1
|
Shaik R, Mounika V, Begum S, Rajkumar A, Mallikarjun B, Sri Harshini V, Kolure R, Sreevani B, Thakur S. Monoclonal Antibodies in Clinical Trials for Breast Cancer Treatment. Monoclon Antib Immunodiagn Immunother 2025; 44:17-39. [PMID: 40171653 DOI: 10.1089/mab.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
One of the most potent therapeutic and diagnostic agents in contemporary medicine is the monoclonal antibody (mAb). mAbs can perform a variety of tasks in breast cancer (BC), including identifying and delivering therapeutic medications to targets, preventing cell development, and suppressing immune system inhibitors including directly attacking cancer cells. mAbs are one of the most effective therapeutic options, particularly for HER2, but they have not been well studied for their use in treating other forms of BC, particularly triple negative breast tumors. Bispecific and trispecific mAbs have created new opportunities for more targeted specific efficacy, which has a positive impact on the viability of antigen specificity. They are more versatile and effective than other forms of treatment, emerging as most popular option for treating BC. However, mAbs have a limit in treatment due to certain adverse effects, including fever, shaking, exhaustion, headache, nausea, and vomiting, as well as rashes, bleeding, and difficulty breathing. To examine the current and prospective future capacities of mAbs with regard to the detection and treatment of BC, the present review highlights advantages and disadvantages of mAb approach.
Collapse
Affiliation(s)
- Rahaman Shaik
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Varikuppala Mounika
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad-501510, India
| | - Shireen Begum
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad-501510, India
| | - Agolapu Rajkumar
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad-501510, India
| | - Bathurasi Mallikarjun
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad-501510, India
| | - Vollala Sri Harshini
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad-501510, India
| | - Rajini Kolure
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad-501510, India
| | | | - Sneha Thakur
- Department of Pharmacognosy, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad-501510, India
| |
Collapse
|
2
|
Xie J, Yang Z, Li Z, Zhang T, Chen H, Chen X, Dai Z, Chen T, Hou J. Triple-positive breast cancer: navigating heterogeneity and advancing multimodal therapies for improving patient outcomes. Cancer Cell Int 2025; 25:77. [PMID: 40045297 PMCID: PMC11881339 DOI: 10.1186/s12935-025-03680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
Triple-positive breast cancer (TPBC), a unique subtype of luminal breast cancer, is characterized by concurrent positivity for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Owing to the crosstalk between the ER and HER2 signaling pathways, the standard of care and drug resistance of this particular subtype are difficult challenges. Recent research and clinical trials have indicated a shift in the treatment paradigm for TPBC from single-target therapies to multi-pathway, multitarget strategies aiming to comprehensively modulate intricate signaling networks, thereby overcoming resistance and enhancing therapeutic outcomes. Among multiple strategies, triple-drug therapy has emerged as a promising treatment modality, demonstrating potential efficacy in patients with TPBC. Moving forward, there is a critical need to perform in-depth analyses of specific mechanisms of cancer pathogenesis and metastasis, decipher the complex interactions between different genes or proteins, and identify concrete molecular targets, thus paving the way for the development of tailored therapeutic strategies to combat TPBC effectively.
Collapse
Affiliation(s)
- Jie Xie
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zhihui Yang
- Zunyi Medical University, No.6 Xuefu West Road, Zunyi, 563006, Guizhou Province, China
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Zhuolin Li
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Tianyu Zhang
- Urology Department, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Huan Chen
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Xueru Chen
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Zehua Dai
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Tao Chen
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China.
| |
Collapse
|
3
|
Poskus MD, McDonald J, Laird M, Li R, Norcoss K, Zervantonakis IK. Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells. Cell Mol Bioeng 2024; 17:491-506. [PMID: 39513002 PMCID: PMC11538110 DOI: 10.1007/s12195-024-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells. Methods Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts. Results Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity. Conclusions Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00823-0.
Collapse
Affiliation(s)
- Matthew D. Poskus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Jacob McDonald
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Matthew Laird
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ruxuan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Kyle Norcoss
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
4
|
Wang C, Bai C, Zhang Z, Zhou H, Gao H, Wang S, Yuan Y. UGT1A7 altered HER2-positive breast cancer response to trastuzumab by affecting epithelial-to-mesenchymal transition: A potential biomarker to identify patients resistant to trastuzumab treatment. Cancer Gene Ther 2024; 31:1525-1535. [PMID: 39122832 DOI: 10.1038/s41417-024-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
HER2-positive (HER2+) breast cancer accounts for 20-30% of all breast cancers. Although trastuzumab has significantly improved the survival of patients with HER2+ breast cancer, more than 70% of patients develop drug resistance within one year of treatment. Differential-gene-expression analysis of trastuzumab-sensitive and resistant HER2+ breast cancer cell lines from GSE15043 was performed to identify the biomarkers associated with trastuzumab resistance. Differential biomarker expression was confirmed in FFPE tissues collected from clinical HER2+ breast cancer tumor samples that were sensitive or resistant to trastuzumab treatment. UGT1A7, a member of the uronic acid transferase family, was associated with trastuzumab resistance. UGT1A7 expression was downregulated in trastuzumab-resistant tumor tissues and in a cell line that developed trastuzumab resistance (BT474TR). Overexpressing UGT1A7 in BT474TR restored their sensitivity to trastuzumab treatment, whereas downregulating UGT1A7 expression in parental cells led to trastuzumab resistance. Importantly, UGT1A7 localized to the endoplasmic reticulum and altered stress responses. Furthermore, downregulating UGT1A7 expression promoted epithelial-to-mesenchymal transition (EMT) by affecting TWIST, SNAIL, and GRP78 expression and the AMP-activated protein kinase signaling pathway, thus contributing to trastuzumab resistance. This study demonstrated the important role and novel mechanisms of UGT1A7 in tumor responses to trastuzumab. Low UGT1A7 expression plays an important role in EMT and contributes to trastuzumab resistance. UGT1A7 has the potential to be developed as a biomarker for identifying patients who are resistant to trastuzumab treatment.
Collapse
Affiliation(s)
- Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Chenguang Bai
- Department of Radiology, Jiangsu Cancer Hospital &Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhe Zhang
- Department of Pathology, Jiangsu Cancer Hospital &Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhou
- Department of Chemotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital &Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Yuan
- Department of Chemotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, Martin-Castillo B, Lupu R, Pujana MA, Sardanyès J, Alarcón T, Menendez JA. Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov 2024; 10:417. [PMID: 39349429 PMCID: PMC11442875 DOI: 10.1038/s41420-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024] Open
Abstract
Fatty acid synthase (FASN)-catalyzed endogenous lipogenesis is a hallmark of cancer metabolism. However, whether FASN is an intrinsic mechanism of tumor cell defense against T cell immunity remains unexplored. To test this hypothesis, here we combined bioinformatic analysis of the FASN-related immune cell landscape, real-time assessment of cell-based immunotherapy efficacy in CRISPR/Cas9-based FASN gene knockout (FASN KO) cell models, and mathematical and mechanistic evaluation of FASN-driven immunoresistance. FASN expression negatively correlates with infiltrating immune cells associated with cancer suppression, cytolytic activity signatures, and HLA-I expression. Cancer cells engineered to carry a loss-of-function mutation in FASN exhibit an enhanced cytolytic response and an accelerated extinction kinetics upon interaction with cytokine-activated T cells. Depletion of FASN results in reduced carrying capacity, accompanied by the suppression of mitochondrial OXPHOS and strong downregulation of electron transport chain complexes. Targeted FASN depletion primes cancer cells for mitochondrial apoptosis as it synergizes with BCL-2/BCL-XL-targeting BH3 mimetics to render cancer cells more susceptible to T-cell-mediated killing. FASN depletion prevents adaptive induction of PD-L1 in response to interferon-gamma and reduces constitutive overexpression of PD-L1 by abolishing PD-L1 post-translational palmitoylation. FASN is a novel tumor cell-intrinsic metabolic checkpoint that restricts T cell immunity and may be exploited to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Stefano Pedarra
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Miguel Angel Pardo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roderic Espin Garcia
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Eduard Teixidor
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071, Girona, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007, Girona, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Unit of Clinical Research, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Sardanyès
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain.
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
| |
Collapse
|
6
|
Gao Y, Shelling AN, Nolan E, Porter D, Leung E, Wu Z. Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells. J Liposome Res 2024; 34:489-506. [PMID: 38269490 DOI: 10.1080/08982104.2024.2305866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.
