1
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Phan TP, Nicholas Z, Holland AJ. Centriole structural integrity defects are a crucial feature of hydrolethalus syndrome. J Cell Biol 2025; 224:e202403022. [PMID: 40009365 PMCID: PMC11864076 DOI: 10.1083/jcb.202403022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrolethalus syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. How HYLS1 controls centriole function is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of HLS. These phenotypes arise from a loss of centriole integrity that causes tissue-specific defects in cilia assembly and function. We show that HYLS1 is recruited to the centriole by CEP120 and stabilizes the localization of centriole inner scaffold proteins that ensure the integrity of the centriolar microtubule wall. The HLS disease mutation reduced the centriole localization of HYLS1 and caused degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and contribute to HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A. Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R. Gliech
- Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E. Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thao P. Phan
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Nicholas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Dominguez-Vigil IG, Banik K, Baro M, Contessa JN, Hayman TJ. PLK4 inhibition as a strategy to enhance non-small cell lung cancer radiosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638860. [PMID: 40027806 PMCID: PMC11870518 DOI: 10.1101/2025.02.19.638860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer and comprises 85% of cases. Despite treatment advances, local control after curative-intent chemoradiation for NSCLC remains suboptimal. Polo-like kinase 4 (PLK4) is a serine-threonine kinase that plays a critical role in the regulation of centrosome duplication and cell cycle progression and is overexpressed in NSCLC, thus, making it a potential therapeutic target. CFI-400945 is an orally available PLK4 inhibitor currently undergoing clinical trial evaluation. As radiation causes cell death primarily by mitotic catastrophe, a process enhanced by alterations in centrosome amplification, we hypothesized that disruption of the mitotic machinery by inhibition of PLK4 would enhance the effects of radiation in NSCLC. PLK4 inhibition by CFI-400945 resulted in radiosensitization of NSCLC cell lines. In contrast, CFI-400945 had no effect on the radiosensitivity of normal lung fibroblasts. PLK4 inhibition did not affect cell-cycle phase distribution prior to radiation, but rather the combination of CFI-400945 and radiation resulted in increased G2/M cell cycle arrest, increased centrosome amplification, and a concomitant increase in cell death through mitotic catastrophe. Lastly, CFI-400945 treatment enhanced the radiation-induced tumor growth delay of NSCLC tumor xenografts. These data indicate that targeting PLK4 is a novel approach to enhance the radiation sensitivity of NSCLC in vitro and in vivo through potentiation of centrosome amplification and cell death through mitotic catastrophe.
Collapse
|
3
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
4
|
Marescal O, Cheeseman IM. 19S proteasome loss causes monopolar spindles through ubiquitin-independent KIF11 degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632038. [PMID: 39829864 PMCID: PMC11741298 DOI: 10.1101/2025.01.08.632038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
To direct regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in the 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct highly cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis, resulting in a mitotic arrest. We find that the monopolar spindle phenotype is caused by ubiquitin-independent proteasomal degradation of the motor protein KIF11 upon loss of 19S proteins. Thus, negative regulation of 20S-mediated proteasome degradation is essential for mitotic progression and 19S and 20S proteasome components can function independently outside of the canonical 26S structure. This work reveals a role for the proteasome in spindle formation and identifies the effects of ubiquitin-independent degradation on cell cycle control.
Collapse
Affiliation(s)
- Océane Marescal
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
5
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Holland AJ. Centriole structural integrity defects are a crucial feature of Hydrolethalus Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583733. [PMID: 38496445 PMCID: PMC10942441 DOI: 10.1101/2024.03.06.583733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hydrolethalus Syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. However, how HYLS1 facilitates the centriole-based templating of cilia is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of the human disease. These phenotypes arise from tissue-specific defects in cilia assembly and function caused by a loss of centriole integrity. We show that HYLS1 is recruited to the centriole by CEP120 and functions to recruit centriole inner scaffold proteins that stabilize the centriolar microtubule wall. The HLS mutation disrupts the interaction of HYLS1 with CEP120 leading to HYLS1 displacement and degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and drive HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Arslanhan MD, Cengiz-Emek S, Odabasi E, Steib E, Hamel V, Guichard P, Firat-Karalar EN. CCDC15 localizes to the centriole inner scaffold and controls centriole length and integrity. J Cell Biol 2023; 222:e202305009. [PMID: 37934472 PMCID: PMC10630097 DOI: 10.1083/jcb.202305009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
Centrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility. Here, we identified CCDC15 as a centriole protein that colocalizes with and interacts with the inner scaffold, a crucial centriolar subcompartment for centriole size control and integrity. Using ultrastructure expansion microscopy, we found that CCDC15 depletion affects centriole length and integrity, leading to defective cilium formation, maintenance, and response to Hedgehog signaling. Moreover, loss-of-function experiments showed CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles. Our findings reveal players and mechanisms of centriole architectural integrity and insights into diseases linked to centriolar defects.
Collapse
Affiliation(s)
- Melis D. Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Cengiz-Emek
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Emmanuelle Steib
- Department of Bioengineering, Imperial College London, London, UK
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Galletta BJ, Varadarajan R, Fagerstrom CJ, Yang B, Haase KP, McJunkin K, Rusan NM. The E3 ligase Poe promotes Pericentrin degradation. Mol Biol Cell 2023; 34:br15. [PMID: 37342879 PMCID: PMC10398894 DOI: 10.1091/mbc.e22-11-0534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Centrosomes are essential parts of diverse cellular processes, and precise regulation of the levels of their constituent proteins is critical for their function. One such protein is Pericentrin (PCNT) in humans and Pericentrin-like protein (PLP) in Drosophila. Increased PCNT expression and its protein accumulation are linked to clinical conditions including cancer, mental disorders, and ciliopathies. However, the mechanisms by which PCNT levels are regulated remain underexplored. Our previous study demonstrated that PLP levels are sharply down-regulated during early spermatogenesis and this regulation is essential to spatially position PLP on the proximal end of centrioles. We hypothesized that the sharp drop in PLP protein was a result of rapid protein degradation during the male germ line premeiotic G2 phase. Here, we show that PLP is subject to ubiquitin-mediated degradation and identify multiple proteins that promote the reduction of PLP levels in spermatocytes, including the UBR box containing E3 ligase Poe (UBR4), which we show binds to PLP. Although protein sequences governing posttranslational regulation of PLP are not restricted to a single region of the protein, we identify a region that is required for Poe-mediated degradation. Experimentally stabilizing PLP, via internal PLP deletions or loss of Poe, leads to PLP accumulation in spermatocytes, its mispositioning along centrioles, and defects in centriole docking in spermatids.
Collapse
Affiliation(s)
- Brian J. Galletta
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Carey J. Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Plevock Haase
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| |
Collapse
|
8
|
Dell'Amico C, Angulo Salavarria MM, Takeo Y, Saotome I, Dell'Anno MT, Galimberti M, Pellegrino E, Cattaneo E, Louvi A, Onorati M. Microcephaly-associated protein WDR62 shuttles from the Golgi apparatus to the spindle poles in human neural progenitors. eLife 2023; 12:e81716. [PMID: 37272619 PMCID: PMC10241521 DOI: 10.7554/elife.81716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.
