1
|
Yang T, Wang W, Li Z, Cai J, Feng N, Xu S, Wang L, Wang X. Evaluating the Neuroprotective Effects of the Novel Kv2.1 Blocker Zj7923 against Ischemic Stroke In Vitro and In Vivo. Neuropharmacology 2025:110537. [PMID: 40449617 DOI: 10.1016/j.neuropharm.2025.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/19/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The voltage-dependent potassium channel Kv2.1 correlates closely to the regulation of neuronal excitability and cellular apoptosis. Ischemia or oxidative treatment were known to stimulate the surge of Kv2.1-mediated current to activate neuronal apoptosis pathways, while inhibiting excessive Kv2.1 K+ current efflux could reduce neuronal apoptosis and exhibit neuroprotective effects. Here, we found a novel Kv2.1 selective blocker Zj7923 and investigated whether it produces neuroprotective function after ischemic stroke animal model. We demonstrate that Zj7923 potently inhibits Kv2.1 current with an IC50 of 0.12 μM. Zj7923 had no obvious effect on the activation process of Kv2.1 channels, but could significantly accelerate the inactivation process of Kv2.1 channels. The mutations at Y380 and K356 in the outer vestibule of Kv2.1 channels weakened the inhibitory effect of Zj7923, and the IC50 value of Zj7923 on the mutation channels increased to 3.66 μM and 3.20 μM, respectively, indicating that the compound may act on the above two positions. Zj7923 could increase the spontaneous firing rate of normal hippocampal pyramidal neurons and ameliorate OGD-induced impairment of neuronal excitability. Kv2.1 channel inhibition by Zj7923 provides protection against DTDP-induced apoptosis and its mechanism might be related to the modulation of the expression of apoptosis-related proteins, such as Bcl-2, Bax and cleaved caspase-3 proteins. In vivo pharmacodynamics evaluation, intravenous administration of Zj7923 in rats following transient middle cerebral artery occlusion significantly reduced infarct volume and improved neurological deficits. Our results indicate that Zj7923 exerts a neuronal protection from cerebral ischemia in vitro and in vivo by inhibiting Kv2.1 current and validate the potential value of developing drugs targeting Kv2.1 for ischemic stroke.
Collapse
Affiliation(s)
- Tianjiao Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Cai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Feng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaofeng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Hassanshahi A, Ilaghi M, Ranjbar H, Razavinasab M, Kohlmeier KA, Hosseinmardi N, Behzadi G, Janahmadi M, Shabani M. Agmatine mitigates hyperexcitability of ventral tegmental area dopaminergic neurons in prenatally stressed male offspring. Eur J Pharmacol 2025; 992:177362. [PMID: 39923826 DOI: 10.1016/j.ejphar.2025.177362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Prenatal stress (PS) alters development of the brain, resulting in heightening the risk in offspring of cognitive deficits and addiction behaviors. The ventral tegmental area (VTA) plays a crucial role in processing stressful events, and promoting cognitively based motivational behavior. Previous research, including our own, has shown that PS affects the development of VTA dopaminergic (DA) neurons, leading to functional differences. In this study PS was induced in pregnant mice using both psychological and physical methods. Psychological stress involved placing the mice in a communication stress box to observe others under physical stress, while physical stress was applied by immersion in water for 5 min daily for 7 days. Agmatine, a neuromodulator with neuroprotective properties, was examined for its effects on the electrophysiological functioning of VTA DA neurons in the male offspring of stressed mice. Patch-clamp recordings of VTA DA cells from offspring maternally exposed to psychological or physical stress revealed enhanced cellular excitability, evidenced by increased firing frequency and greater firing following inhibition. Additionally, a decrease in action potential half-width and latency to the first spike were observed, indicating altered firing properties. Prenatal administration of agmatine mitigated these effects, preventing the PS-induced hyperexcitability of the VTA DA cells. Our findings extend previous work by demonstrating that both physical and psychological PS can significantly alter the electrophysiological functionality of VTA DA neurons, resulting in increased excitability. Agmatine effectively reduced these electrophysiological changes, highlighting its potential as a neuroprotective agent against neural alterations caused by negative maternal events during gestation.