Collapse
Affiliation(s)
- Yu Gao
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Emma Nolan
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David Porter
- Auckland Regional Cancer and Blood Service, Auckland City Hospital, Auckland, New Zealand
| | - Euphemia Leung
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Subbalakshmi AR, Ramisetty S, Mohanty A, Pareek S, Do D, Shrestha S, Khan A, Talwar N, Tan T, Vishnubhotla P, Singhal SS, Salgia R, Kulkarni P. Phenotypic Plasticity and Cancer: A System Biology Perspective. J Clin Med 2024; 13:4302. [PMID: 39124569 PMCID: PMC11313222 DOI: 10.3390/jcm13154302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a major axis of phenotypic plasticity not only in diseased conditions such as cancer metastasis and fibrosis but also during normal development and wound healing. Yet-another important axis of plasticity with metastatic implications includes the cancer stem cell (CSCs) and non-CSC transitions. However, in both processes, epithelial (E) and mesenchymal (M) phenotypes are not merely binary states. Cancer cells acquire a spectrum of phenotypes with traits, properties, and markers of both E and M phenotypes, giving rise to intermediary hybrid (E/M) phenotypes. E/M cells play an important role in tumor initiation, metastasis, and disease progression in multiple cancers. Furthermore, the hybrid phenotypes also play a major role in causing therapeutic resistance in cancer. Here, we discuss how a systems biology perspective on the problem, which is implicit in the 'Team Medicine' approach outlined in the theme of this Special Issue of The Journal of Clinical Medicine and includes an interdisciplinary team of experts, is more likely to shed new light on EMT in cancer and help us to identify novel therapeutics and strategies to target phenotypic plasticity in cancer.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sagun Shrestha
- Department of Medical Oncology and Therapeutics Research, City of Hope Phoenix, Goodyear, AZ 85338, USA
| | - Ajaz Khan
- Department of Medical Oncology and Therapeutics Research, City of Hope Chicago, Zion, IL 60099, USA
| | - Neel Talwar
- Department of Medical Oncology and Therapeutics Research, City of Hope San Bernardino Road, Upland, CA 91786, USA
| | - Tingting Tan
- Department of Medical Oncology and Therapeutics Research, City of Hope Avocado Avenue, Newport Beach, CA 92660, USA
| | - Priya Vishnubhotla
- Department of Medical Oncology and Therapeutics Research, City of Hope Atlanta, Newnan, GA 30265, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
8
|
MacFawn I, Farris J, Pifer P, Margaryan NV, Akhter H, Wang L, Dziadowicz S, Denvir J, Hu G, Frisch SM. Grainyhead-like-2, an epithelial master programmer, promotes interferon induction and suppresses breast cancer recurrence. Mol Immunol 2024; 170:156-169. [PMID: 38692097 PMCID: PMC11106721 DOI: 10.1016/j.molimm.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.
Collapse
Affiliation(s)
- Ian MacFawn
- Department of Immunology, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Joshua Farris
- Wake Forest University, Department of Radiation Oncology, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Phillip Pifer
- Department of Radiation Oncology, WVU Cancer Institute, 1 Medical Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- WVU Cancer Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA
| | - James Denvir
- Byrd Biotechnology Center, Marshall University, One John Marshall Drive, Huntington, WV 25701, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, 64 Medical Center Drive, Box 9142, Morgantown, WV 26505, USA.
| | - Steven M Frisch
- Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, Box 9142, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
9
|
Poskus MD, McDonald J, Laird M, Li R, Norcoss K, Zervantonakis IK. Rational design of HER2-targeted combination therapies to reverse drug resistance in fibroblast-protected HER2+ breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594826. [PMID: 38798591 PMCID: PMC11118562 DOI: 10.1101/2024.05.18.594826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells. Methods Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts. Results Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity. Conclusions Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells.
Collapse
|
10
|
Rönnlund C, Sifakis EG, Schagerholm C, Yang Q, Karlsson E, Chen X, Foukakis T, Weidler J, Bates M, Fredriksson I, Robertson S, Hartman J. Prognostic impact of HER2 biomarker levels in trastuzumab-treated early HER2-positive breast cancer. Breast Cancer Res 2024; 26:24. [PMID: 38321542 PMCID: PMC10848443 DOI: 10.1186/s13058-024-01779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Overexpression of human epidermal growth factor receptor 2 (HER2) caused by HER2 gene amplification is a driver in breast cancer tumorigenesis. We aimed to investigate the prognostic significance of manual scoring and digital image analysis (DIA) algorithm assessment of HER2 copy numbers and HER2/CEP17 ratios, along with ERBB2 mRNA levels among early-stage HER2-positive breast cancer patients treated with trastuzumab. METHODS This retrospective study comprised 371 early HER2-positive breast cancer patients treated with adjuvant trastuzumab, with HER2 re-testing performed on whole tumor sections. Digitized tumor tissue slides were manually scored and assessed with uPath HER2 Dual ISH image analysis, breast algorithm. Targeted ERBB2 mRNA levels were assessed by the Xpert® Breast Cancer STRAT4 Assay. HER2 copy number and HER2/CEP17 ratio from in situ hybridization assessment, along with ERBB2 mRNA levels, were explored in relation to recurrence-free survival (RFS). RESULTS The analysis showed that patients with tumors with the highest and lowest manually counted HER2 copy number levels had worse RFS than those with intermediate levels (HR = 2.7, CI 1.4-5.3, p = 0.003 and HR = 2.1, CI 1.1-3.9, p = 0.03, respectively). A similar trend was observed for HER2/CEP17 ratio, and the DIA algorithm confirmed the results. Moreover, patients with tumors with the highest and the lowest values of ERBB2 mRNA had a significantly worse prognosis (HR = 2.7, CI 1.4-5.1, p = 0.003 and HR = 2.8, CI 1.4-5.5, p = 0.004, respectively) compared to those with intermediate levels. CONCLUSIONS Our findings suggest that the association between any of the three HER2 biomarkers and RFS was nonlinear. Patients with tumors with the highest levels of HER2 gene amplification or ERBB2 mRNA were associated with a worse prognosis than those with intermediate levels, which is of importance to investigate in future clinical trials studying HER2-targeted therapy.
Collapse
Affiliation(s)
- Caroline Rönnlund
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden.
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | - Emmanouil G Sifakis
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Caroline Schagerholm
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Qiao Yang
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Emelie Karlsson
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jodi Weidler
- Medical and Scientific Affairs and Strategy, Oncology, Cepheid, Sunnyvale, CA, USA
| | - Michael Bates
- Medical and Scientific Affairs and Strategy, Oncology, Cepheid, Sunnyvale, CA, USA
| | - Irma Fredriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast-, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Stephanie Robertson
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 56, CCK R8:04, 17176, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Medtechlabs, Bioclinicum, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Rodrigues P, Bangali H, Ali E, Nauryzbaevish AS, Hjazi A, Fenjan MN, Alawadi A, Alsaalamy A, Alasheqi MQ, Mustafa YF. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol Res Pract 2024; 253:154990. [PMID: 38056132 DOI: 10.1016/j.prp.2023.154990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Abdreshov Serik Nauryzbaevish
- Institute of Genetics and Physiology SC MSHE RK, Laboratory of Physiology Lymphatic System, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
12
|
Dalmasso G, Cougnoux A, Faïs T, Bonnin V, Mottet-Auselo B, Nguyen HTT, Sauvanet P, Barnich N, Jary M, Pezet D, Delmas J, Bonnet R. Colibactin-producing Escherichia coli enhance resistance to chemotherapeutic drugs by promoting epithelial to mesenchymal transition and cancer stem cell emergence. Gut Microbes 2024; 16:2310215. [PMID: 38374654 PMCID: PMC10880512 DOI: 10.1080/19490976.2024.2310215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Human colorectal cancers (CRCs) are readily colonized by colibactin-producing E. coli (CoPEC). CoPEC induces DNA double-strand breaks, DNA mutations, genomic instability, and cellular senescence. Infected cells produce a senescence-associated secretory phenotype (SASP), which is involved in the increase in tumorigenesis observed in CRC mouse models infected with CoPEC. This study investigated whether CoPEC, and the SASP derived from CoPEC-infected cells, impacted chemotherapeutic resistance. Human intestinal epithelial cells were infected with the CoPEC clinical 11G5 strain or with its isogenic mutant, which is unable to produce colibactin. Chemotherapeutic resistance was assessed in vitro and in a xenograft mouse model. Expressions of cancer stem cell (CSC) markers in infected cells were investigated. Data were validated using a CRC mouse model and human clinical samples. Both 11G5-infected cells, and uninfected cells incubated with the SASP produced by 11G5-infected cells exhibited an increased resistance to chemotherapeutic drugs in vitro and in vivo. This finding correlated with the induction of the epithelial to mesenchymal transition (EMT), which led to the emergence of cells exhibiting CSC features. They grew on ultra-low attachment plates, formed colonies in soft agar, and overexpressed several CSC markers (e.g. CD133, OCT-3/4, and NANOG). In agreement with these results, murine and human CRC biopsies colonized with CoPEC exhibited higher expression levels of OCT-3/4 and NANOG than biopsies devoid of CoPEC. Conclusion: CoPEC might aggravate CRCs by inducing the emergence of cancer stem cells that are highly resistant to chemotherapy.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antony Cougnoux
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Virginie Bonnin
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Benoit Mottet-Auselo
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Hang TT Nguyen
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Nicolas Barnich
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marine Jary
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Denis Pezet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Chirurgie Digestive, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Julien Delmas
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | - Richard Bonnet
- Inserm U1071, USC-INRAe INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Centre de Recherche en Nutrition Humaine Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, Clermont-Ferrand, France
- Centre de référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
13
|
Nicolazzo C, Francescangeli F, Magri V, Giuliani A, Zeuner A, Gazzaniga P. Is cancer an intelligent species? Cancer Metastasis Rev 2023; 42:1201-1218. [PMID: 37540301 PMCID: PMC10713722 DOI: 10.1007/s10555-023-10123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Some relevant emerging properties of intelligent systems are "adaptation to a changing environment," "reaction to unexpected situations," "capacity of problem solving," and "ability to communicate." Single cells have remarkable abilities to adapt, make adequate context-dependent decision, take constructive actions, and communicate, thus theoretically meeting all the above-mentioned requirements. From a biological point of view, cancer can be viewed as an invasive species, composed of cells that move from primary to distant sites, being continuously exposed to changes in the environmental conditions. Blood represents the first hostile habitat that a cancer cell encounters once detached from the primary site, so that cancer cells must rapidly carry out multiple adaptation strategies to survive. The aim of this review was to deepen the adaptation mechanisms of cancer cells in the blood microenvironment, particularly referring to four adaptation strategies typical of animal species (phenotypic adaptation, metabolic adaptation, niche adaptation, and collective adaptation), which together define the broad concept of biological intelligence. We provided evidence that the required adaptations (either structural, metabolic, and related to metastatic niche formation) and "social" behavior are useful principles allowing putting into a coherent frame many features of circulating cancer cells. This interpretative frame is described by the comparison with analog behavioral traits typical of various animal models.