Collapse
Affiliation(s)
- Claudia Dell'Amico
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
| | | | - Yutaka Takeo
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Ichiko Saotome
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | | | - Maura Galimberti
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilanItaly
- INGM, Istituto Nazionale Genetica MolecolareMilanItaly
| | - Enrica Pellegrino
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Elena Cattaneo
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilanItaly
- INGM, Istituto Nazionale Genetica MolecolareMilanItaly
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Marco Onorati
- Department of Biology, Unit of Cell and Developmental Biology, University of PisaPisaItaly
| |
Collapse
|
9
|
Huang M, Kong X, Tang Z, Lin Z, He R, Cao M, Zhang X. Cell cycle arrest induced by trichoplein depletion is independent of cilia assembly. J Cell Physiol 2022; 237:2703-2712. [PMID: 35147977 DOI: 10.1002/jcp.30693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Cilia assembly and centriole duplication are closely coordinated with cell cycle progression, and inhibition of cilia disassembly impedes cell cycle progression. The centrosomal protein trichoplein (TCHP) has been shown to promote cell cycle progression in the G1 -S phase by disassembling cilia. In this study, we showed that deletion of TCHP not only prevented the progression to the S phase but also resulted in cell cycle exit and entrance into G0 phase. Surprisingly, we found that loss of TCHP-induced G0 arrest could not be reversed by blocking the assembly of cilia. In cells without IFT20 or CEP164, two genes encoding key factors for ciliogenesis, depletion of TCHP still led to G0 arrest. Mechanistically, we also found that TCHP depletion-induced cell cycle arrest was not mediated through a centrosome surveillance mechanism, but inhibition of Rb or concomitant inhibition of both Rb and p53 signaling pathways was required to reverse the cell cycle phenotype. In conclusion, our study provides new insights into the function of TCHP in cell cycle progression.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinlong Kong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujuan Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Guichard P, Laporte MH, Hamel V. The centriolar tubulin code. Semin Cell Dev Biol 2021; 137:16-25. [PMID: 34896019 DOI: 10.1016/j.semcdb.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.
Collapse
Affiliation(s)
- Paul Guichard
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| | - Marine H Laporte
- University of Geneva, Department of Cell Biology, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| |
Collapse
|
11
|
Piemonte KM, Anstine LJ, Keri RA. Centrosome Aberrations as Drivers of Chromosomal Instability in Breast Cancer. Endocrinology 2021; 162:6381103. [PMID: 34606589 PMCID: PMC8557634 DOI: 10.1210/endocr/bqab208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Chromosomal instability (CIN), or the dynamic change in chromosome number and composition, has been observed in cancer for decades. Recently, this phenomenon has been implicated as facilitating the acquisition of cancer hallmarks and enabling the formation of aggressive disease. Hence, CIN has the potential to serve as a therapeutic target for a wide range of cancers. CIN in cancer often occurs as a result of disrupting key regulators of mitotic fidelity and faithful chromosome segregation. As a consequence of their essential roles in mitosis, dysfunctional centrosomes can induce and maintain CIN. Centrosome defects are common in breast cancer, a heterogeneous disease characterized by high CIN. These defects include amplification, structural defects, and loss of primary cilium nucleation. Recent studies have begun to illuminate the ability of centrosome aberrations to instigate genomic flux in breast cancer cells and the tumor evolution associated with aggressive disease and poor patient outcomes. Here, we review the role of CIN in breast cancer, the processes by which centrosome defects contribute to CIN in this disease, and the emerging therapeutic approaches that are being developed to capitalize upon such aberrations.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Lindsey J Anstine
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: Ruth A. Keri, PhD, Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
12
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Mittal K, Kaur J, Jaczko M, Wei G, Toss MS, Rakha EA, Janssen EAM, Søiland H, Kucuk O, Reid MD, Gupta MV, Aneja R. Centrosome amplification: a quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev 2021; 40:319-339. [PMID: 33106971 PMCID: PMC7897259 DOI: 10.1007/s10555-020-09937-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Numerical and/or structural centrosome amplification (CA) is a hallmark of cancers that is often associated with the aberrant tumor karyotypes and poor clinical outcomes. Mechanistically, CA compromises mitotic fidelity and leads to chromosome instability (CIN), which underlies tumor initiation and progression. Recent technological advances in microscopy and image analysis platforms have enabled better-than-ever detection and quantification of centrosomal aberrancies in cancer. Numerous studies have thenceforth correlated the presence and the degree of CA with indicators of poor prognosis such as higher tumor grade and ability to recur and metastasize. We have pioneered a novel semi-automated pipeline that integrates immunofluorescence confocal microscopy with digital image analysis to yield a quantitative centrosome amplification score (CAS), which is a summation of the severity and frequency of structural and numerical centrosome aberrations in tumor samples. Recent studies in breast cancer show that CA increases across the disease progression continuum, while normal breast tissue exhibited the lowest CA, followed by cancer-adjacent apparently normal, ductal carcinoma in situ and invasive tumors, which showed the highest CA. This finding strengthens the notion that CA could be evolutionarily favored and can promote tumor progression and metastasis. In this review, we discuss the prevalence, extent, and severity of CA in various solid cancer types, the utility of quantifying amplified centrosomes as an independent prognostic marker. We also highlight the clinical feasibility of a CA-based risk score for predicting recurrence, metastasis, and overall prognosis in patients with solid cancers.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Jaspreet Kaur
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Meghan Jaczko
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Guanhao Wei
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Michael S Toss
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | - Emad A Rakha
- Department of Pathology, University of Nottingham and Nottingham University Hospitals, Nottingham, UK
| | | | - Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Omer Kucuk
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University Hospital, Atlanta, GA, USA
| | | | | | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
14
|
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: A target for cancer therapy? Biochim Biophys Acta Rev Cancer 2021; 1875:188524. [PMID: 33582170 DOI: 10.1016/j.bbcan.2021.188524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
15
|
Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Ther 2020; 5:107. [PMID: 32606370 PMCID: PMC7327052 DOI: 10.1038/s41392-020-00214-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosome aberrations are hallmarks of human cancers and contribute to the senescence process. Structural and numerical centrosome abnormalities trigger mitotic errors, cellular senescence, cell death, genomic instability and/or aneuploidy, resulting in human disorders such as aging and cancer and affecting immunity. Interestingly, centrosome dysfunction promotes the secretion of multiple inflammatory factors that act as pivotal drivers of senescence and tumor immune escape. In this review, we summarize the forms of centrosome dysfunction and further discuss recent advances indicating that centrosome defects contribute to acceleration of senescence progression and promotion of tumor cell immune evasion in different ways.