Collapse
Affiliation(s)
- Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Mehran Ilaghi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Narges Hosseinmardi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Institute of Neuroscience and Cognition and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Wan D, Lu T, Li C, Hu C. Glucocorticoids Rapidly Modulate Ca V1.2-Mediated Calcium Signals through Kv2.1 Channel Clusters in Hippocampal Neurons. J Neurosci 2024; 44:e0179242024. [PMID: 39299804 PMCID: PMC11551909 DOI: 10.1523/jneurosci.0179-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
The precise regulation of Ca2+ signals plays a crucial role in the physiological functions of neurons. Here, we investigated the rapid effect of glucocorticoids on Ca2+ signals in cultured hippocampal neurons from both female and male rats. In cultured hippocampal neurons, glucocorticoids inhibited the spontaneous somatic Ca2+ spikes generated by Kv2.1-organized Ca2+ microdomains. Furthermore, glucocorticoids rapidly reduced the cell surface expressions of Kv2.1 and CaV1.2 channels in hippocampal neurons. In HEK293 cells transfected with Kv2.1 alone, glucocorticoids significantly reduced the surface expression of Kv2.1 with little effect on K+ currents. In HEK293 cells transfected with CaV1.2 alone, glucocorticoids inhibited CaV1.2 currents but had no effect on the cell surface expression of CaV1.2. Notably, in the presence of wild-type Kv2.1, glucocorticoids caused a decrease in the surface expression of CaV1.2 channels in HEK293 cells. However, this effect was not observed in the presence of nonclustering Kv2.1S586A mutant channels. Live-cell imaging showed that glucocorticoids rapidly decreased Kv2.1 clusters on the plasma membrane. Correspondingly, Western blot results indicated a significant increase in the cytoplasmic level of Kv2.1, suggesting the endocytosis of Kv2.1 clusters. Glucocorticoids rapidly decreased the intracellular cAMP concentration and the phosphorylation level of PKA in hippocampal neurons. The PKA inhibitor H89 mimicked the effect of glucocorticoids on Kv2.1, while the PKA agonist forskolin abrogated the effect. In conclusion, glucocorticoids rapidly suppress CaV1.2-mediated Ca2+ signals in hippocampal neurons by promoting the endocytosis of Kv2.1 channel clusters through reducing PKA activity.
Collapse
Affiliation(s)
- Di Wan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Tongchuang Lu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Chenyang Li
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Changlong Hu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China,
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| |
Collapse
|
4
|
McKiernan EC, Herrera-Valdez MA, Marrone DF. A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity. PLoS One 2024; 19:e0308809. [PMID: 39231135 PMCID: PMC11373847 DOI: 10.1371/journal.pone.0308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Marco A Herrera-Valdez
- Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
- McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
5
|
Delgado-Ramírez M, López-Serrano AL, Rodríguez-Menchaca AA. Inhibition of Kv2.1 potassium channels by the antidepressant drug sertraline. Eur J Pharmacol 2024; 970:176487. [PMID: 38458411 DOI: 10.1016/j.ejphar.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico.
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| |
Collapse
|
6
|
Bhat S, Rousseau J, Michaud C, Lourenço CM, Stoler JM, Louie RJ, Clarkson LK, Lichty A, Koboldt DC, Reshmi SC, Sisodiya SM, Hoytema van Konijnenburg EMM, Koop K, van Hasselt PM, Démurger F, Dubourg C, Sullivan BR, Hughes SS, Thiffault I, Tremblay ES, Accogli A, Srour M, Blunck R, Campeau PM. Mono-allelic KCNB2 variants lead to a neurodevelopmental syndrome caused by altered channel inactivation. Am J Hum Genet 2024; 111:761-777. [PMID: 38503299 PMCID: PMC11023922 DOI: 10.1016/j.ajhg.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.
Collapse
Affiliation(s)
- Shreyas Bhat
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Justine Rousseau
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Coralie Michaud
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | | | - Joan M Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Angie Lichty
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shalini C Reshmi
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Klaas Koop
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter M van Hasselt
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Université de Rennes, CNRS, IGDR, UMR 6290 Rennes, France
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Susan S Hughes
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isabelle Thiffault
- Departments of Pediatrics and of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Elisabeth Simard Tremblay
- Department of Neurology and Neurosurgery, McGill University Health Centre, Montréal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Rikard Blunck
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
7
|