Collapse
Affiliation(s)
- Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Valentina Magri
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paola Gazzaniga
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
14
|
Wu X, Huang S, He W, Song M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int Immunopharmacol 2023; 122:110602. [PMID: 37437432 DOI: 10.1016/j.intimp.2023.110602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
HER2 is an established therapeutic target in breast, gastric, and gastroesophageal junction carcinomas with HER2 overexpression or genomic alterations. The humanized monoclonal antibody trastuzumab targeting HER2 has substantially improved the clinical outcomes of HER2-positive patients, yet the inevitable intrinsic or acquired resistance to trastuzumab limits its clinical benefit, necessitating the elucidation of resistance mechanisms to develop alternate therapeutic strategies. This review presents an overview of trastuzumab resistance mechanisms involving signaling pathways, cellular metabolism, cell plasticity, and tumor microenvironment, particularly discussing the prospects of developing rational combinations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
15
|
Cabello P, Torres-Ruiz S, Adam-Artigues A, Forés-Martos J, Martínez MT, Hernando C, Zazo S, Madoz-Gúrpide J, Rovira A, Burgués O, Rojo F, Albanell J, Lluch A, Bermejo B, Cejalvo JM, Eroles P. miR-146a-5p Promotes Angiogenesis and Confers Trastuzumab Resistance in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:cancers15072138. [PMID: 37046799 PMCID: PMC10093389 DOI: 10.3390/cancers15072138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells’ exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- International University of Valencia—VIU, 46002 Valencia, Spain
| | | | | | | | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | | | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Pathology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Federico Rojo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
16
|
Integrin αvβ3 Is a Master Regulator of Resistance to TKI-Induced Ferroptosis in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041216. [PMID: 36831558 PMCID: PMC9954089 DOI: 10.3390/cancers15041216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvβ3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvβ3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this "αvβ3 integrin addiction" can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients.
Collapse
|
17
|
Alghamian Y, Soukkarieh C, Abbady AQ, Murad H. Investigation of role of CpG methylation in some epithelial mesenchymal transition gene in a chemoresistant ovarian cancer cell line. Sci Rep 2022; 12:7494. [PMID: 35523936 PMCID: PMC9076839 DOI: 10.1038/s41598-022-11634-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer is one of the lethal gynecologic cancers. Chemoresistance is an essential reason for treatment failure and high mortality. Emerging evidence connects epithelial-mesenchymal transition (EMT) like changes and acquisition of chemoresistance in cancers. Including EMT, DNA methylation influences cellular processes. Here, EMT-like changes were investigated in cisplatin-resistant A2780 ovarian cancer cells (A2780cis), wherein role of DNA methylation in some EMT genes regulations was studied. Cell viability assay was carried out to test the sensitivity of A2780, and A2780cis human cancer cell lines to cisplatin. Differential mRNA expression of EMT markers using qPCR was conducted to investigate EMT like changes. CpG methylation role in gene expression regulation was investigated by 5-azacytidine (5-aza) treatment. DNA methylation changes in EMT genes were identified using Methylscreen assay between A2780 and A2780cis cells. In order to evaluate if DNA methylation changes are causally underlying EMT, treatment with 5-aza followed by Cisplatin was done on A2780cis cells. Accordingly, morphological changes were studied under the microscope, whereas EMT marker's gene expression changes were investigated using qPCR. In this respect, A2780cis cell line has maintained its cisplatin tolerance ability and exhibits phenotypic changes congruent with EMT. Methylscreen assay and qPCR study have revealed DNA hypermethylation in promoters of epithelial adhesion molecules CDH1 and EPCAM in A2780cis compared to the cisplatin-sensitive parental cells. These changes were concomitant with gene expression down-regulation. DNA hypomethylation associated with transcription up-regulation of the mesenchymal marker TWIST2 was observed in the resistant cells. Azacytidine treatment confirmed DNA methylation role in regulating gene expression of CDH1, EPCAM and TWIST2 genes. A2780cis cell line undergoes EMT like changes, and EMT genes are regulated by DNA methylation. To that end, a better understanding of the molecular alterations that correlate with chemoresistance may lead to therapeutic benefits such as chemosensitivity restoration.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdul Qader Abbady
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Hossam Murad
- Human Genetics Division, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| |
Collapse
|
18
|
Buocikova V, Longhin EM, Pilalis E, Mastrokalou C, Miklikova S, Cihova M, Poturnayova A, Mackova K, Babelova A, Trnkova L, El Yamani N, Zheng C, Rios-Mondragon I, Labudova M, Csaderova L, Kuracinova KM, Makovicky P, Kucerova L, Matuskova M, Cimpan MR, Dusinska M, Babal P, Chatziioannou A, Gabelova A, Rundén-Pran E, Smolkova B. Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models. Biomed Pharmacother 2022; 147:112662. [DOI: 10.1016/j.biopha.2022.112662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
|
19
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
The Autophagic Route of E-Cadherin and Cell Adhesion Molecules in Cancer Progression. Cancers (Basel) 2021; 13:cancers13246328. [PMID: 34944948 PMCID: PMC8699259 DOI: 10.3390/cancers13246328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary A hallmark of carcinoma progression is the loss of epithelial integrity. In this context, the deregulation of adhesion molecules, such as E-cadherin, affects epithelial structures and associates with epithelial to mesenchymal transition (EMT). This, in turn, fosters cancer progression. Autophagy endows cancer cells with the ability to overcome intracellular and environmental stress stimuli, such as anoikis, nutrient deprivation, hypoxia, and drugs. Furthermore, it plays an important role in the degradation of cell adhesion proteins and in EMT. This review focuses on the interplay between the turnover of adhesion molecules, primarily E-cadherin, and autophagy in cancer progression. Abstract Cell-to-cell adhesion is a key element in epithelial tissue integrity and homeostasis during embryogenesis, response to damage, and differentiation. Loss of cell adhesion and gain of mesenchymal features, a phenomenon known as epithelial to mesenchymal transition (EMT), are essential steps in cancer progression. Interestingly, downregulation or degradation by endocytosis of epithelial adhesion molecules (e.g., E-cadherin) associates with EMT and promotes cell migration. Autophagy is a physiological intracellular degradation and recycling process. In cancer, it is thought to exert a tumor suppressive role in the early phases of cell transformation but, once cells have gained a fully transformed phenotype, autophagy may fuel malignant progression by promoting EMT and conferring drug resistance. In this review, we discuss the crosstalk between autophagy, EMT, and turnover of epithelial cell adhesion molecules, with particular attention to E-cadherin.
Collapse
|
21
|
Zhao D, Fu X, Rohr J, Wang Y, Li M, Zhang X, Qin J, Xu M, Li C, Sun G, Wang Z, Guo S. Poor histologic tumor response after adjuvant therapy in basal-like HER2-positive breast carcinoma. Pathol Res Pract 2021; 228:153677. [PMID: 34775151 DOI: 10.1016/j.prp.2021.153677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
AIMS HER2-positive breast carcinomas are all treated with first-line anti-HER2 therapy. However, immunohistochemical and molecular profiling demonstrates significant heterogeneity among HER2-positive carcinomas. Basal-like HER2-positive breast carcinomas are poorly differentiated from pure HER2-positive breast carcinomas. MATERIALS AND METHODS Seventy-five patients with HER2-positive, ER- and PR-negative breast carcinomas who received anti-HER2 based neoadjuvant therapy were retrospectively analyzed. Thirty-seven cases were classified as basal-like HER2-positive breast carcinoma with any positivity for CK5/6, and thirty-eight cases were classified as pure HER2-positive breast carcinoma with completely negativity for CK5/6. The clinicopathological features and tumor responses after neoadjuvant therapy and outcomes were analyzed. RESULTS Compared to non-basal HER2-positive breast carcinoma, basal-like HER2-positive breast carcinoma showed distinctive histologic features including poor differentiation and syncytial tumor cells with pushing, invasive borders and a significantly higher proportion of apocrine metaplasia. They also demonstrated significantly higher histologic grade; 18/37 (48.6%) of basal-like carcinomas were grade 3, whereas only 5/38 (13.2%) of non-basal carcinomas were grade 3 (p = 0.001), Furthermore, basal-like HER2-positive breast carcinomas were more likely to be positive or completely negative for p53 (p = 0.009), and demonstrated a higher percentage of TP53 mutation (p = 0.17). These tumors were less responsive to anti-HER2 based neoadjuvant therapy, with Miller-Payne grades 1-3 higher than pure HER2-positive breast carcinoma (25/37 [67.6%] vs 16/38 [42.1%]), and the percentage of grade 4-5 was lower (12/37 [32.4%] vs 22/38 [57.9%]; p = 0.027). CONCLUSIONS Basal-like HER2-positive breast carcinoma has distinctive clinicopathological features and less histologic tumor response after neoadjuvant therapy. There is urgent need to recognize basal-like HER2-positive breast carcinoma to be treated precisely.