Collapse
|
16
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
17
|
Singh A, Denu RA, Wolfe SK, Sperger JM, Schehr J, Witkowsky T, Esbona K, Chappell RJ, Weaver BA, Burkard ME, Lang JM. Centrosome amplification is a frequent event in circulating tumor cells from subjects with metastatic breast cancer. Mol Oncol 2020; 14:1898-1909. [PMID: 32255253 PMCID: PMC7400789 DOI: 10.1002/1878-0261.12687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 01/05/2023] Open
Abstract
Centrosome amplification (CA) is a common phenomenon in cancer, promotes genomic stability and cancer evolution, and has been reported to promote metastasis. CA promotes a stochastic gain/loss of chromosomes during cell division, known as chromosomal instability (CIN). However, it is unclear whether CA is present in circulating tumor cells (CTCs), the seeds for metastasis. Here, we surveyed CA in CTCs from human subjects with metastatic breast cancer. CTCs were captured by CD45 exclusion and selection of EpCAM‐positive cells using an exclusion‐based sample preparation technology platform known as VERSA (versatile exclusion‐based rare sample analysis). Centriole amplification (centrin foci> 4) is the definitive assay for CA. However, determination of centrin foci is technically challenging and incompatible with automated analysis. To test if the more technically accessible centrosome marker pericentrin could serve as a surrogate for centriole amplification in CTCs, cells were stained with pericentrin and centrin antibodies to evaluate CA. This assay was first validated using breast cancer cell lines and a nontransformed epithelial cell line model of inducible CA, then translated to CTCs. Pericentrin area and pericentrin area x intensity correlate well with centrin foci, validating pericentrin as a surrogate marker of CA. CA is found in CTCs from 75% of subjects, with variability in the percentage and extent of CA in individual circulating cells in a given subject, similar to the variability previously seen in primary tumors and cell lines. In summary, we created, validated, and implemented a novel method to assess CA in CTCs from subjects with metastatic breast cancer. Such an assay will be useful for longitudinal monitoring of CA in cancer patients and in prospective clinical trials for assessing the impact of CA on response to therapy.
Collapse
Affiliation(s)
- Ashok Singh
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Ryan A Denu
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, WI, USA
| | - Serena K Wolfe
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Jamie M Sperger
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Jennifer Schehr
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Tessa Witkowsky
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Karla Esbona
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Richard J Chappell
- Departments of Statistics and of Biostatistics & Medical Informatics, University of Wisconsin-Madison, WI, USA
| | - Beth A Weaver
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA.,Department of Cell and Regenerative Biology and Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, WI, USA
| | - Mark E Burkard
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA.,Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, WI, USA
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA.,Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
18
|
NudC-like protein 2 restrains centriole amplification by stabilizing HERC2. Cell Death Dis 2019; 10:628. [PMID: 31427565 PMCID: PMC6700069 DOI: 10.1038/s41419-019-1843-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Centriole duplication is tightly controlled to occur once per cell cycle, and disruption of this synchrony causes centriole amplification, which is frequently observed in many cancers. Our previous work showed that nuclear distribution gene C (NudC)-like protein 2 (NudCL2) localizes to centrosomes; however, little is known about the role of NudCL2 in the regulation of centrosome function. Here, we find that NudCL2 is required for accurate centriole duplication by stabilizing the E3 ligase HECT domain and RCC1-like domain-containing protein 2 (HERC2). Knockout (KO) of NudCL2 using CRISPR/Cas9-based genome editing or depletion of NudCL2 using small interfering RNA causes significant centriole amplification. Overexpression of NudCL2 significantly suppresses hydroxyurea-induced centriole overduplication. Quantitative proteomic analysis reveals that HERC2 is downregulated in NudCL2 KO cells. NudCL2 is shown to interact with and stabilize HERC2. Depletion of HERC2 leads to the similar defects to that in NudCL2-downregulated cells, and ectopic expression of HERC2 effectively rescues the centriole amplification caused by the loss of NudCL2, whereas the defects induced by HERC2 depletion cannot be reversed by exogenous expression of NudCL2. Either loss of NudCL2 or depletion of HERC2 leads to the accumulation of ubiquitin-specific peptidase 33 (USP33), a centrosomal protein that positively regulates centriole duplication. Moreover, knockdown of USP33 reverses centriole amplification in both NudCL2 KO and HERC2-depleted cells. Taken together, our data suggest that NudCL2 plays an important role in maintaining the fidelity of centriole duplication by stabilizing HERC2 to control USP33 protein levels, providing a previously undescribed mechanism restraining centriole amplification.
Collapse
|
19
|
FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice. Cells 2019; 8:cells8030279. [PMID: 30909571 PMCID: PMC6468696 DOI: 10.3390/cells8030279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression.
Collapse
|
20
|
Jusino S, Fernández-Padín FM, Saavedra HI. Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. ACTA ACUST UNITED AC 2018; 4. [PMID: 30381801 PMCID: PMC6205736 DOI: 10.20517/2394-4722.2018.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Centrosomes serve as the major microtubule organizing centers in cells and thereby contribute to cell shape, polarity, and motility. Also, centrosomes ensure equal chromosome segregation during mitosis. Centrosome aberrations arise when the centrosome cycle is deregulated, or as a result of cytokinesis failure. A long-standing postulate is that centrosome aberrations are involved in the initiation and progression of cancer. However, this notion has been a subject of controversy because until recently the relationship has been correlative. Recently, it was shown that numerical or structural centrosome aberrations can initiate tumors in certain tissues in mice, as well as invasion. Particularly, we will focus on centrosome amplification and chromosome instability as drivers of intra-tumor heterogeneity and their consequences in cancer. We will also discuss briefly the controversies surrounding this theory to highlight the fact that the role of both centrosome amplification and chromosome instability in cancer is highly context-dependent. Further, we will discuss single-cell sequencing as a novel technique to understand intra-tumor heterogeneity and some therapeutic approaches to target chromosome instability.
Collapse
Affiliation(s)
- Shirley Jusino
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| | - Fabiola M Fernández-Padín
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Basic Sciences Department, Division of Pharmacology and Toxicology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|
21
|
You CG, Sheng HS, Xie CR, Zhang N, Zheng XS. FM19G11 inhibits O 6 -methylguanine DNA-methyltransferase expression under both hypoxic and normoxic conditions. Cancer Med 2018; 7:3292-3300. [PMID: 29761922 PMCID: PMC6051152 DOI: 10.1002/cam4.1551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/14/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
FM19G11 is a small molecular agent that inhibits hypoxia-inducible factor-1-alpha (HIF-1α) and other signaling pathways. In this study, we characterized the modulating effects of FM19G11 on O6 -methylguanine DNA-methyltransferase (MGMT), the main regulator of temozolomide (TMZ) resistance in glioblastomas. This study included 2 MGMT-positive cell lines (GBM-XD and T98G). MGMT promoter methylation status, mRNA abundance, and protein levels were determined before and after FM19G11 treatment, and the roles of various signaling pathways were characterized. Under hypoxic conditions, MGMT mRNA and protein levels were significantly downregulated by FM19G11 via the HIF-1α pathway in both GBM-XD and T98G cells. In normoxic culture, T98G cells were strongly positive for MGMT, and MGMT expression was substantially downregulated by FM19G11 via the NF-κB pathway. In addition, TMZ resistance was reversed by treatment with FM19G11. Meanwhile, FM19G11 has no cytotoxicity at its effective dose. FM19G11 could potentially be used to counteract TMZ resistance in MGMT-positive glioblastomas.