Zhou J, Wang W, Liu D, Xu S, Wang X, Zhang X, Wang X, Li Y, Sheng L, Wang X, Xu B. Discovery of 2-Ethoxy-5-isobutyramido- N-1-substituted Benzamide Derivatives as Selective Kv2.1 Inhibitors with In Vivo Neuroprotective Effects. J Med Chem 2024; 67:213-233. [PMID: 38150670 DOI: 10.1021/acs.jmedchem.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Kv2.1 is involved in regulating neuronal excitability and neuronal cell apoptosis, and inhibiting Kv2.1 is a potential strategy to prevent cell death and achieve neuroprotection in ischemic stroke. In this work, a series of novel benzamide derivatives were designed and synthesized as Kv2.1 inhibitors, and extensive structure-activity relationships led to highly potent and selective Kv2.1 inhibitors having IC50 values of 10-8 M. Among them, compound 80 (IC50 = 0.07 μM, selectivity >130 fold over other K+, Na+, and Ca2+ ion channels) was able to decrease the apoptosis of HEK293/Kv2.1 cells induced by H2O2. Furthermore, its anti-ischemic efficacy was demonstrated as it markedly reduced the infarct volume in MCAO rat model. Additionally, compound 80 possessed appropriate plasma PK parameters. It could serve as a probe to investigate Kv2.1 pathological functions and deserved to be further explored.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dong Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shaofeng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinyuan Zhang
- Information Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Vullhorst D, Bloom MS, Akella N, Buonanno A. ER-PM Junctions on GABAergic Interneurons Are Organized by Neuregulin 2/VAP Interactions and Regulated by NMDA Receptors. Int J Mol Sci 2023; 24:2908. [PMID: 36769244 PMCID: PMC9917868 DOI: 10.3390/ijms24032908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Neuregulins (NRGs) signal via ErbB receptors to regulate neural development, excitability, synaptic and network activity, and behaviors relevant to psychiatric disorders. Bidirectional signaling between NRG2/ErbB4 and NMDA receptors is thought to homeostatically regulate GABAergic interneurons in response to increased excitatory neurotransmission or elevated extracellular glutamate levels. Unprocessed proNRG2 forms discrete clusters on cell bodies and proximal dendrites that colocalize with the potassium channel Kv2.1 at specialized endoplasmic reticulum-plasma membrane (ER-PM) junctions, and NMDA receptor activation triggers rapid dissociation from ER-PM junctions and ectodomain shedding by ADAM10. Here, we elucidate the mechanistic basis of proNRG2 clustering at ER-PM junctions and its regulation by NMDA receptors. Importantly, we demonstrate that proNRG2 promotes the formation of ER-PM junctions by directly binding the ER-resident membrane tether VAP, like Kv2.1. The proNRG2 intracellular domain harbors two non-canonical, low-affinity sites that cooperatively mediate VAP binding. One of these is a cryptic and phosphorylation-dependent VAP binding motif that is dephosphorylated following NMDA receptor activation, thus revealing how excitatory neurotransmission promotes the dissociation of proNRG2 from ER-PM junctions. Therefore, proNRG2 and Kv2.1 can independently function as VAP-dependent organizers of neuronal ER-PM junctions. Based on these and prior studies, we propose that proNRG2 and Kv2.1 serve as co-regulated downstream effectors of NMDA receptors to homeostatically regulate GABAergic interneurons.
Collapse
Affiliation(s)
- Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
9
|
Piccialli I, Sisalli MJ, de Rosa V, Boscia F, Tedeschi V, Secondo A, Pannaccione A. Increased K V2.1 Channel Clustering Underlies the Reduction of Delayed Rectifier K + Currents in Hippocampal Neurons of the Tg2576 Alzheimer's Disease Mouse. Cells 2022; 11:cells11182820. [PMID: 36139395 PMCID: PMC9497218 DOI: 10.3390/cells11182820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Cortical and hippocampal hyperexcitability intervenes in the pathological derangement of brain activity leading to cognitive decline. As key regulators of neuronal excitability, the voltage-gated K+ channels (KV) might play a crucial role in the AD pathophysiology. Among them, the KV2.1 channel, the main α subunit mediating the delayed rectifier K+ currents (IDR) and controlling the intrinsic excitability of pyramidal neurons, has been poorly examined in AD. In the present study, we investigated the KV2.1 protein expression and activity in hippocampal neurons from the Tg2576 mouse, a widely used transgenic model of AD. To this aim we performed whole-cell patch-clamp recordings, Western blotting, and immunofluorescence analyses. Our Western blotting results reveal that KV2.1 was overexpressed in the hippocampus of 3-month-old Tg2576 mice and in primary hippocampal neurons from Tg2576 mouse embryos compared with the WT counterparts. Electrophysiological experiments unveiled that the whole IDR were reduced in the Tg2576 primary neurons compared with the WT neurons, and that this reduction was due to the loss of the KV2.1 current component. Moreover, we found that the reduction of the KV2.1-mediated currents was due to increased channel clustering, and that glutamate, a stimulus inducing KV2.1 declustering, was able to restore the IDR to levels comparable to those of the WT neurons. These findings add new information about the dysregulation of ionic homeostasis in the Tg2576 AD mouse model and identify KV2.1 as a possible player in the AD-related alterations of neuronal excitability.