Collapse
Affiliation(s)
- Danhui Zhao
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Xin Fu
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Joseph Rohr
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, 68105, NE, USA
| | - Yingmei Wang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Mingyang Li
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Xiuming Zhang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Junhui Qin
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Mengwei Xu
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Chao Li
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Guorui Sun
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China
| | - Zhe Wang
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China.
| | - Shuangping Guo
- Department of Pathology, the First Affinity Hospital of the Air Force Military Medical University, Xi'an, Shaan Xi Province, 710032, China.
| |
Collapse
|
22
|
The C-terminal HSP90 inhibitor NCT-58 kills trastuzumab-resistant breast cancer stem-like cells. Cell Death Dis 2021; 7:354. [PMID: 34775489 PMCID: PMC8590693 DOI: 10.1038/s41420-021-00743-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
N-terminal HSP90 inhibitors in development have had issues arising from heat shock response (HSR) induction and off-target effects. We sought to investigate the capacity of NCT-58, a rationally-synthesized C-terminal HSP90 inhibitor, to kill trastuzumab-resistant HER2-positive breast cancer stem-like cells. NCT-58 does not induce the HSR due to its targeting of the C-terminal region and elicits anti-tumor activity via the simultaneous downregulation of HER family members as well as inhibition of Akt phosphorylation. NCT-58 kills the rapidly proliferating bulk tumor cells as well as the breast cancer stem-like population, coinciding with significant reductions in stem/progenitor markers and pluripotent transcription factors. NCT-58 treatment suppressed growth and angiogenesis in a trastuzumab-resistant xenograft model, concomitant with downregulation of ICD-HER2 and HSF-1/HSP70/HSP90. These findings warrant further investigation of NCT-58 to address trastuzumab resistance in heterogeneous HER2-positive cancers.
Collapse
|
23
|
Pupa SM, Ligorio F, Cancila V, Franceschini A, Tripodo C, Vernieri C, Castagnoli L. HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers (Basel) 2021; 13:cancers13194778. [PMID: 34638263 PMCID: PMC8507865 DOI: 10.3390/cancers13194778] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer (BC) is not a single disease, but a group of different tumors, and altered HER2 expression defines a particularly aggressive subtype. Although HER2 pharmacological inhibition has dramatically improved the prognosis of HER2-positive BC patients, there is still an urgent need for improved knowledge of HER2 biology and mechanisms underlying HER2-driven aggressiveness and drug susceptibility. Emerging data suggest that the clinical efficacy of molecularly targeted therapies is related to their ability to target breast cancer stem cells (BCSCs), a population that is not only self-sustaining and able to differentiate into distinct lineages, but also contributes to tumor growth, aggressiveness, metastasis and treatment resistance. The aim of this review is to provide an overview of how the full-length HER2 receptor, the d16HER2 splice variant and the truncated p95HER2 variants are involved in the regulation and maintenance of BCSCs. Abstract HER2 overexpression/amplification occurs in 15–20% of breast cancers (BCs) and identifies a highly aggressive BC subtype. Recent clinical progress has increased the cure rates of limited-stage HER2-positive BC and significantly prolonged overall survival in patients with advanced disease; however, drug resistance and tumor recurrence remain major concerns. Therefore, there is an urgent need to increase knowledge regarding HER2 biology and implement available treatments. Cancer stem cells (CSCs) represent a subset of malignant cells capable of unlimited self-renewal and differentiation and are mainly considered to contribute to tumor onset, aggressiveness, metastasis, and treatment resistance. Seminal studies have highlighted the key role of altered HER2 signaling in the maintenance/enrichment of breast CSCs (BCSCs) and elucidated its bidirectional communication with stemness-related pathways, such as the Notch and Wingless/β-catenin cascades. d16HER2, a splice variant of full-length HER2 mRNA, has been identified as one of the most oncogenic HER2 isoform significantly implicated in tumorigenesis, epithelial-mesenchymal transition (EMT)/stemness and the response to targeted therapy. In addition, expression of a heterogeneous collection of HER2 truncated carboxy-terminal fragments (CTFs), collectively known as p95HER2, identifies a peculiar subgroup of HER2-positive BC with poor prognosis, with the p95HER2 variants being able to regulate CSC features. This review provides a comprehensive overview of the current evidence regarding HER2-/d16HER2-/p95HER2-positive BCSCs in the context of the signaling pathways governing their properties and describes the future prospects for targeting these components to achieve long-lasting tumor control.
Collapse
Affiliation(s)
- Serenella M. Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
- Correspondence: ; Tel.: +39-022-390-2573; Fax: +39-022-390-2692
| | - Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Alma Franceschini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
- IFOM the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| |
Collapse
|
24
|
Epigenetic Silencing of HER2 Expression during Epithelial-Mesenchymal Transition Leads to Trastuzumab Resistance in Breast Cancer. Life (Basel) 2021; 11:life11090868. [PMID: 34575017 PMCID: PMC8472246 DOI: 10.3390/life11090868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
HER2 receptor tyrosine kinase (encoded by the ERBB2 gene) is overexpressed in approximately 25% of all breast cancer tumors (HER2-positive breast cancers). Resistance to HER2-targeting therapies is partially due to the loss of HER2 expression in tumor cells during treatment. However, little is known about the exact mechanism of HER2 downregulation in HER2-positive tumor cells. Here, by analyzing publicly available genomic data we investigate the hypothesis that epithelial-mesenchymal transition (EMT) abrogates HER2 expression by epigenetic silencing of the ERBB2 gene as a mechanism of acquired resistance to HER2-targeted therapies. As result, HER2 expression was found to be positively and negatively correlated with the expression of epithelial and mesenchymal phenotype marker genes, respectively. The ERBB2 chromatin of HER2-high epithelial-like breast cancer cells and HER2-low mesenchymal-like cells were found to be open/active and closed/inactive, respectively. Decreased HER2 expression was correlated with increased EMT phenotype, inactivated chromatin and lower response to lapatinib. We also found that induction of EMT in the HER2-positive breast cancer cell line BT474 resulted in downregulated HER2 expression and reduced trastuzumab binding. Our results suggest that ERBB2 gene silencing by epigenetic regulation during EMT may be a mechanism of de novo resistance of HER2-positive breast cancer cells to trastuzumab and lapatinib.
Collapse
|
25
|
Zahan T, Das PK, Akter SF, Habib R, Rahman MH, Karim MR, Islam F. Therapy Resistance in Cancers: Phenotypic, Metabolic, Epigenetic and Tumour Microenvironmental Perspectives. Anticancer Agents Med Chem 2021; 20:2190-2206. [PMID: 32748758 DOI: 10.2174/1871520620999200730161829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chemoresistance is a vital problem in cancer therapy where cancer cells develop mechanisms to encounter the effect of chemotherapeutics, resulting in cancer recurrence. In addition, chemotherapy- resistant leads to the formation of a more aggressive form of cancer cells, which, in turn, contributes to the poor survival of patients with cancer. OBJECTIVE In this review, we aimed to provide an overview of how the therapy resistance property evolves in cancer cells, contributing factors and their role in cancer chemoresistance, and exemplified the problems of some available therapies. METHODS The published literature on various electronic databases including, Pubmed, Scopus, Google scholar containing keywords cancer therapy resistance, phenotypic, metabolic and epigenetic factors, were vigorously searched, retrieved and analyzed. RESULTS Cancer cells have developed a range of cellular processes, including uncontrolled activation of Epithelial- Mesenchymal Transition (EMT), metabolic reprogramming and epigenetic alterations. These cellular processes play significant roles in the generation of therapy resistance. Furthermore, the microenvironment where cancer cells evolve effectively contributes to the process of chemoresistance. In tumour microenvironment immune cells, Mesenchymal Stem Cells (MSCs), endothelial cells and cancer-associated fibroblasts (CAFs) contribute to the maintenance of therapy-resistant phenotype via the secretion of factors that promote resistance to chemotherapy. CONCLUSION To conclude, as these factors hinder successful cancer therapies, therapeutic resistance property of cancer cells is a subject of intense research, which in turn could open a new horizon to aim for developing efficient therapies.