Collapse
Affiliation(s)
- Chao-Guo You
- Department of Neurosurgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China.,Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han-Song Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao-Ran Xie
- Department of Neurosurgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China.,Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue-Sheng Zheng
- Department of Neurosurgery, Xinhua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Denu RA, Shabbir M, Nihal M, Singh CK, Longley BJ, Burkard ME, Ahmad N. Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma. Mol Cancer Res 2018; 16:517-527. [PMID: 29330283 DOI: 10.1158/1541-7786.mcr-17-0197] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) is common in cancer and can arise by centriole overduplication or by cell doubling events, including the failure of cell division and cell-cell fusion. To assess the relative contributions of these two mechanisms, the number of centrosomes with mature/mother centrioles was examined by immunofluorescence in a tissue microarray of human melanomas and benign nevi (n = 79 and 17, respectively). The centrosomal protein 170 (CEP170) was used to identify centrosomes with mature centrioles; this is expected to be present in most centrosomes with cell doubling, but on fewer centrosomes with overduplication. Using this method, it was determined that the majority of CA in melanoma can be attributed to centriole overduplication rather than cell doubling events. As Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication, the hypothesis that PLK4 overexpression contributes to centriole overduplication was evaluated. PLK4 is significantly overexpressed in melanoma compared with benign nevi and in a panel of human melanoma cell lines (A375, Hs294T, G361, WM35, WM115, 451Lu, and SK-MEL-28) compared with normal human melanocytes. Interestingly, although PLK4 expression did not correlate with CA in most cases, treatment of melanoma cells with a selective small-molecule PLK4 inhibitor (centrinone B) significantly decreased cell proliferation. The antiproliferative effects of centrinone B were also accompanied by induction of apoptosis.Implications: This study demonstrates that centriole overduplication is the predominant mechanism leading to centrosome amplification in melanoma and that PLK4 should be further evaluated as a potential therapeutic target for melanoma treatment. Mol Cancer Res; 16(3); 517-27. ©2018 AACR.
Collapse
Affiliation(s)
- Ryan A Denu
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Maria Shabbir
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Minakshi Nihal
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Chandra K Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
23
|
FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19010200. [PMID: 29315225 PMCID: PMC5796149 DOI: 10.3390/ijms19010200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. We have previously shown that individual therapeutic strategies, transplantation of ependymal stem/progenitor cells of the spinal cord after injury (epSPCi) or FM19G11 pharmacological treatment, induce moderate functional recovery after SCI. Here, the combination of treatments has been assayed for functional and histological analysis. Immediately after severe SCI, one million epSPCi were intramedullary injected, and the FM19G11 compound or dimethyl sulfoxide (DMSO) (as the vehicle control) was administrated via intrathecal catheterization. The combination of treatments, epSPCi and FM19G11, improves locomotor tasks compared to the control group, but did not significantly improve the Basso, Beattie, Bresnahan (BBB) scores for locomotor analysis in comparison with the individual treatments. However, the histological analysis of the spinal cord tissues, two months after SCI and treatments, demonstrated that when we treat the animals with both epSPCi and FM19G11, an improved environment for neuronal preservation was generated by reduction of the glial scar extension. The combinatorial treatment also contributes to enhancing the oligodendrocyte precursor cells by inducing the expression of Olig1 in vivo. These results suggest that a combination of therapies may be an exciting new therapeutic treatment for more efficient neuronal activity recovery after severe SCI.
Collapse
|
24
|
Alam MW, Persson CU, Reinbothe S, Kazi JU, Rönnstrand L, Wigerup C, Ditzel HJ, Lykkesfeldt AE, Påhlman S, Jögi A. HIF2α contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells. Oncotarget 2017; 7:11238-50. [PMID: 26849233 PMCID: PMC4905469 DOI: 10.18632/oncotarget.7167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/22/2016] [Indexed: 12/26/2022] Open
Abstract
The majority of breast cancers express estrogen receptor α (ERα), and most patients with ERα-positive breast cancer benefit from antiestrogen therapy. The ERα-modulator tamoxifen and ERα-downregulator fulvestrant are commonly employed antiestrogens. Antiestrogen resistance remains a clinical challenge, with few effective treatments available for patients with antiestrogen-resistant breast cancer. Hypoxia, which is intrinsic to most tumors, promotes aggressive disease, with the hypoxia-inducible transcription factors HIF1 and HIF2 regulating cellular responses to hypoxia. Here, we show that the ERα-expressing breast cancer cells MCF-7, CAMA-1, and T47D are less sensitive to antiestrogens when hypoxic. Furthermore, protein and mRNA levels of HIF2α/HIF2A were increased in a panel of antiestrogen-resistant cells, and antiestrogen-exposure further increased HIF2α expression. Ectopic expression of HIF2α in MCF-7 cells significantly decreased sensitivity to antiestrogens, further implicating HIF2α in antiestrogen resistance. EGFR is known to contribute to antiestrogen resistance: we further show that HIF2α drives hypoxic induction of EGFR and that EGFR induces HIF2α expression. Downregulation or inhibition of EGFR led to decreased HIF2α levels. This positive and bilateral HIF2-EGFR regulatory crosstalk promotes antiestrogen resistance and, where intrinsic hypoxic resistance exists, therapy itself may exacerbate the problem. Finally, inhibition of HIFs by FM19G11 restores antiestrogen sensitivity in resistant cells. Targeting HIF2 may be useful for counteracting antiestrogen resistance in the clinic.
Collapse
Affiliation(s)
- Muhammad Wasi Alam
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Camilla Ulrika Persson
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Susann Reinbothe
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Lars Rönnstrand
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Caroline Wigerup
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Henrik Jorn Ditzel
- Department of Cancer and Inflammation Research, University of Southern Denmark, and Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Sven Påhlman
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Annika Jögi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| |
Collapse
|
25
|
Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, Rajagopal S, Jegatheesan SK. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 2017; 22:59-73. [PMID: 29171762 DOI: 10.1080/14728222.2018.1410140] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Polo like kinase (PLK) is known to play a pivotal role in various cell cycle processes to perpetuate proper division and growth of the cells. Polo like kinase-4 (PLK4) is one such kinase that appears in low abundance and plays a well-characterized role in centriole duplication. PLK4 deregulation (i.e. both overexpression and depletion of PLK4), leads to altered mitotic fidelity and thereby triggers tumorigenesis. Hence, over the last few years PLK4 has emerged as a potential therapeutic target for the treatment of various advanced cancers. Areas covered: In this review, we discuss the basic structure, expression, localization and functions of PLK4 along with its regulation by various proteins. We also discuss the role of altered PLK4 activity in the onset of cancer and the current pre-clinical and clinical inhibitors to regulate PLK4. Expert opinion: PLK4 mediated centriole duplication has a crucial role in maintaining mitotic correctness in normal cells, while its deregulation has a greater impact on genesis of cancer. Henceforth, a deep knowledge of the PLK4 levels, its role and interactions with various proteins in cancer is required to design effective inhibitors for clinical use.