Collapse
|
10
|
Staruschenko A, Hodges MR, Palygin O. Kir5.1 channels: potential role in epilepsy and seizure disorders. Am J Physiol Cell Physiol 2022; 323:C706-C717. [PMID: 35848616 PMCID: PMC9448276 DOI: 10.1152/ajpcell.00235.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Inwardly rectifying potassium (Kir) channels are broadly expressed in many mammalian organ systems, where they contribute to critical physiological functions. However, the importance and function of the Kir5.1 channel (encoded by the KCNJ16 gene) have not been fully recognized. This review focuses on the recent advances in understanding the expression patterns and functional roles of Kir5.1 channels in fundamental physiological systems vital to potassium homeostasis and neurological disorders. Recent studies have described the role of Kir5.1-forming Kir channels in mouse and rat lines with mutations in the Kcnj16 gene. The animal research reveals distinct renal and neurological phenotypes, including pH and electrolyte imbalances, blunted ventilatory responses to hypercapnia/hypoxia, and seizure disorders. Furthermore, it was confirmed that these phenotypes are reminiscent of those in patient cohorts in which mutations in the KCNJ16 gene have also been identified, further suggesting a critical role for Kir5.1 channels in homeostatic/neural systems health and disease. Future studies that focus on the many functional roles of these channels, expanded genetic screening in human patients, and the development of selective small-molecule inhibitors for Kir5.1 channels, will continue to increase our understanding of this unique Kir channel family member.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Matthew R Hodges
- Department of Physiology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
11
|
Forzisi E, Yu W, Rajwade P, Sesti F. Antagonistic roles of Ras-MAPK and Akt signaling in integrin-K + channel complex-mediated cellular apoptosis. FASEB J 2022; 36:e22292. [PMID: 35357039 DOI: 10.1096/fj.202200180r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 01/02/2023]
Abstract
Complexes formed with α5-integrins and the voltage-gated potassium (K+ ) channel KCNB1 (Kv2.1), known as IKCs, transduce the electrical activity at the plasma membrane into biochemical events that impinge on cytoskeletal remodeling, cell differentiation, and migration. However, when cells are subject to stress of oxidative nature IKCs turn toxic and cause inflammation and death. Here, biochemical, pharmacological, and cell viability evidence demonstrates that in response to oxidative insults, IKCs activate an apoptotic Mitogen-activated protein kinase/extracellular signal-regulated kinase (Ras-MAPK) signaling pathway. Simultaneously, wild-type (WT) KCNB1 channels sequester protein kinase B (Akt) causing dephosphorylation of BCL2-associated agonist of cell death (BAD), a major sentinel of apoptosis progression. In contrast, IKCs formed with C73A KCNB1 variant that does not induce apoptosis (IKCC73A ), do not sequester Akt and thus are able to engage cell survival mechanisms. Taken together, these data suggest that apoptotic and survival forces co-exist in IKCs. Integrins send death signals through Ras-MAPK and KCNB1 channels simultaneously sabotage survival mechanisms. Thus, the combined action of integrins and KCNB1 channels advances life or death.
Collapse
Affiliation(s)
- Elena Forzisi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Wei Yu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Parth Rajwade
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
12
|
Sun Q, Liu F, Zhao J, Wang P, Sun X. Cleavage of Kv2.1 by BACE1 decreases potassium current and reduces neuronal apoptosis. Neurochem Int 2022; 155:105310. [DOI: 10.1016/j.neuint.2022.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
13
|
Xiong J, Liu Z, Chen S, Kessi M, Chen B, Duan H, Deng X, Yang L, Peng J, Yin F. Correlation Analyses of Clinical Manifestations and Variant Effects in KCNB1-Related Neurodevelopmental Disorder. Front Pediatr 2022; 9:755344. [PMID: 35071126 PMCID: PMC8767024 DOI: 10.3389/fped.2021.755344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Vitro functional analyses of KCNB1 variants have been done to disclose possible pathogenic mechanisms in KCNB1-related neurodevelopmental disorder. "Complete or partial loss of function (LoF)," "dominant-negative (DN) effect" are applied to describe KCNB1 variant's molecular phenotypes. The study here aimed to investigate clinical presentations and variant effects associations in the disorder. Methods: We reported 10 Chinese pediatric patients with KCNB1-related neurodevelopmental disorder here. Functional experiments on newly reported variants, including electrophysiology and protein expression, were performed in vitro. Phenotypic, functional, and genetic data in the cohort and published literature were collected. According to their variants' molecular phenotypes, patients were grouped into complete or partial LoF, and DN effect or non-dominant-negative (non-DN) effect to compare their clinical features. Results: Nine causative KCNB1 variants in 10 patients were identified in the cohort, including eight novel and one reported. Epilepsy (9/10), global developmental delay (10/10), and behavior issues (7/10) were common clinical features in our patients. Functional analyses of 8 novel variants indicated