Collapse
Affiliation(s)
- Tasnim Zahan
- Molecular Mechanisms of Disease, Radboud University, Nijmegen, The Netherlands
| | - Plabon K Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Syeda F Akter
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Rowshanul Habib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Habibur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Rezaul Karim
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh,Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
26
|
Qiu Y, Yang L, Liu H, Luo X. Cancer stem cell-targeted therapeutic approaches for overcoming trastuzumab resistance in HER2-positive breast cancer. STEM CELLS (DAYTON, OHIO) 2021; 39:1125-1136. [PMID: 33837587 DOI: 10.1002/stem.3381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Application of the anti-HER2 drug trastuzumab has significantly improved the prognosis of patients with the HER2-positive subtype of breast cancer. However, 50% of patients with HER2 amplification relapse due to trastuzumab resistance. Accumulating evidence indicates that breast cancer is driven by a small subset of cancer-initiating cells or breast cancer stem cells (BCSCs), which have the capacity to self-renew and differentiate to regenerate the tumor cell hierarchy. Increasing data suggest that BCSCs are resistant to conventional therapy, including chemotherapy, radiotherapy, and endocrine therapy, which drives distant metastasis and breast cancer relapse. In recent years, the trastuzumab resistance of breast cancer has been closely related to the prevalence of BCSCs. Here, our primary focus is to discuss the role of epithelial-mesenchymal transition (EMT) of BCSCs in the setting of trastuzumab resistance and approaches of reducing or eradicating BCSCs in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Honghong Liu
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Azad AKM, Alyami SA. Discovering novel cancer bio-markers in acquired lapatinib resistance using Bayesian methods. Brief Bioinform 2021; 22:6226686. [PMID: 33857297 DOI: 10.1093/bib/bbab137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/20/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Signalling transduction pathways (STPs) are commonly hijacked by many cancers for their growth and malignancy, but demystifying their underlying mechanisms is difficult. Here, we developed methodologies with a fully Bayesian approach in discovering novel driver bio-markers in aberrant STPs given high-throughput gene expression (GE) data. This project, namely 'PathTurbEr' (Pathway Perturbation Driver) uses the GE dataset derived from the lapatinib (an EGFR/HER dual inhibitor) sensitive and resistant samples from breast cancer cell lines (SKBR3). Differential expression analysis revealed 512 differentially expressed genes (DEGs) and their pathway enrichment revealed 13 highly perturbed singalling pathways in lapatinib resistance, including PI3K-AKT, Chemokine, Hippo and TGF-$\beta $ singalling pathways. Next, the aberration in TGF-$\beta $ STP was modelled as a causal Bayesian network (BN) using three MCMC sampling methods, i.e. Neighbourhood sampler (NS) and Hit-and-Run (HAR) sampler that potentially yield robust inference with lower chances of getting stuck at local optima and faster convergence compared to other state-of-art methods. Next, we examined the structural features of the optimal BN as a statistical process that generates the global structure using $p_1$-model, a special class of Exponential Random Graph Models (ERGMs), and MCMC methods for their hyper-parameter sampling. This step enabled key drivers identification that drive the aberration within the perturbed BN structure of STP, and yielded 34, 34 and 23 perturbation driver genes out of 80 constituent genes of three perturbed STP models of TGF-$\beta $ signalling inferred by NS, HAR and MH sampling methods, respectively. Functional-relevance and disease-relevance analyses suggested their significant associations with breast cancer progression/resistance.
Collapse
Affiliation(s)
- A K M Azad
- iThree Institute, Faculty of Science, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Salem A Alyami
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
The role of epithelial-mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch Pharm Res 2021; 44:281-292. [PMID: 33768509 PMCID: PMC8009775 DOI: 10.1007/s12272-021-01321-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
The complex orchestration of gene expression that mediates the transition of epithelial cells into mesenchymal cells is implicated in cancer development and metastasis. As the primary regulator of the process, epithelial-mesenchymal transition-regulating transcription factors (EMT-TFs) play key roles in metastasis. They are also highlighted in recent preclinical studies on resistance to cancer therapy. This review describes the role of three main EMT-TFs, including Snail, Twist1, and zinc-finger E homeobox-binding 1 (ZEB1), relating to drug resistance and current possible approaches for future challenges targeting EMT-TFs.
Collapse
|
29
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
30
|
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020; 9:E34. [PMID: 32698317 PMCID: PMC7551545 DOI: 10.3390/antib9030034] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibody-based immunotherapy is now considered to be a main component of cancer therapy, alongside surgery, radiation, and chemotherapy. Monoclonal antibodies possess a diverse set of clinically relevant mechanisms of action. In addition, antibodies can directly target tumor cells while simultaneously promoting the induction of long-lasting anti-tumor immune responses. The multifaceted properties of antibodies as a therapeutic platform have led to the development of new cancer treatment strategies that will have major impacts on cancer care. This review focuses on the known mechanisms of action, current clinical applications for the treatment of cancer, and mechanisms of resistance of monoclonal antibody therapy. We further discuss how monoclonal antibody-based strategies have moved towards enhancing anti-tumor immune responses by targeting immune cells instead of tumor antigens as well as some of the current combination therapies.
Collapse
Affiliation(s)
- David Zahavi
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | - Louis Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
31
|
Sterneck E, Poria DK, Balamurugan K. Slug and E-Cadherin: Stealth Accomplices? Front Mol Biosci 2020; 7:138. [PMID: 32760736 PMCID: PMC7371942 DOI: 10.3389/fmolb.2020.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
During physiological epithelial-mesenchymal transition (EMT), which is important for embryogenesis and wound healing, epithelial cells activate a program to remodel their structure and achieve a mesenchymal fate. In cancer cells, EMT confers increased invasiveness and tumor-initiating capacity, which contribute to metastasis and resistance to therapeutics. However, cellular plasticity that navigates between epithelial and mesenchymal states and maintenance of a hybrid or partial E/M phenotype appears to be even more important for cancer progression. Besides other core EMT transcription factors, the well-characterized Snail-family proteins Snail (SNAI1) and Slug (SNAI2) play important roles in both physiological and pathological EMT. Often mentioned in unison, they do, however, differ in their functions in many scenarios. Indeed, Slug expression does not always correlate with complete EMT or loss of E-cadherin (CDH1). For example, Slug plays important roles in mammary epithelial cell progenitor cell lineage commitment and differentiation, DNA damage responses, hematopoietic stem cell self-renewal, and in pathologies such as pulmonary fibrosis and atherosclerosis. In this Perspective, we highlight Slug functions in mammary epithelial cells and breast cancer as a “non-EMT factor” in basal epithelial cells and stem cells with focus reports that demonstrate co-expression of Slug and E-cadherin. We speculate that Slug and E-cadherin may cooperate in normal mammary gland and breast cancer/stem cells and advocate for functional assessment of such Slug+/E-cadherinlow/+ (SNAI2+/CDH1low/+) “basal-like epithelial” cells. Thus, Slug may be regarded as less of an EMT factor than driver of the basal epithelial cell phenotype.
Collapse
Affiliation(s)
- Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Dipak K Poria
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
32
|
Gooding AJ, Schiemann WP. Epithelial-Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol Cancer Res 2020; 18:1257-1270. [PMID: 32503922 DOI: 10.1158/1541-7786.mcr-20-0067] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSC). Importantly, the net effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their "stemness" and acquisition of chemoresistant phenotypes.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
33
|
Vernot JP. Senescence-Associated Pro-inflammatory Cytokines and Tumor Cell Plasticity. Front Mol Biosci 2020; 7:63. [PMID: 32478091 PMCID: PMC7237636 DOI: 10.3389/fmolb.2020.00063] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
The well-recognized cell phenotypic heterogeneity in tumors is a great challenge for cancer treatment. Dynamic interconversion and movement within a spectrum of different cell phenotypes (cellular plasticity) with the acquisition of specific cell functions is a fascinating biological puzzle, that represent an additional difficulty for cancer treatment and novel therapies development. The understanding of the molecular mechanisms responsible for moving or stabilizing tumor cells within this spectrum of variable states constitutes a valuable tool to overcome these challenges. In particular, cell transitions between epithelial and mesenchymal phenotypes (EMT-MET) and de-and trans-differentiation processes are relevant, since it has been shown that they confer invasiveness, drug resistance, and metastatic ability, due to the simultaneous acquisition of stem-like cell properties. Multiple drivers participate in these cell conversions events. In particular, cellular senescence and senescence-associated soluble factors have been shown to unveil stem-like cell properties and cell plasticity. By modulating gradually the composition of their secretome and the time of exposure, senescent cells may have differential effect not only on tumor cells but also on surrounding cells. Intriguingly, tumor cells that scape from senescence acquire stem-like cell properties and aggressiveness. The reinforcement of senescence and inflammation by soluble factors and the participation of immune cells may provide a dynamic milieu having varied effects on cell transitions, reprogramming, plasticity, stemness and therefore heterogeneity. This will confer different epithelial/mesenchymal traits (hybrid phenotype) and stem-like cell properties, combinations of which, in a particular cell context, could be responsible for different cellular functions during cancer progression (survival, migration, invasion, colonization or proliferation). Additionally, cooperative behavior between cell subpopulations with different phenotypes/stemness functions could also modulate their cellular plasticity. Here, we will discuss the role of senescence and senescence-associated pro-inflammatory cytokines on the induction of cellular plasticity, their effect role in establishing particular states within this spectrum of cell phenotypes and how this is accompanied by stem-like cell properties that, as the epithelial transitions, may also have a continuum of characteristics providing tumor cells with functional adaptability specifically useful in the different stages of carcinogenesis.