Collapse
Affiliation(s)
| | | | | | - Sindhu Koushik
- a Jubilant Biosys Ltd, Bioinformatics , Bangalore , India
| | | | | | | | | |
Collapse
|
26
|
Abstract
Chromosomal instability (CIN), the persistent inability of a cell to faithfully segregate its genome, is a feature of many cancer cells. It stands to reason that CIN enables the acquisition of multiple cancer hallmarks; however, there is a growing body of evidence suggesting that CIN impairs cellular fitness and prevents neoplastic transformation. Here, we suggest a new perspective to reconcile this apparent paradox and share an unexpected link between aneuploidy and aging that was discovered through attempts to investigate the CIN-cancer relationship. Additionally, we provide a comprehensive overview of the function and regulation of the anaphase-promoting complex, an E3 ubiquitin ligase that mediates high-fidelity chromosome segregation, and describe the mechanisms that lead to whole-chromosome gain or loss. With this review, we aim to expand our understanding of the role of CIN in cancer and aging with the long-term objective of harnessing this information for the advancement of patient care.
Collapse
Affiliation(s)
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905;
| |
Collapse
|
27
|
Fan G, Sun L, Shan P, Zhang X, Huan J, Zhang X, Li D, Wang T, Wei T, Zhang X, Gu X, Yao L, Xuan Y, Hou Z, Cui Y, Cao L, Li X, Zhang S, Wang C. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat Commun 2015; 6:8450. [PMID: 26439168 PMCID: PMC4600754 DOI: 10.1038/ncomms9450] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Guangjian Fan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Lianhui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Peipei Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Xianying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jinliang Huan
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyang Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Liangfang Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Xuan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongping Cui
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Shanxi 030001, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Chuangui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China.,Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| |
Collapse
|
28
|
Avidor-Reiss T, Khire A, Fishman EL, Jo KH. Atypical centrioles during sexual reproduction. Front Cell Dev Biol 2015; 3:21. [PMID: 25883936 PMCID: PMC4381714 DOI: 10.3389/fcell.2015.00021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 01/30/2023] Open
Abstract
Centrioles are conserved, self-replicating, microtubule-based, 9-fold symmetric subcellular organelles that are essential for proper cell division and function. Most cells have two centrioles and maintaining this number of centrioles is important for animal development and physiology. However, how animals gain their first two centrioles during reproduction is only partially understood. It is well established that in most animals, the centrioles are contributed to the zygote by the sperm. However, in humans and many animals, the sperm centrioles are modified in their structure and protein composition, or they appear to be missing altogether. In these animals, the origin of the first centrioles is not clear. Here, we review various hypotheses on how centrioles are gained during reproduction and describe specialized functions of the zygotic centrioles. In particular, we discuss a new and atypical centriole found in sperm and zygote, called the proximal centriole-like structure (PCL). We also discuss another type of atypical centriole, the "zombie" centriole, which is degenerated but functional. Together, the presence of centrioles, PCL, and zombie centrioles suggests a universal mechanism of centriole inheritance among animals and new causes of infertility. Since the atypical centrioles of sperm and zygote share similar functions with typical centrioles in somatic cells, they can provide unmatched insight into centriole biology.
Collapse
|
29
|
Godinho SA, Pellman D. Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0467. [PMID: 25047621 DOI: 10.1098/rstb.2013.0467] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Centrosome amplification is a hallmark of cancer. However, despite significant progress in recent years, we are still far from understanding how centrosome amplification affects tumorigenesis. Boveri's hypothesis formulated more than 100 years ago was that aneuploidy induced by centrosome amplification promoted tumorigenesis. Although the hypothesis remains appealing 100 years later, it is also clear that the role of centrosome amplification in cancer is more complex than initially thought. Here, we review how centrosome abnormalities are generated in cancer and the mechanisms cells employ to adapt to centrosome amplification, in particular centrosome clustering. We discuss the different mechanisms by which centrosome amplification could contribute to tumour progression and the new advances in the development of therapies that target cells with extra centrosomes.
Collapse
Affiliation(s)
- S A Godinho
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - D Pellman
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
El Assar M, Sánchez-Puelles JM, Royo I, López-Hernández E, Sánchez-Ferrer A, Aceña JL, Rodríguez-Mañas L, Angulo J. FM19G11 reverses endothelial dysfunction in rat and human arteries through stimulation of the PI3K/Akt/eNOS pathway, independently of mTOR/HIF-1α activation. Br J Pharmacol 2015; 172:1277-91. [PMID: 25363469 PMCID: PMC4337701 DOI: 10.1111/bph.12993] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE FM19G11 up-regulates mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) and PI3K/Akt pathways, which are involved in endothelial function. We evaluated the effects of FM19G11 on defective endothelial vasodilatation in arteries from rats and humans and investigated the mechanisms involved. EXPERIMENTAL APPROACH Effects of chronic in vivo administration of FM19G11 on aortic endothelial vasodilatation were evaluated together with ex vivo treatment in aortic and mesenteric arteries from control and insulin-resistant rats (IRR). Its effects on vasodilator responses of penile arteries (HPRAs) and corpus cavernosum (HCC) from men with vasculogenic erectile dysfunction (ED) (model of human endothelial dysfunction) were also evaluated. Vascular expression of phosphorylated-endothelial NOS (p-eNOS), phosphorylated-Akt (p-Akt) and HIF-1α was determined by immunodetection and cGMP by elisa. KEY RESULTS Chronic administration of FM19G11 reversed the impaired endothelial vasodilatation in IRR. Ex vivo treatment with FM19G11 also significantly improved endothelium-dependent vasodilatation in aorta and mesenteric arteries from IRR. These effects were accompanied by the restoration of p-eNOS and cGMP levels in IRR aorta and were prevented by either NOS or PI3K inhibition. p-Akt and p-eNOS contents were increased by FM19G11 in aortic endothelium of IRR. FM19G11-induced restoration of endothelial vasodilatation was unaffected by mTOR/HIF-1α inhibitors. FM19G11 also restored endothelial vasodilatation in HPRA and HCC from ED patients. CONCLUSIONS AND IMPLICATIONS Stimulation of the PI3K/Akt/eNOS pathway by FM19G11 alleviates impaired NO-mediated endothelial vasodilatation in rat and human arteries independently of mTOR/HIF-1α activation. This pharmacological strategy could be beneficial for managing pathological conditions associated with endothelial dysfunction, such as ED.