three partial and five complete LoF variants, five DN and three non-DN effect variants. Patient 1 in our series with truncated variants, whose functional results supported haploinsufficiency, had the best prognosis. Cases in complete LoF group had earlier seizure onset age (64.3 vs. 16.7%, p = 0.01) and worse seizure outcomes (18.8 vs. 66.7%, p = 0.03), and patients in DN effect subgroup had multiple seizure types compared to those in non-DN effect subgroup (65.5 vs. 30.8%, p = 0.039). Conclusion: Patients with KCNB1 variants in the Asian cohort have similar clinical manifestations to those of other races. Truncated KCNB1 variants exhibiting with haploinsufficiency molecular phenotype are linked to milder phenotypes. Individuals with complete LoF and DN effect KCNB1 variants have more severe seizure attacks than the other two subgroups.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
14
|
Newkirk GS, Guan D, Dembrow N, Armstrong WE, Foehring RC, Spain WJ. Kv2.1 Potassium Channels Regulate Repetitive Burst Firing in Extratelencephalic Neocortical Pyramidal Neurons. Cereb Cortex 2021; 32:1055-1076. [PMID: 34435615 DOI: 10.1093/cercor/bhab266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/14/2022] Open
Abstract
Coincidence detection and cortical rhythmicity are both greatly influenced by neurons' propensity to fire bursts of action potentials. In the neocortex, repetitive burst firing can also initiate abnormal neocortical rhythmicity (including epilepsy). Bursts are generated by inward currents that underlie a fast afterdepolarization (fADP) but less is known about outward currents that regulate bursting. We tested whether Kv2 channels regulate the fADP and burst firing in labeled layer 5 PNs from motor cortex of the Thy1-h mouse. Kv2 block with guangxitoxin-1E (GTx) converted single spike responses evoked by dendritic stimulation into multispike bursts riding on an enhanced fADP. Immunohistochemistry revealed that Thy1-h PNs expressed Kv2.1 (not Kv2.2) channels perisomatically (not in the dendrites). In somatic macropatches, GTx-sensitive current was the largest component of outward current with biophysical properties well-suited for regulating bursting. GTx drove ~40% of Thy1 PNs stimulated with noisy somatic current steps to repetitive burst firing and shifted the maximal frequency-dependent gain. A network model showed that reduction of Kv2-like conductance in a small subset of neurons resulted in repetitive bursting and entrainment of the circuit to seizure-like rhythmic activity. Kv2 channels play a dominant role in regulating onset bursts and preventing repetitive bursting in Thy1 PNs.
Collapse
Affiliation(s)
- Greg S Newkirk
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Dongxu Guan
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikolai Dembrow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - William J Spain
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
15
|
Scheiblich H, Steinert JR. Nitrergic modulation of neuronal excitability in the mouse hippocampus is mediated via regulation of Kv2 and voltage-gated sodium channels. Hippocampus 2021; 31:1020-1038. [PMID: 34047430 DOI: 10.1002/hipo.23366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Regulation of neuronal activity is a necessity for communication and information transmission. Many regulatory processes which have been studied provide a complex picture of how neurons can respond to permanently changing functional requirements. One such activity-dependent mechanism involves signaling mediated by nitric oxide (NO). Within the brain, NO is generated in response to neuronal NO synthase (nNOS) activation but NO-dependent pathways regulating neuronal excitability in the hippocampus remain to be fully elucidated. This study was set out to systematically assess the effects of NO on ion channel activities and intrinsic excitabilities of pyramidal neurons within the CA1 region of the mouse hippocampus. We characterized whole-cell potassium and sodium currents, both involved in action potential (AP) shaping and propagation and determined NO-mediated changes in excitabilities and AP waveforms. Our data describe a novel signaling by which NO, in a cGMP-independent manner, suppresses voltage-gated Kv2 potassium and voltage-gated sodium channel activities, thereby widening AP waveforms and reducing depolarization-induced AP firing rates. Our data show that glutathione, which possesses denitrosylating activity, is sufficient to prevent the observed nitrergic effects on potassium and sodium channels, whereas inhibition of cGMP signaling is also sufficient to abolish NO modulation of sodium currents. We propose that NO suppresses both ion channel activities via redox signaling and that an additional cGMP-mediated component is required to exert effects on sodium currents. Both mechanisms result in a dampened excitability and firing ability providing new data on nitrergic activities in the context of activity-dependent regulation of neuronal function following nNOS activation.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, University of Nottingham, School of Life Sciences, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
16
|
Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Arch 2021; 473:1213-1227. [PMID: 34021780 DOI: 10.1007/s00424-021-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.
