, the evolving complex heterogeneity of tumors, the intrinsic tumor cell susceptibility to the drug, and the emerging role of the tumor microenvironment. Both the data from the molecular and biological characterization of human tumors allow a better rational and timing use of the available arsenal of anticancer therapy and new strategies to improve the penetration of antitumor drugs in tumors are the new chances to delay and possibly eliminate the emergence of resistance in tumors.
Collapse
|
29
|
Arend RC, Londoño-Joshi AI, Samant RS, Li Y, Conner M, Hidalgo B, Alvarez RD, Landen CN, Straughn JM, Buchsbaum DJ. Inhibition of Wnt/β-catenin pathway by niclosamide: a therapeutic target for ovarian cancer. Gynecol Oncol 2014; 134:112-20. [PMID: 24736023 DOI: 10.1016/j.ygyno.2014.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/06/2023]
Abstract
Objective. The Wnt/β-catenin pathway is known to regulate cellular proliferation and plays a role in chemoresistance. Niclosamide, an FDA approved salicyclamide derivative used for the treatment of tapeworm infections, targets the Wnt/β-catenin pathway. Therefore, the objective of this study was to investigate niclosamide as a potential therapeutic agent for ovarian cancer. Methods. Tumor cells isolated from 34 patients' ascites with primary ovarian cancer were treated with niclosamide (0.1 to 5 μM) ± carboplatin (5 to 150 μM). Cell viability was assessed using the ATP-lite assay. LRP6, Axin 2, Cyclin D1, survivin and cytosolic free β-catenin levels were determined using Western blot analysis. Tumorspheres were treated, and Wnt transcriptional activity was measured by the TOPflash reporter assay. ALDH and CD133 were analyzed by Flow cytometry and IHC. ALDH1A1 and LRP6 were analyzed by IHC in solid tumor and in ascites before and after treatment with niclosamide. Results. Combination treatment produced increased cytotoxicity compared to single agent treatment in 32/34 patient samples. Western blot analysis showed a decrease in Wnt/β-catenin pathway proteins and the expression of target genes. A significant reduction of Wnt/β-catenin signaling was confirmed by TOPflash assay. There was increased staining of ALDH1A1 and LRP6 in ascites compared to solid tumor which decreased after treatment. Conclusion. This study demonstrates that niclosamide is a potent Wnt/β-catenin inhibitor. Targeting the Wnt/β-catenin pathway led to decreased cellular proliferation and increased cell death. These findings warrant further research of this drug and other niclosamide analogs as a treatment option for ovarian cancer.
Collapse
Affiliation(s)
- Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yonghe Li
- Southern Research Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Conner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bertha Hidalgo
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ronald D Alvarez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Straughn
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
30
|
Arend RC, Londoño-Joshi AI, Straughn JM, Buchsbaum DJ. The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol 2013; 131:772-9. [PMID: 24125749 DOI: 10.1016/j.ygyno.2013.09.034] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Ovarian cancer is the deadliest gynecologic malignancy and the fifth leading cause of death from cancer in women in the U.S. Since overall survival remains poor, there is a need for new therapeutic paradigms. This paper will review the Wnt/β-catenin pathway as it relates to epithelial ovarian cancer, specifically its role in chemoresistance and its potential role as a target for chemosensitization. METHODS A PubMed search was performed for articles published pertaining to Wnt/β-catenin pathway specific to ovarian cancer. Wnt/β-catenin signaling pathways play an active role in cancer stem cells (CSCs) and carcinogenesis of all ovarian cancer subtypes. Studies also have shown that ovarian CSCs are involved in chemoresistance, metastasis, and tumor recurrence. RESULTS Wnt/β-catenin target genes regulate cell proliferation and apoptosis, thereby mediating cancer initiation and progression. The Wnt/β-catenin pathway is one of the major signaling pathways thought to be involved in epithelial-to-mesenchymal transition (EMT). Alterations affecting Wnt pathway proteins on the cell membrane, in the cytoplasm, and in the nucleus have been shown to play important roles in the tumorigenesis of ovarian cancer. CONCLUSIONS Wnt signaling is activated in epithelial ovarian cancer. Given the role of the Wnt/β-catenin pathway in carcinogenesis, more pre-clinical studies are warranted to further investigate other Wnt inhibitors in ovarian cancer. The Wnt pathway should also be investigated as a potential target in the development of new drugs for ovarian cancer as a single agent and in combination with chemotherapy or other targeted agents.
Collapse
Affiliation(s)
- Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, USA.
| | | | | | | |
Collapse
|
31
|
Ricci F, Broggini M, Damia G. Revisiting ovarian cancer preclinical models: Implications for a better management of the disease. Cancer Treat Rev 2013; 39:561-8. [DOI: 10.1016/j.ctrv.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/20/2023]
|
32
|
Kwon MJ, Shin YK. Regulation of ovarian cancer stem cells or tumor-initiating cells. Int J Mol Sci 2013; 14:6624-48. [PMID: 23528891 PMCID: PMC3645658 DOI: 10.3390/ijms14046624] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
- Authors to whom correspondence should be addressed: E-Mails: (M.J.K.); (Y.K.S.); Tel.: +82-53-950-8581 (M.J.K.); +82-2-880-9126 (Y.K.S.); Fax: +82-53-950-8557 (M.J.K.); +82-2-883-9126 (Y.K.S.)
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
- Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 443-270, Korea
- Authors to whom correspondence should be addressed: E-Mails: (M.J.K.); (Y.K.S.); Tel.: +82-53-950-8581 (M.J.K.); +82-2-880-9126 (Y.K.S.); Fax: +82-53-950-8557 (M.J.K.); +82-2-883-9126 (Y.K.S.)
| |
Collapse
|
33
|
Keita M, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle 2013; 12:972-86. [PMID: 23442798 DOI: 10.4161/cc.23963] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G 1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|