Collapse
Affiliation(s)
- M El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
| | - J M Sánchez-Puelles
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
- Molecular Pharmacology Group, Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - I Royo
- Molecular Pharmacology Group, Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - E López-Hernández
- Molecular Pharmacology Group, Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - A Sánchez-Ferrer
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
| | - J L Aceña
- Departamento de Química Orgánica Facultad de Química, Universidad del País Vasco UPV/EHUSan Sebastián, Spain
| | - L Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de GetafeGetafe, Madrid, Spain
| | - J Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y CajalMadrid, Spain
| |
Collapse
|
31
|
Lu T, Laughton CA, Wang S, Bradshaw TD. In vitro antitumor mechanism of (E)-N-(2-methoxy-5-(((2,4,6-trimethoxystyryl)sulfonyl)methyl)pyridin-3-yl)methanesulfonamide. Mol Pharmacol 2015; 87:18-30. [PMID: 25316768 DOI: 10.1124/mol.114.093245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ON01910.Na [sodium (E)-2-(2-methoxy-5-((2,4,6-trimethoxystyrylsulfonyl)methyl)phenylamino)acetate; Rigosertib, Estybon], a styryl benzylsulfone, is a phase III stage anticancer agent. This non-ATP competitive kinase inhibitor has multitargeted activity, promoting mitotic arrest and apoptosis. Extensive phase I/II studies with ON01910.Na, conducted in patients with solid tumors and hematologic cancers, demonstrate excellent efficacy. However, issues remain affecting its development. These include incomplete understanding of antitumor mechanisms, low oral bioavailability, and unpredictable pharmacokinetics. We have identified a novel (E)-styrylsulfonyl methylpyridine [(E)-N-(2-methoxy-5-((2,4,6-trimethoxystyrylsulfonyl)methyl)pyridin-3-yl)methanesulfonamide (TL-77)] which has shown improved oral bioavailability compared with ON01910.Na. Here, we present detailed cellular mechanisms of TL-77 in comparison with ON01910.Na. TL-77 displays potent growth inhibitory activity in vitro (GI50 < 1μM against HCT-116 cells), demonstrating 3- to 10-fold greater potency against tumor cell lines when compared with normal cells. Cell-cycle analyses reveal that TL-77 causes significant G2/M arrest in cancer cells, followed by the onset of apoptosis. In cell-free conditions, TL-77 potently inhibits tubulin polymerization. Mitotically arrested cells display multipolar spindles and misalignment of chromosomes, indicating that TL-77 interferes with mitotic spindle assembly in cancer cells. These effects are accompanied by induction of DNA damage, inhibition of Cdc25C phosphorylation [indicative of Plk1 inhibition], and downstream inhibition of cyclin B1. However, kinase assays failed to confirm inhibition of Plk1. Nonsignificant effects on phosphoinositide 3-kinase/Akt signal transduction were observed after TL-77 treatment. Analysis of apoptotic signaling pathways reveals that TL-77 downregulates expression of B-cell lymphoma 2 family proteins (Bid, Bcl-xl, and Mcl-1) and stimulates caspase activation. Taken together, TL-77 represents a promising anticancer agent worthy of further evaluation.
Collapse
Affiliation(s)
- Tiangong Lu
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| | - Charles A Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| | - Shudong Wang
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| | - Tracey D Bradshaw
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom (T.L., C.A.L., T.D.B.); and Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.W.)
| |
Collapse
|
32
|
Nam HJ, Naylor RM, van Deursen JM. Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 2014; 25:65-73. [PMID: 25455111 DOI: 10.1016/j.tcb.2014.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/03/2023]
Abstract
Accurate segregation of duplicated chromosomes between two daughter cells depends on bipolar spindle formation, a metaphase state in which sister kinetochores are attached to microtubules emanating from opposite spindle poles. To ensure bi-orientation, cells possess surveillance systems that safeguard against microtubule-kinetochore attachment defects, including the spindle assembly checkpoint and the error correction machinery. However, recent developments have identified centrosome dynamics--that is, centrosome disjunction and poleward movement of duplicated centrosomes--as a central target for deregulation of bi-orientation in cancer cells. In this review, we discuss novel insights into the mechanisms that underlie centrosome dynamics and discuss how these mechanisms are perturbed in cancer cells to drive chromosome mis-segregation and advance neoplastic transformation.
Collapse
Affiliation(s)
- Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Naylor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Kushner EJ, Ferro LS, Liu JY, Durrant JR, Rogers SL, Dudley AC, Bautch VL. Excess centrosomes disrupt endothelial cell migration via centrosome scattering. ACTA ACUST UNITED AC 2014; 206:257-72. [PMID: 25049273 PMCID: PMC4107782 DOI: 10.1083/jcb.201311013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Centrosome–microtubule interactions during interphase are important for centrosome clustering and cell polarity. Supernumerary centrosomes contribute to spindle defects and aneuploidy at mitosis, but the effects of excess centrosomes during interphase are poorly understood. In this paper, we show that interphase endothelial cells with even one extra centrosome exhibit a cascade of defects, resulting in disrupted cell migration and abnormal blood vessel sprouting. Endothelial cells with supernumerary centrosomes had increased centrosome scattering and reduced microtubule (MT) nucleation capacity that correlated with decreased Golgi integrity and randomized vesicle trafficking, and ablation of excess centrosomes partially rescued these parameters. Mechanistically, tumor endothelial cells with supernumerary centrosomes had less centrosome-localized γ-tubulin, and Plk1 blockade prevented MT growth, whereas overexpression rescued centrosome γ-tubulin levels and centrosome dynamics. These data support a model whereby centrosome–MT interactions during interphase are important for centrosome clustering and cell polarity and further suggest that disruption of interphase cell behavior by supernumerary centrosomes contributes to pathology independent of mitotic effects.
Collapse
Affiliation(s)
- Erich J Kushner
- Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Luke S Ferro
- Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jie-Yu Liu
- Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jessica R Durrant
- Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephen L Rogers
- Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew C Dudley
- Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Victoria L Bautch
- Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599Department of Biology, McAllister Heart Institute, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
34
|
Finetti P, Guille A, Adelaide J, Birnbaum D, Chaffanet M, Bertucci F. ESPL1 is a candidate oncogene of luminal B breast cancers. Breast Cancer Res Treat 2014; 147:51-9. [PMID: 25086634 DOI: 10.1007/s10549-014-3070-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/19/2014] [Indexed: 11/26/2022]
Abstract
ESPL1/separase is a putative oncogene of luminal B breast cancers. Histoclinical correlations of its expression have never been explored in large series of breast tumors, and specifically in the luminal subtype. In a pooled series of invasive breast carcinomas profiled using DNA microarrays, we identified 3,074 luminal cases, including 1,307 luminal B tumors, in which we searched for correlations between ESPL1 mRNA expression and molecular and histoclinical features. Compared to normal breast samples, ESPL1 was overexpressed in 52 % of luminal tumors, and much more frequently in luminal B (83 %) than luminal A tumors (29 %). In luminal breast cancers, higher ESPL1 expression was associated with poor-prognosis criteria (age ≤ 50 years, ductal type, advanced stage, large tumor size, lymph node-positive status, high grade, PR-negative status, luminal B subtype) and with poor metastasis-free survival in both uni- and multivariate analyses. This independent prognostic value was also observed in luminal B tumors only, and persisted when compared with gene expression signatures (PAM50, Recurrence Score, Mammaprint, EndoPredict) currently proposed to refine the indications of adjuvant chemotherapy in hormone receptor-positive/HER2-negative breast cancer. We also confirmed the observations made with experimental mouse models: ESPL1-overexpressing luminal tumors showed complex genomic profiles and molecular features of chromosomal instability and loss of tumor suppressor genes (P53 and Rb). Our results reinforce the idea that ESPL1 is a candidate oncogene in luminal B cancers. Its expression may help improve the prognostication. Inhibiting ESPL1 may represent a promising therapeutic approach for these poor-prognosis tumors.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/mortality
- Carcinoma, Lobular/pathology
- Female
- Follow-Up Studies
- Gene Dosage
- Humans
- Mice
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Oligonucleotide Array Sequence Analysis
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Separase/genetics
- Survival Rate
Collapse
Affiliation(s)
- Pascal Finetti
- Department of Molecular Oncology, U1068 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | | | | | | | | | | |
Collapse
|
35
|
Thomas Y, Peter M, Mechali F, Blanchard JM, Coux O, Baldin V. Kizuna is a novel mitotic substrate for CDC25B phosphatase. Cell Cycle 2014; 13:3867-77. [PMID: 25558830 PMCID: PMC4615109 DOI: 10.4161/15384101.2014.972882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022] Open
Abstract
CDC25 dual-specificity phosphatases play a central role in cell cycle control through the activation of Cyclin-Dependent Kinases (CDKs). Expression during mitosis of a stabilized CDC25B mutant (CDC25B-DDA), which cannot interact with the F-box protein βTrCP for proteasome-dependent degradation, causes mitotic defects and chromosome segregation errors in mammalian cells. We found, using the same CDC25B mutant, that stabilization and failure to degrade CDC25B during mitosis lead to the appearance of multipolar spindle cells resulting from a fragmentation of pericentriolar material (PCM) and abolish mitotic Plk1-dependent phosphorylation of Kizuna (Kiz), which is essential for the function of Kiz in maintaining spindle pole integrity. Thus, in mitosis Kiz is a new substrate of CDC25B whose dephosphorylation following CDC25B stabilization leads to the formation of multipolar spindles. Furthermore, endogenous Kiz and CDC25B interact only in mitosis, suggesting that Kiz phosphorylation depends on a balance between CDC25B and Plk1 activities. Our data identify a novel mitotic substrate of CDC25B phosphatase that plays a key role in mitosis control.