Collapse
|
17
|
Dallas ML, Al-Owais MM, Hettiarachchi NT, Vandiver MS, Jarosz-Griffiths HH, Scragg JL, Boyle JP, Steele D, Peers C. Hydrogen sulfide regulates hippocampal neuron excitability via S-sulfhydration of Kv2.1. Sci Rep 2021; 11:8194. [PMID: 33854181 PMCID: PMC8046973 DOI: 10.1038/s41598-021-87646-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is gaining interest as a mammalian signalling molecule with wide ranging effects. S-sulfhydration is one mechanism that is emerging as a key post translational modification through which H2S acts. Ion channels and neuronal receptors are key target proteins for S-sulfhydration and this can influence a range of neuronal functions. Voltage-gated K+ channels, including Kv2.1, are fundamental components of neuronal excitability. Here, we show that both recombinant and native rat Kv2.1 channels are inhibited by the H2S donors, NaHS and GYY4137. Biochemical investigations revealed that NaHS treatment leads to S-sulfhydration of the full length wild type Kv2.1 protein which was absent (as was functional regulation by H2S) in the C73A mutant form of the channel. Functional experiments utilising primary rat hippocampal neurons indicated that NaHS augments action potential firing and thereby increases neuronal excitability. These studies highlight an important role for H2S in shaping cellular excitability through S-sulfhydration of Kv2.1 at C73 within the central nervous system.
Collapse
Affiliation(s)
- Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK.
| | - Moza M Al-Owais
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nishani T Hettiarachchi
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Scott Vandiver
- Department of Neuroscience, John's Hopkins University School of Medicine, Baltimore, USA
| | | | - Jason L Scragg
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - John P Boyle
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chris Peers
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| |
Collapse
|
18
|
Scott RC. Brains, complex systems and therapeutic opportunities in epilepsy. Seizure 2021; 90:155-159. [PMID: 33582003 DOI: 10.1016/j.seizure.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of epilepsy remains extremely challenging for the thirty percent of people that do not become seizure free. This is despite the introduction of multiple new drugs over that last several decades, highlighting the need for new approaches to identifying novel therapeutic strategies. Conceptualizing the brain as a complex adaptive system and applying the tools that are used in addressing such systems provides an opportunity for expanding the space in which to search for new therapies. Epilepsy has long been considered a network disease at the level of whole brain connectivity, but the application of the concepts to gene and protein expression networks as well as to the dynamic behaviors of microcircuits has been underexplored. These levels of the brain complex adaptive system will be reviewed and a case made for the epilepsy community to embrace these concepts in order to reap to enormous potential rewards.
Collapse
Affiliation(s)
- Rod C Scott
- University of Vermont, 95 Carrigan Drive, Burlington, VT, 05405, United States; University of Vermont Medical Center, United States; Great Ormond Street Hospital for Children NHS Trust, United Kingdom.
| |
Collapse
|
19
|
Distinct Pathogenic Genes Causing Intellectual Disability and Autism Exhibit a Common Neuronal Network Hyperactivity Phenotype. Cell Rep 2021; 30:173-186.e6. [PMID: 31914384 DOI: 10.1016/j.celrep.2019.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/15/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023] Open
Abstract
Pathogenic mutations in either one of the epigenetic modifiers EHMT1, MBD5, MLL3, or SMARCB1 have been identified to be causative for Kleefstra syndrome spectrum (KSS), a neurodevelopmental disorder with clinical features of both intellectual disability (ID) and autism spectrum disorder (ASD). To understand how these variants lead to the phenotypic convergence in KSS, we employ a loss-of-function approach to assess neuronal network development at the molecular, single-cell, and network activity level. KSS-gene-deficient neuronal networks all develop into hyperactive networks with altered network organization and excitatory-inhibitory balance. Interestingly, even though transcriptional data reveal distinct regulatory mechanisms, KSS target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network communication, providing insights into the pathophysiology of KSS and phenotypically congruent disorders.
Collapse
|
20
|
Wang W, Yin H, Feng N, Wang L, Wang X. Inhibitory effects of antidepressant fluoxetine on cloned Kv2.1 potassium channel expressed in HEK293 cells. Eur J Pharmacol 2020; 878:173097. [PMID: 32278853 DOI: 10.1016/j.ejphar.2020.173097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/15/2022]
Abstract
It is well demonstrated that antidepressant fluoxetine has significant inhibitory effects on voltage-gated potassium channels. So far, the concise regulation of fluoxetine on Kv2.1, the predominant delayed rectifier potassium channel subtype in the central nervous system, are rarely reported. Here patch-clamp recording was used to investigate the inhibitory effects of fluoxetine on Kv2.1 potassium channels stably expressed in HEK293 cells. The results showed fluoxetine dose-dependently suppressed Kv2.1 currents with an IC50 of 51.3 μM. At the test potential positive to +50 mV, fluoxetine 50 μM voltage-dependently suppressed Kv2.1 currents with an electrical distance δ of 0.28. Moreover, fluoxetine 50 μM did not affect the activation process of Kv2.1, but reduced the decay time constant τinact and obviously accelerated the inactivation process of Kv2.1 and left-shifted the half-maximal inactivation potential of Kv2.1 potassium channel by 9.8 mV. Fluoxetine 50 μM notably delayed the recovery process of Kv2.1 from inactivation with increased time constants. In addition, fluoxetine 50 μM use-dependently inhibited Kv2.1 currents at different frequencies. In conclusion, the inhibition of Kv2.1 by fluoxetine was concentration-dependent, voltage-dependent and use-dependent. The accelerated steady-state inactivation of Kv2.1 channels induced by fluoxetine might be ascribed to the delay of the recovery process of Kv2.1.