Collapse
Affiliation(s)
- Jean Paul Vernot
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
34
|
Kong D, Hughes CJ, Ford HL. Cellular Plasticity in Breast Cancer Progression and Therapy. Front Mol Biosci 2020; 7:72. [PMID: 32391382 PMCID: PMC7194153 DOI: 10.3389/fmolb.2020.00072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
With the exception of non-melanoma skin cancer, breast cancer is the most frequently diagnosed malignant disease among women, with the majority of mortality being attributable to metastatic disease. Thus, even with improved early screening and more targeted treatments which may enable better detection and control of early disease progression, metastatic disease remains a significant problem. While targeted therapies exist for breast cancer patients with particular subtypes of the disease (Her2+ and ER/PR+), even in these subtypes the therapies are often not efficacious once the patient's tumor metastasizes. Increases in stemness or epithelial-to-mesenchymal transition (EMT) in primary breast cancer cells lead to enhanced plasticity, enabling tumor progression, therapeutic resistance, and distant metastatic spread. Numerous signaling pathways, including MAPK, PI3K, STAT3, Wnt, Hedgehog, and Notch, amongst others, play a critical role in maintaining cell plasticity in breast cancer. Understanding the cellular and molecular mechanisms that regulate breast cancer cell plasticity is essential for understanding the biology of breast cancer progression and for developing novel and more effective therapeutic strategies for targeting metastatic disease. In this review we summarize relevant literature on mechanisms associated with breast cancer plasticity, tumor progression, and drug resistance.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
35
|
Methodology to analyze gene expression patterns of early mammary development in pig models. Mol Biol Rep 2020; 47:3241-3248. [PMID: 32219771 DOI: 10.1007/s11033-020-05362-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
In mammary gland development, normal stem cell activity occurs in the embryonic stage and postnatally. Research supports that certain breast cancers contain a small sub-population of cells that mimic stem-like activity. It is believed stem cell activation in the mutated mature human mammary tissue is what drives quiescent epithelial cells to convert to mesenchymal states initiating migration, invasion, and metastasis in breast cancer. The goal of the work reported herein was to investigate early mammary development gene expression in the postnatal pig using fine needle biopsy methods in order to establish a reliable model for human breast cancer detection. Tissue samples were collected from pig mammary glands beginning at Day 11 of age through Day 39 in order to capture early postnatal-growth gene expression. Based on the initial clustering analysis, two distinct clusters of gene expression profiles occurred before and after Day 25 of mammary development. Gene set enrichment analysis (GSEA) ontology indicated the cellular processes that changed after Day 25, and many of these processes were implicated in epithelial-mesenchymal transition (EMT) signaling events. Gene expression in the postnatal pig was compared with the Epithelial-Mesenchymal Transition gene database (dbEMT) confirming the presence of EMT activity in this early developmental program. Information from this study will provide insight into early postnatal mammary gland development. In addition, mechanisms exploited by mutated mammary epithelial cells leading to cancer initiation and growth may be detected considering that mutated mammary epithelial cells can reactivate early developmental signals.
Collapse
|
36
|
Frigault MM, Markovets A, Nuttall B, Kim KM, Park SH, Gangolli EA, Mortimer PGS, Hollingsworth SJ, Hong JY, Kim K, Kim ST, Barrett JC, Lee J. Mechanisms of Acquired Resistance to Savolitinib, a Selective MET Inhibitor in MET-Amplified Gastric Cancer. JCO Precis Oncol 2020; 4:1900386. [PMID: 32923890 PMCID: PMC7446425 DOI: 10.1200/po.19.00386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Some gastric cancers harbor MET gene amplifications that can be targeted by selective MET inhibitors to achieve tumor responses, but resistance eventually develops. Savolitinib, a selective MET inhibitor, is beneficial for treating patients with MET-driven gastric cancer. Understanding the resistance mechanisms is important for optimizing postfailure treatment options. PATIENTS AND METHODS Here, we identified the mechanisms of acquired resistance to savolitinib in 3 patients with gastric cancer and MET-amplified tumors who showed a clinical response and then cancer progression. Longitudinal circulating tumor DNA (ctDNA) is useful for monitoring resistance during treatment and progression when rebiopsy cannot be performed. RESULTS Using a next-generation sequencing 100-gene panel, we identified the target mechanisms of resistance MET D1228V/N/H and Y1230C mutations or high copy number MET gene amplifications that emerge when resistance to savolitinib develops in patients with MET-amplified gastric cancer. CONCLUSION We demonstrated the utility of ctDNA in gastric cancer and confirmed this approach using baseline tumor tissue or rebiopsy.
Collapse
Affiliation(s)
| | | | | | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | - Jung Yong Hong
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Sun B, Mason S, Wilson RC, Hazard SE, Wang Y, Fang R, Wang Q, Yeh ES, Yang M, Roberts TM, Zhao JJ, Wang Q. Inhibition of the transcriptional kinase CDK7 overcomes therapeutic resistance in HER2-positive breast cancers. Oncogene 2020; 39:50-63. [PMID: 31462705 PMCID: PMC6937212 DOI: 10.1038/s41388-019-0953-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
Resistance of breast cancer to human epidermal growth factor receptor 2 (HER2) inhibitors involves reprogramming of the kinome through HER2/HER3 signaling via the activation of multiple tyrosine kinases and transcriptional upregulation. The heterogeneity of induced kinases prevents kinase targeting by a single kinase inhibitor and presents a major challenge to the treatment of therapeutically recalcitrant HER2-positive breast cancers (HER2+ BCs). As a result, there is a critical need for effective treatment that attacks the aberrant kinome activation associated with resistance to HER2-targeted therapy. Here, we describe a novel treatment strategy that targets cyclin-dependent kinase 7 (CDK7) in HER2 inhibitor-resistant (HER2iR) breast cancer. We show that both HER2 inhibitor-sensitive (HER2iS) and HER2iR breast cancer cell lines exhibit high sensitivity to THZ1, a newly identified covalent inhibitor of the transcription regulatory kinase CDK7. CDK7 promotes cell cycle progression through inhibition of transcription, rather than via direct phosphorylation of classical CDK targets. The transcriptional kinase activity of CDK7 is regulated by HER2, and by the receptor tyrosine kinases activated in response to HER2 inhibition, as well as by the downstream SHP2 and PI3K/AKT pathways. A low dose of THZ1 displayed potent synergy with the HER2 inhibitor lapatinib in HER2iR BC cells in vitro. Dual HER2 and CDK7 inhibition induced tumor regression in two HER2iR BC xenograft models in vivo. Our data support the utilization of CDK7 inhibition as an additional therapeutic avenue that blocks the activation of genes engaged by multiple HER2iR kinases.
Collapse
Affiliation(s)
- Bowen Sun
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, 510632, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Seth Mason
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Starr E Hazard
- Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yubao Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rong Fang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, 315211, China
| | - Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meixiang Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Qi Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
38
|
Down-regulation of long non-coding RNA HOTAIR sensitizes breast cancer to trastuzumab. Sci Rep 2019; 9:19881. [PMID: 31882666 PMCID: PMC6934784 DOI: 10.1038/s41598-019-53699-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the roles and possible molecular mechanisms of long non-coding RNA HOTAIR in regulating resistance to trastuzumab in breast cancer. Trastuzumab-resistant breast cancer cell line SK-BR-3-TR was assayed for the expression of HOX antisense intergenic RNA (HOTAIR), epithelial-mesenchymal transition (EMT)-related proteins or genes. Methylation levels of TGF- β, PTEN and cyclin-dependent kinase inhibitor 1B (or P27) were determined. In trastuzumab-resistant cell line, the mRNA level of HOTAIR was significantly up-regulated; in addition, the expression of TGF-β, Snail and Vimentin was also up-regulated, E-cadherin was down-regulated while the expression of HER2, PI3K, AKT, mTOR and MAPK in the HER2 receptor pathway and phosphorylation level of HER2 receptor remained unchanged, the methylation levels of the PTEN gene and TGF-β were increased and decreased, respectively. RNA interference downregulated the HOTAIR level and sensitized the cells to trastuzumab. It also resulted in down-regulation of TGF-β, Snail, Vimentin, p-AKT, p-APK and CyclinD1 and up-regulation of E-cadherin, PTEN and P27. Besides, the methylation levels of the PTEN gene and TGF-β were reduced and increased, respectively. Mouse models grafted with SK-BR-3-TR grew faster than with SK-BR-3-TS and siHOTAIR-SK-BR-3-TR.
Collapse
|
39
|
Arner EN, Du W, Brekken RA. Behind the Wheel of Epithelial Plasticity in KRAS-Driven Cancers. Front Oncol 2019; 9:1049. [PMID: 31681587 PMCID: PMC6798880 DOI: 10.3389/fonc.2019.01049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular plasticity, a feature associated with epithelial-to-mesenchymal transition (EMT), contributes to tumor cell survival, migration, invasion, and therapy resistance. Phenotypic plasticity of the epithelium is a critical feature in multiple phases of human cancer in an oncogene- and tissue-specific context. Many factors can drive epithelial plasticity, including activating mutations in KRAS, which are found in an estimated 30% of all cancers. In this review, we will introduce cellular plasticity and its effect on cancer progression and therapy resistance and then summarize the drivers of EMT with an emphasis on KRAS effector signaling. Lastly, we will discuss the contribution of cellular plasticity to metastasis and its potential clinical implications. Understanding oncogenic KRAS cellular reprogramming has the potential to reveal novel strategies to control metastasis in KRAS-driven cancers.