Collapse
Affiliation(s)
- Yann Thomas
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
| | - Marion Peter
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
- Institut de Génétique Moléculaire de Montpellier (IGMM); Center National de la Recherche Scientifique (CNRS); Montpellier, France
| | - Francisca Mechali
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| | - Jean-Marie Blanchard
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
- Institut de Génétique Moléculaire de Montpellier (IGMM); Center National de la Recherche Scientifique (CNRS); Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| |
Collapse
|
36
|
Pospelova TV, Bykova TV, Zubova SG, Katolikova NV, Yartzeva NM, Pospelov VA. Rapamycin induces pluripotent genes associated with avoidance of replicative senescence. Cell Cycle 2013; 12:3841-51. [PMID: 24296616 DOI: 10.4161/cc.27396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Primary rodent cells undergo replicative senescence, independent from telomere shortening. We have recently shown that treatment with rapamycin during passages 3-7 suppressed replicative senescence in rat embryonic fibroblasts (REFs), which otherwise occurred by 10-14 passages. Here, we further investigated rapamycin-primed cells for an extended number of passages. Rapamycin-primed cells continued to proliferate without accumulation of senescent markers. Importantly, these cells retained the ability to undergo serum starvation- and etoposide-induced cell cycle arrest. The p53/p21 pathway was functional. This indicates that rapamycin did not cause either transformation or loss of cell cycle checkpoints. We found that rapamycin activated transcription of pluripotent genes, oct-4, sox-2, nanog, as well as further upregulated telomerase (tert) gene. The rapamycin-derived cells have mostly non-rearranged, near-normal karyotype. Still, when cultivated for a higher number of passages, these cells acquired a chromosomal marker within the chromosome 3. We conclude that suppression mTORC1 activity may prevent replicative senescence without transformation of rodent cells.
Collapse
Affiliation(s)
- Tatiana V Pospelova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| | - Tatiana V Bykova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| | - Svetlana G Zubova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| | | | - Natalia M Yartzeva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia
| | - Valery A Pospelov
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| |
Collapse
|
37
|
Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron. Curr Biol 2013; 23:2255-2261. [PMID: 24184097 DOI: 10.1016/j.cub.2013.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/06/2013] [Accepted: 09/04/2013] [Indexed: 12/20/2022]
Abstract
Polo-like kinase 4 (Plk4) is a conserved master regulator of centriole assembly. Previously, we found that Drosophila Plk4 protein levels are actively suppressed during interphase. Degradation of interphase Plk4 prevents centriole overduplication and is mediated by the ubiquitin-ligase complex SCF(Slimb/βTrCP). Since Plk4 stability depends on its activity, we studied the consequences of inactivating Plk4 or perturbing its phosphorylation state within its Slimb-recognition motif (SRM). Mass spectrometry of in-vitro-phosphorylated Plk4 and Plk4 purified from cells reveals that it is directly responsible for extensively autophosphorylating and generating its Slimb-binding phosphodegron. Phosphorylatable residues within this regulatory region were systematically mutated to determine their impact on Plk4 protein levels and centriole duplication when expressed in S2 cells. Notably, autophosphorylation of a single residue (Ser293) within the SRM is critical for Slimb binding and ubiquitination. Our data also demonstrate that autophosphorylation of numerous residues flanking S293 collectively contribute to establishing a high-affinity binding site for SCF(Slimb). Taken together, our findings suggest that Plk4 directly generates its own phosphodegron and can do so without the assistance of an additional kinase(s).
Collapse
|
38
|
Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M, Duarte P, Borrego-Pinto J, Gilberto S, Amado T, Brito D, Rodrigues-Martins A, Debski J, Dzhindzhev N, Bettencourt-Dias M. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr Biol 2013; 23:2245-2254. [PMID: 24184099 DOI: 10.1016/j.cub.2013.09.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/08/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/βTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/βTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling complex processes, such as circadian clocks and morphogenesis. Here, we show that PLK4 is a suicide kinase, autophosphorylating in residues that are critical for SCF-Slimb/βTrCP binding. We demonstrate a multisite trans-autophosphorylation mechanism, likely to ensure that both a threshold of PLK4 concentration is attained and a sequence of events is observed before PLK4 can autodestruct. First, we show that PLK4 trans-autophosphorylates other PLK4 molecules on both Ser293 and Thr297 within the degron and that these residues contribute differently for PLK4 degradation, the first being critical and the second maximizing auto-destruction. Second, PLK4 trans-autophosphorylates a phospho-cluster outside the degron, which regulates Thr297 phosphorylation, PLK4 degradation, and centriole number. Finally, we show the importance of PLK4-Slimb/βTrCP regulation as it operates in both soma and germline. As βTrCP, PLK4, and centriole number are deregulated in several cancers, our work provides novel links between centriole number control and tumorigenesis.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Inês Bento
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Mariana Lince-Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Joana Borrego-Pinto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Samuel Gilberto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Amado
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Daniela Brito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Janusz Debski
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Nikola Dzhindzhev
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | |
Collapse
|
39
|
Holland AJ, Fachinetti D, Zhu Q, Bauer M, Verma IM, Nigg EA, Cleveland DW. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 2013; 26:2684-9. [PMID: 23249732 DOI: 10.1101/gad.207027.112] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centriole duplication occurs once per cell cycle and is controlled by Polo-like kinase 4 (Plk4). We showed previously that Plk4 phosphorylates itself to promote its degradation by the proteasome. Here we demonstrate that this autoregulated instability controls the abundance of endogenous Plk4. Preventing Plk4 autoregulation causes centrosome amplification, stabilization of p53, and loss of cell proliferation; moreover, suppression of p53 allows growth of cells carrying amplified centrosomes. Plk4 autoregulation thus guards against genome instability by limiting centrosome duplication to once per cell cycle.