Collapse
Affiliation(s)
- Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Feng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Nascimento F, Broadhead MJ, Tetringa E, Tsape E, Zagoraiou L, Miles GB. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons. eLife 2020; 9:e54170. [PMID: 32081133 PMCID: PMC7062467 DOI: 10.7554/elife.54170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/20/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.
Collapse
Affiliation(s)
- Filipe Nascimento
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| | | | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Gareth Brian Miles
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
22
|
Traub RD, Moeller F, Rosch R, Baldeweg T, Whittington MA, Hall SP. Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms. Rev Neurosci 2020; 31:181-200. [PMID: 31525161 DOI: 10.1515/revneuro-2019-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 11/15/2022]
Abstract
Infantile spasms (IS) and seizures with focal onset have different clinical expressions, even when electroencephalography (EEG) associated with IS has some degree of focality. Oddly, identical pathology (with, however, age-dependent expression) can lead to IS in one patient vs. focal seizures in another or even in the same, albeit older, patient. We therefore investigated whether the cellular mechanisms underlying seizure initiation are similar in the two instances: spasms vs. focal. We noted that in-common EEG features can include (i) a background of waves at alpha to delta frequencies; (ii) a period of flattening, lasting about a second or more - the electrodecrement (ED); and (iii) often an interval of very fast oscillations (VFO; ~70 Hz or faster) preceding, or at the beginning of, the ED. With IS, VFO temporally coincides with the motor spasm. What is different between the two conditions is this: with IS, the ED reverts to recurring slow waves, as occurring before the ED, whereas with focal seizures the ED instead evolves into an electrographic seizure, containing high-amplitude synchronized bursts, having superimposed VFO. We used in vitro data to help understand these patterns, as such data suggest cellular mechanisms for delta waves, for VFO, for seizure-related burst complexes containing VFO, and, more recently, for the ED. We propose a unifying mechanistic hypothesis - emphasizing the importance of brain pH - to explain the commonalities and differences of EEG signals in IS versus focal seizures.
Collapse
Affiliation(s)
- Roger D Traub
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Friederike Moeller
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Torsten Baldeweg
- Institute of Child Health, University College London, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Stephen P Hall
- Hull York Medical School, University of York, Heslington YO10 5DD, UK
| |
Collapse
|
23
|
Tyukin IY, Iudin D, Iudin F, Tyukina T, Kazantsev V, Mukhina I, Gorban AN. Simple model of complex dynamics of activity patterns in developing networks of neuronal cultures. PLoS One 2019; 14:e0218304. [PMID: 31246978 PMCID: PMC6597067 DOI: 10.1371/journal.pone.0218304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Living neuronal networks in dissociated neuronal cultures are widely known for their ability to generate highly robust spatiotemporal activity patterns in various experimental conditions. Such patterns are often treated as neuronal avalanches that satisfy the power scaling law and thereby exemplify self-organized criticality in living systems. A crucial question is how these patterns can be explained and modeled in a way that is biologically meaningful, mathematically tractable and yet broad enough to account for neuronal heterogeneity and complexity. Here we derive and analyse a simple network model that may constitute a response to this question. Our derivations are based on few basic phenomenological observations concerning the input-output behavior of an isolated neuron. A distinctive feature of the model is that at the simplest level of description it comprises of only two variables, the network activity variable and an exogenous variable corresponding to energy needed to sustain the activity, and few parameters such as network connectivity and efficacy of signal transmission. The efficacy of signal transmission is modulated by the phenomenological energy variable. Strikingly, this simple model is already capable of explaining emergence of network spikes and bursts in developing neuronal cultures. The model behavior and predictions are consistent with published experimental evidence on cultured neurons. At the larger, cellular automata scale, introduction of the energy-dependent regulatory mechanism results in the overall model behavior that can be characterized as balancing on the edge of the network percolation transition. Network activity in this state shows population bursts satisfying the scaling avalanche conditions. This network state is self-sustainable and represents energetic balance between global network-wide processes and spontaneous activity of individual elements.