Collapse
Affiliation(s)
- Emily N Arner
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wenting Du
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rolf A Brekken
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
40
|
Hass R, von der Ohe J, Ungefroren H. Potential Role of MSC/Cancer Cell Fusion and EMT for Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:1432. [PMID: 31557960 PMCID: PMC6826868 DOI: 10.3390/cancers11101432] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Solid tumors comprise of maturated cancer cells and self-renewing cancer stem-like cells (CSCs), which are associated with various other nontumorigenic cell populations in the tumor microenvironment. In addition to immune cells, endothelial cells, fibroblasts, and further cell types, mesenchymal stroma/stem-like cells (MSC) represent an important cell population recruited to tumor sites and predominantly interacting with the different cancer cells. Breast cancer models were among the first to reveal distinct properties of CSCs, however, the cellular process(es) through which these cells are generated, maintained, and expanded within neoplastic tissues remains incompletely understood. Here, we discuss several possible scenarios that are not mutually exclusive but may even act synergistically: fusion of cancer cells with MSC to yield hybrid cells and/or the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells by MSC, which can relay signals for retrodifferentiation and eventually, the generation of breast CSCs (BCSCs). In either case, the consequences may be promotion of self-renewal capacity, tumor cell plasticity and heterogeneity, an increase in the cancer cells' invasive and metastatic potential, and the acquisition of resistance mechanisms towards chemo- or radiotherapy. While specific signaling mechanisms involved in each of these properties remain to be elucidated, the present review article focusses on a potential involvement of cancer cell fusion and EMT in the development of breast cancer stem cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
41
|
郑 幸, 刘 雯, 刘 锋, 李 静, 向 俊, 刘 鹏, 吕 毅. [Decellularized matrix of human fatty liver used for three-dimensional culture of hepatocellular carcinoma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:930-936. [PMID: 31511213 PMCID: PMC6765591 DOI: 10.12122/j.issn.1673-4254.2019.08.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct a decellularized matrix of human fatty liver as the scaffold for three-dimensional (3D) culture of hepatocarcinoma cells. METHODS Human fatty liver decellularized matrix (hFLM) was prepared by repeated freezingthawing, perfusion with gradient SDS and 1% Triton X-100 through the portal vein and hepatic artery, and repeated agitation with Triton X-100. HepG2 cells were cultured in the prepared hFLM, and the cell survival, morphology, proliferation and cellular expressions of the adhesion molecules were detected. RESULTS The decellularization procedure shortened the time for scaffold preparation and preserved the 3D ultrastructure and the composition of the extracellular matrix. HepG2 cells cultured in hFLM scaffold maintained proliferation for up to 15 days and showed a growth pattern with a long lag phase and a slow growth rate, which was similar to the growth pattern in vivo. The cultured HepG2 exhibited a low expression of E-cadherin and a high expression of vimentin, which was consistent with the xenograft but opposite to 2D cultured cells. However, the lack of adequate nutrient transport in this hepatocarcinoma cell model led to a slowdown of cell proliferation in the later stage. The PCNA index of HepG2 cells cultured in hFLM was lowered by 29.3% on day 12 as compared with that on day 6. CONCLUSIONS We established a new protocol for preparing hFLM and confirmed the feasibility of constructing hepatocarcinoma cell models using the hFLM scaffold.
Collapse
Affiliation(s)
- 幸龙 郑
- 西安交通大学第一附属医院心血管外科,陕西 西安 710061Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 雯雁 刘
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 锋锋 刘
- 西安交通大学第一附属医院心血管外科,陕西 西安 710061Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 静 李
- 西安交通大学第一附属医院心血管外科,陕西 西安 710061Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 俊西 向
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 鹏 刘
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 毅 吕
- 西安交通大学第一附属医院精准外科与再生医学国家地方联合工程研究中心,陕西 西安 710061National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
42
|
Hori A, Shimoda M, Naoi Y, Kagara N, Tanei T, Miyake T, Shimazu K, Kim SJ, Noguchi S. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res 2019; 21:88. [PMID: 31387614 PMCID: PMC6683360 DOI: 10.1186/s13058-019-1167-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Trastuzumab is a drug that targets the receptor tyrosine kinase HER2 and is essential for the treatment of HER2-positive breast cancer. Resistance to the drug leads to severe consequences, including disease recurrence, tumor enlargement, and metastasis. We hypothesized that trastuzumab treatment might be associated with phenotypic switching in HER2-positive breast cancer cells (BCCs), enabling them to escape and survive the effect of trastuzumab. Methods We conducted comprehensive immunophenotyping to detect phenotypic changes in HER2-positive BCCs treated with trastuzumab, based on criteria determined a priori. Based on immunophenotyping results, we characterized the vascular phenotypes of HER2-positive BCCs by western blotting, real-time RT-PCR, and tube formation assay. The vascular phenotype of tumor cells from clinical samples was evaluated by staining with periodic acid-Schiff and an anti-CD31 antibody. We explored small molecule inhibitors that suppress tube formation and determined the inhibitory mechanism. Results Out of 242 cell surface antigens, 9 antigens were significantly upregulated and 3 were significantly downregulated by trastuzumab treatment. All upregulated antigens were related to endothelial and stem cell phenotypes, suggesting that trastuzumab treatment might be correlated to switching to a vascular phenotype, namely, vasculogenic mimicry (VM). Several VM markers were upregulated in trastuzumab-treated cells, but these cells did not form tubes on Matrigel, a functional hallmark of VM. Upon analysis of three trastuzumab-resistant HER2-positive cell lines, we found that all three cell lines showed tube formation on Matrigel in the presence of angiogenic growth factors including EGF, FGF2, IGF1, or VEGF. Clinically, VM channels significantly increased in surviving cancer cell clusters of surgically removed tumors pretreated with trastuzumab and chemotherapy compared to both surgically removed tumors without prior systemic treatment and tumors biopsied before presurgical treatment with trastuzumab. Finally, we found that salinomycin completely suppressed VM in all three trastuzumab-resistant cell lines through disruption of actin cytoskeletal integrity. Conclusions VM promotes metastasis and worsens patient outcomes. The present study indicates that HER2-positive BCCs can exhibit VM in an angiogenic microenvironment after eventually acquiring trastuzumab resistance. The clinical finding supports this in vitro observation. Thus, targeting VM might provide a therapeutic benefit to patients with HER2-positive breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1167-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ami Hori
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
43
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
44
|
He L, Lv Y, Song Y, Zhang B. The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity. Cancer Manag Res 2019; 11:5765-5775. [PMID: 31303789 PMCID: PMC6612049 DOI: 10.2147/cmar.s213663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy can increase the cell cycle arrest that promotes apoptosis, reduces the risk of tumor recurrence and has become an irreplaceable component of systematic treatment for patients with breast cancer. Substantial advances in precise radiotherapy unequivocally indicate that the benefits of radiotherapy vary depending on intrinsic subtypes of the disease; luminal A breast cancer has the highest benefit whereas human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) are affected to a lesser extent irrespective of the selection of radiotherapy strategies, such as conventional whole-breast irradiation (CWBI), accelerated partial-breast irradiation (APBI), and hypofractionated whole-breast irradiation (HWBI). The benefit disparity correlates with the differential invasiveness, malignance, and radiosensitivity of the subtypes. A combination of a number of molecular mechanisms leads to the strong radioresistant profile of HER2-positive breast cancer, and sensitization to irradiation can be induced by multiple drugs or compounds in luminal disease and TNBC. In this review, we aimed to summarize the prognostic differences between various subtypes of breast tumors after CWBI, APBI, and HWBI, the potential reasons for drug-enhanced radiosensitivity in luminal breast tumors and TNBC, and the robust radioresistance of HER2-positive cancer. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ugTrSMuQVI8
Collapse
Affiliation(s)
- Lin He
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Yang Lv
- Department of Oncology, The PLA Navy Anqing Hospital, Anqing, Anhui Province, People's Republic of China
| | - Yuhua Song
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|
45
|
Song KA, Faber AC. Epithelial-to-mesenchymal transition and drug resistance: transitioning away from death. J Thorac Dis 2019; 11:E82-E85. [PMID: 31372302 DOI: 10.21037/jtd.2019.06.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kyung-A Song
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, VA, USA
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Richmond, VA, USA
| |
Collapse
|
46
|
Preclinical Characteristics of the Irreversible Pan-HER Kinase Inhibitor Neratinib Compared with Lapatinib: Implications for the Treatment of HER2-Positive and HER2-Mutated Breast Cancer. Cancers (Basel) 2019; 11:cancers11060737. [PMID: 31141894 PMCID: PMC6628314 DOI: 10.3390/cancers11060737] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
An estimated 15–20% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2/ERBB2/neu). Two small-molecule tyrosine kinase inhibitors (TKIs), lapatinib and neratinib, have been approved for the treatment of HER2-positive (HER2+) breast cancer. Lapatinib, a reversible epidermal growth factor receptor (EGFR/ERBB1/HER1) and HER2 TKI, is used for the treatment of advanced HER2+ breast cancer in combination with capecitabine, in combination with trastuzumab in patients with hormone receptor-negative metastatic breast cancer, and in combination with an aromatase inhibitor for the first-line treatment of HER2+ breast cancer. Neratinib, a next-generation, irreversible pan-HER TKI, is used in the US for extended adjuvant treatment of adult patients with early-stage HER2+ breast cancer following 1 year of trastuzumab. In Europe, neratinib is used in the extended adjuvant treatment of adult patients with early-stage hormone receptor-positive HER2+ breast cancer who are less than 1 year from the completion of prior adjuvant trastuzumab-based therapy. Preclinical studies have shown that these agents have distinct properties that may impact their clinical activity. This review describes the preclinical characterization of lapatinib and neratinib, with a focus on the differences between these two agents that may have implications for patient management.