Collapse
Affiliation(s)
- Andrew J Holland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
McCubrey JA, Steelman LS, Chappell WH, Sun L, Davis NM, Abrams SL, Franklin RA, Cocco L, Evangelisti C, Chiarini F, Martelli AM, Libra M, Candido S, Ligresti G, Malaponte G, Mazzarino MC, Fagone P, Donia M, Nicoletti F, Polesel J, Talamini R, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Michele M, Tafuri A, Dulińska-Litewka J, Laidler P, D'Assoro AB, Drobot L, Umezawa D, Montalto G, Cervello M, Demidenko ZN. Advances in targeting signal transduction pathways. Oncotarget 2012; 3:1505-21. [PMID: 23455493 PMCID: PMC3681490 DOI: 10.18632/oncotarget.802] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc Natl Acad Sci U S A 2012; 109:E3350-7. [PMID: 23150568 DOI: 10.1073/pnas.1216880109] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inducible degradation is a powerful approach for identifying the function of a specific protein or protein complex. Recently, a plant auxin-inducible degron (AID) system has been shown to degrade AID-tagged target proteins in nonplant cells. Here, we demonstrate that an AID-tagged protein can functionally replace an endogenous protein depleted by RNAi, leading to an inducible null phenotype rapidly after auxin addition. The AID system is shown to be capable of controlling the stability of AID-tagged proteins that are in either nuclear or cytoplasmic compartments and even when incorporated into protein complexes. Induced degradation occurs rapidly after addition of auxin with protein half-life reduced to as little as 9 min and proceeding to completion with first-order kinetics. AID-mediated instability is demonstrated to be rapidly reversible. Induced degradation is shown to initiate and continue in all cell cycle phases, including mitosis, making this system especially useful for identifying the function(s) of proteins of interest during specific points in the mammalian cell cycle.
Collapse
|
42
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012; 3:954-87. [PMID: 23006971 PMCID: PMC3660063 DOI: 10.18632/oncotarget.652] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Taylor JR, Lehmann BD, Chappell WH, Abrams SL, Steelman LS, McCubrey JA. Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget 2012; 2:610-26. [PMID: 21881167 PMCID: PMC3248208 DOI: 10.18632/oncotarget.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Escape from cellular senescence induction is a potent mechanism for chemoresistance. Cellular senescence can be induced in breast cancer cell lines by the removal of estrogen signaling with tamoxifen or by the accumulation of DNA damage induced by the chemotherapeutic drug doxorubicin. Long term culturing of the hormone-sensitive breast cancer cell line MCF-7 in doxorubicin (MCF-7/DoxR) reduced the ability of doxorubicin, but not tamoxifen, to induce senescence. Two pathways that are often upregulated in chemo- and hormonal-resistance are the PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways. To determine if active Akt-1 and Raf-1 can influence drug-induced senescence, we stably introduced activated ΔAkt-1(CA) and ΔRaf-1(CA) into drug-sensitive and doxorubicin-resistant cells. Expression of a constitutively-active Raf-1 construct resulted in higher baseline senescence, indicating these cells possessed the ability to undergo oncogene-induced-senescence. Constitutive activation of the Akt pathway significantly decreased drug-induced senescence in response to doxorubicin but not tamoxifen in MCF-7 cells. However, constitutive Akt-1 activation in drug-resistant cells containing high levels of active ERK completely escaped cellular senescence induced by doxorubicin and tamoxifen. These results indicate that up regulation of the Ras/PI3K/PTEN/Akt/mTOR pathway in the presence of elevated Ras/Raf/MEK/ERK signaling together can contribute to drug-resistance by diminishing cell senescence in response to chemotherapy. Understanding how breast cancers containing certain oncogenic mutations escape cell senescence in response to chemotherapy and hormonal based therapies may provide insights into the design of more effective drug combinations for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jackson R Taylor
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
| | | | | | | | | | | |
Collapse
|
44
|
Blagosklonny MV. Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 2011; 3:1130-41. [PMID: 22246147 PMCID: PMC3273893 DOI: 10.18632/aging.100422] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/31/2011] [Indexed: 12/12/2022]
Abstract
Despite common belief, accumulation of molecular damage does not play a key role in aging. Still, cancer (an age-related disease) is initiated by molecular damage. Cancer and aging share a lot in common including the activation of the TOR pathway. But the role of molecular damage distinguishes cancer and aging. Furthermore, an analysis of the role of both damage and aging in cancer argues against "a decline, caused by accumulation of molecular damage" as a cause of aging. I also discuss how random molecular damage, via rounds of multiplication and selection, brings about non-random hallmarks of cancer.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
45
|
Abstract
Deregulated mTOR signaling drives the growth of various human cancers, making mTOR a major target for development of cancer chemotherapeutics. The role of mTOR in carcinogenesis is thought to be largely a consequence of its activity in the cytoplasm resulting in increased translation of pro-tumorigenic genes. However, emerging data locate mTOR in various subcellular compartments including Golgi, mitochondria, endoplasmic reticulum, and the nucleus, implying the presence of compartment-specific mTOR substrates and functions. Efforts to identify mTOR substrates in these compartments, and the mechanisms by which mTOR recruits these substrates and affects downstream cellular processes, will add to our understanding of the diversity of roles played by mTOR in carcinogenesis.
Collapse
Affiliation(s)
- Jung H Back
- Department of Dermatology, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
46
|
Hinchcliffe EH. The centrosome and bipolar spindle assembly: does one have anything to do with the other? Cell Cycle 2011; 10:3841-8. [PMID: 22071626 DOI: 10.4161/cc.10.22.18293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In vertebrate somatic cells the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles - such as plant cells and many oocytes - bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them, and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization- both before and after nuclear envelope breakdown (NEB) - is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.
Collapse
Affiliation(s)
- Edward H Hinchcliffe
- Section of Cellular Dynamics, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
47
|
Delaval B, Covassin L, Lawson ND, Doxsey S. Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafish. Cell Cycle 2011; 10:3964-72. [PMID: 22142866 DOI: 10.4161/cc.10.22.18150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Most bona fide centrosome proteins including centrins, small calcium-binding proteins, participate in spindle function during mitosis and play a role in cilia assembly in non-cycling cells. Although the basic cellular functions of centrins have been studied in lower eukaryotes and vertebrate cells in culture, phenotypes associated with centrin depletion in vertebrates in vivo has not been directly addressed. To test this, we depleted centrin2 in zebrafish and found that it leads to ciliopathy phenotypes including enlarged pronephric tubules and pronephric cysts. Consistent with the ciliopathy phenotypes, cilia defects were observed in differentiated epithelial cells of ciliated organs such as the olfactory bulb and pronephric duct. The organ phenotypes were also accompanied by cell cycle deregulation namely mitotic delay resulting from mitotic defects. Overall, this work demonstrates that centrin2 depletion causes cilia-related disorders in zebrafish. Moreover, given the presence of both cilia and mitotic defects in the affected organs, it suggests that cilia disorders may arise from a combination of these defects.
Collapse
Affiliation(s)
- Benedicte Delaval
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | |
Collapse
|