Collapse
|
47
|
Shen M, Xu Z, Xu W, Jiang K, Zhang F, Ding Q, Xu Z, Chen Y. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:149. [PMID: 30961670 PMCID: PMC6454747 DOI: 10.1186/s13046-019-1161-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/31/2019] [Indexed: 12/14/2022]
Abstract
Background The cisplatin-resistance is still a main course for chemotherapy failure of lung cancer patients. Cisplatin-resistant cancer cells own higher malignance and exhibited increased metastatic ability, but the mechanism is not clear. In this study, we investigated the effects of Ataxia Telangiectasia Mutated (ATM) on lung cancer metastasis. Materials and methods Cisplatin-resistant A549CisR and H157CisR cell line were generated by long-term treating parental A549 and H157 cells (A549P and H157P) with cisplatin. Cell growth, cell migration and cell invasion were determined. Gene expressions were determined by Western Blot and qPCR. Tumor metastasis was investigated using a xenograft mouse model. Results The IC50 of the cisplatin-resistant cells (A549CisR and H157CisR cells) to cisplatin was 6–8 higher than parental cells. The A549CisR and H157CisR cells expressed lower level of E-cadherin and higher levels of N-cadherin, Vimentin and Snail compared to the parental A549P and H157P cells, and exhibited stronger capabilities of metastatic potential compared to the parental cells. The ATM expression was upregulated in A549CisR and H157CisR cells and cisplatin treatment also upregulated expression of ATM in parental cells, The inhibition of ATM by using specific ATM inhibitor CP466722 or knock-down ATM by siRNA suppressed Epithelial-to-Mesenchymal transition (EMT) and metastatic potential of A549CisR and H157CisR cells. These data suggest that ATM mediates the cisplatin-resistance in lung cancer cells. Expressions of JAK1,2,、 STAT3 、PD-L1 and ATM were increased in A549CisR and H157CisR cells and could by induced by cisplatin in parental lung cancer cells. Interestedly, ATM upregulated PD-L1 expression via JAK1,2/STAT3 pathway and inhibition of ATM decreased JAK/STAT3 signaling and decreased PD-L1 expression. The treatment of PD-L1 neutralizing Ab reduced EMT and cell invasion. Inhibition of JAK1,2/STAT3 signaling by specific inhibitors suppressed ATM-induced PD-L1 expression, EMT and cell invasion. Importantly, inhibition of ATM suppressed EMT and tumor metastasis in cisplatin-resistant lung cancer cells in an orthotopic xenograft mouse model. Conclusions Our results show that ATM regulates PD-L1 expression through activation of JAK/STAT3 signaling in cisplatin-resistant cells. Overexpression of ATM contributes to cisplatin-resistance in lung cancer cells. Inhibition of ATM reversed EMT and inhibited cell invasion and tumor metastasis. Thus, ATM may be a potential target for the treatment of cisplatin-resistant lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1161-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Zhonghua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Weihua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Kanqiu Jiang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Fuquan Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Qifeng Ding
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Zhonghen Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| |
Collapse
|
48
|
Nava M, Dutta P, Farias-Eisner R, Vadgama JV, Wu Y. Utilization of NGS technologies to investigate transcriptomic and epigenomic mechanisms in trastuzumab resistance. Sci Rep 2019; 9:5141. [PMID: 30914750 PMCID: PMC6435657 DOI: 10.1038/s41598-019-41672-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
NGS (Next Generation Sequencing) technologies allows us to determine key gene expression signatures that correlate with resistance (and responsiveness) to anti-cancer therapeutics. We have undertaken a transcriptomic and chromatin immunoprecipitation followed by sequencing (ChIP-seq) approach to describe differences in gene expression and the underlying chromatin landscape between two representative HER2+ cell lines, one of which is sensitive (SKBR3) and the other which is resistant (JIMT1) to trastuzumab. We identified differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) between SKBR3 and JIMT1 cells. Several of the DEGs are components of the Polycomb Repressing Complex 2 (PRC2), and they are expressed higher in JIMT1 cells. In addition, we utilized ChIP-seq to identify H3K18ac, H3K27ac and H3K27me3 histone modifications genome-wide. We identified key differences of H3K18ac and H3K27ac enrichment in regulatory regions, found a correlation between these modifications and differential gene expression and identified a transcription factor binding motif for LRF near these modifications in both cell lines. Lastly, we found a small subset of genes that contain repressive H3K27me3 marks near the gene body in SKBR3 cells but are absent in JIMT1. Taken together, our data suggests that differential gene expression and trastuzumab responsiveness in JIMT1 and SKBR3 is determined by epigenetic mechanisms.
Collapse
Affiliation(s)
- Miguel Nava
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA
| | - Robin Farias-Eisner
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Nava M, Dutta P, Zemke NR, Farias-Eisner R, Vadgama JV, Wu Y. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med Genomics 2019; 12:32. [PMID: 30736768 PMCID: PMC6368760 DOI: 10.1186/s12920-019-0477-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Human Epidermal Growth Factor Receptor (EGFR/HER1) can be activated by several ligands including Transforming Growth Factor alpha (TGF-α) and Epidermal Growth Factor (EGF). Following ligand binding, EGFR heterodimerizes with other HER family members, such as HER2 (human epidermal growth factor receptor-2). Previously, we showed that the EGFR is upregulated in trastuzumab resistant HER2 positive (HER2+) breast cancer cells. This study is aimed to determine the downstream effects on transcription following EGFR upregulation in HER2+ breast cancer cells. METHODS RNA-sequence and ChIP-sequence for H3K18ac and H3K27ac (Histone H3 lysine K18 and K27 acetylation) were conducted following an Epidermal Growth Factor (EGF) treatment time course in HER2+ breast cancer cells, SKBR3. The levels of several proteins of interest were confirmed by western blot analysis. The cellular localization of proteins of interest was examined using biochemically fractionated lysates followed by western blot analysis. RESULTS Over the course of 24 h, EGFR stimulation resulted in the modulation of over 4000 transcripts. Moreover, our data demonstrates that EGFR/HER2 signaling regulates the epigenome, with global H3K18ac and H3K27ac oscillating as a function of time following EGF treatment. RNA-sequence data demonstrates the activation of immediate early genes (IEGs) and delayed early genes (DEGs) within 1 h of EGF treatment. More importantly, we have identified members of the S100 (S100 Calcium Binding Protein) gene family as likely direct targets of EGFR signaling as H3K18ac, H3K27ac and pol2 (RNA polymerase II) increase near the transcription start sites of some of these genes. CONCLUSIONS Our data suggests that S100 proteins, which act as Ca2+ sensors, could play a role in EGF induced tumor cell growth and metastasis, contribute to trastuzumab resistance and cell migration and that they are likely drug targets in HER2+ breast cancer.
Collapse
Affiliation(s)
- Miguel Nava
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
| | - Nathan R. Zemke
- Molecular Biology Institute, University of California, Los Angeles, USA
| | - Robin Farias-Eisner
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059 USA
- Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles, CA USA
| |
Collapse
|
50
|
Li Y, Chu J, Feng W, Yang M, Zhang Y, Zhang Y, Qin Y, Xu J, Li J, Vasilatos SN, Fu Z, Huang Y, Yin Y. EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties. FASEB J 2019; 33:4851-4865. [PMID: 30620624 DOI: 10.1096/fj.201701561rrrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Trastuzumab is a successful, rationally designed therapy that provides significant clinical benefit for human epidermal growth factor receptor-2 (HER2)-positive breast cancer patients. However, about half of individuals with HER2-positive breast cancer do not respond to trastuzumab treatment because of various resistance mechanisms, including but not limited to: 1) shedding of the HER2 extracellular domain, 2) steric hindrance ( e.g., MUC4 and MUC1), 3) parallel pathway activation (this is the general mechanism cited in the quote above), 4) perturbation of downstream signaling events ( e.g., PTEN loss or PIK3CA mutation), and 5) immunologic mechanisms (such as FcR polymorphisms). EPHA5, a receptor tyrosine kinase, has been demonstrated to act as an anticancer agent in several cancer cell types. In this study, deletion of EPHA5 can significantly increase the resistance of HER2-positive breast cancer patients to trastuzumab. To investigate how EPHA5 deficiency induces trastuzumab resistance, clustered regularly interspaced short palindromic repeat technology was used to create EPHA5-deficient variants of breast cancer cells. EPHA5 deficiency effectively increases breast cancer stem cell (BCSC)-like properties, including NANOG, CD133+, E-cadherin expression, and the CD44+/CD24-/low phenotype, concomitantly enhancing mammosphere-forming ability. EPHA5 deficiency also caused significant aggrandized tumor malignancy in trastuzumab-sensitive xenografts, coinciding with the up-regulation of BCSC-related markers and intracellular Notch1 and PTEN/AKT signaling pathway activation. These findings highlight that EPHA5 is a potential prognostic marker for the activity of Notch1 and better sensitivity to trastuzumab in HER2-positive breast cancer. Moreover, patients with HER2-positive breast cancers expressing high Notch1 activation and low EPHA5 expression could be the best candidates for anti-Notch1 therapy.-Li, Y., Chu, J., Feng, W., Yang, M., Zhang, Y., Zhang, Y., Qin, Y., Xu, J., Li, J., Vasilatos, S. N., Fu, Z., Huang, Y., Yin, Y. EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and.,Department of Breast Diseases, Jiangsu Province Hospital of Traditional Chinese Medicine (TMC)/Affiliated Hospital of Nanjing University of TCM, Nanjing, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanting Feng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanqiu Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Qin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Juan Xu
- Nanjing Maternal and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shauna N Vasilatos
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternal and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|