Collapse
Affiliation(s)
- Ivan Y. Tyukin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Saint-Petersburg State Electrotechnical University (LETI), Saint-Petersburg, Russia
- University of Leicester, Leicester, United Kingdom
- * E-mail:
| | - Dmitriy Iudin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Institute of Applied Physics of RAS, Nizhny Novgorod, Russia
| | - Feodor Iudin
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | | | - Victor Kazantsev
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- Institute of Applied Physics of RAS, Nizhny Novgorod, Russia
| | - Irina Mukhina
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - Alexander N. Gorban
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
- University of Leicester, Leicester, United Kingdom
| |
Collapse
|
24
|
Romer SH, Deardorff AS, Fyffe REW. A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons. J Physiol 2019; 597:3769-3786. [DOI: 10.1113/jp277833] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shannon H. Romer
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
- Oak Ridge Institute for Science and EducationEnvironmental Health Effects LaboratoryNavy Medical Research Unit‐DaytonWright‐Patterson Air Force Base OH 45433 USA
| | - Adam S. Deardorff
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
- Neurology, Boonshoft School of MedicineWright State University Dayton OH 45409 USA
| | - Robert E. W. Fyffe
- Neuroscience, Cell Biology & PhysiologyBoonshoft School of MedicineWright State University Fairborn OH 45435 USA
| |
Collapse
|
25
|
Delgado-Ramírez M, Rodríguez-Menchaca AA. Cytoskeleton disruption affects Kv2.1 channel function and its modulation by PIP 2. J Physiol Sci 2019; 69:513-521. [PMID: 30900190 PMCID: PMC10717730 DOI: 10.1007/s12576-019-00671-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium channels are expressed in a wide variety of excitable and non-excitable cells and regulate numerous cellular functions. The activity of ion channels can be modulated by direct interaction or/and functional coupling with other proteins including auxiliary subunits, scaffold proteins and the cytoskeleton. Here, we evaluated the influence of the actin-based cytoskeleton on the Kv2.1 channel using pharmacological and electrophysiological methods. We found that disruption of the actin-based cytoskeleton by latrunculin B resulted in the regulation of the Kv2.1 inactivation mechanism; it shifted the voltage of half-maximal inactivation toward negative potentials by approximately 15 mV, accelerated the rate of closed-state inactivation, and delayed the recovery rate from inactivation. The actin cytoskeleton stabilizing agent phalloidin prevented the hyperpolarizing shift in the half-maximal inactivation potential when co-applied with latrunculin B. Additionally, PIP2 depletion (a strategy that regulates Kv2.1 inactivation) after cytoskeleton disruption does not regulate further the inactivation of Kv2.1, which suggests that both factors could be regulating the Kv2.1 channel by a common mechanism. In summary, our results suggest a role for the actin-based cytoskeleton in regulating Kv2.1 channels.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, Col. Los Filtros, 78210, San Luis Potosí, SLP, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Venustiano Carranza #2405, Col. Los Filtros, 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
26
|
The Role of the Voltage-Gated Potassium Channel Proteins Kv8.2 and Kv2.1 in Vision and Retinal Disease: Insights from the Study of Mouse Gene Knock-Out Mutations. eNeuro 2019; 6:eN-NWR-0032-19. [PMID: 30820446 PMCID: PMC6393689 DOI: 10.1523/eneuro.0032-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022] Open
Abstract
Mutations in the KCNV2 gene, which encodes the voltage-gated K+ channel protein Kv8.2, cause a distinctive form of cone dystrophy with a supernormal rod response (CDSRR). Kv8.2 channel subunits only form functional channels when combined in a heterotetramer with Kv2.1 subunits encoded by the KCNB1 gene. The CDSRR disease phenotype indicates that photoreceptor adaptation is disrupted. The electroretinogram (ERG) response of affected individuals shows depressed rod and cone activity, but what distinguishes this disease is the supernormal rod response to a bright flash of light. Here, we have utilized knock-out mutations of both genes in the mouse to study the pathophysiology of CDSRR. The Kv8.2 knock-out (KO) mice show many similarities to the human disorder, including a depressed a-wave and an elevated b-wave response with bright light stimulation. Optical coherence tomography (OCT) imaging and immunohistochemistry indicate that the changes in six-month-old Kv8.2 KO retinae are largely limited to the outer nuclear layer (ONL), while outer segments appear intact. In addition, there is a significant increase in TUNEL-positive cells throughout the retina. The Kv2.1 KO and double KO mice also show a severely depressed a-wave, but the elevated b-wave response is absent. Interestingly, in all three KO genotypes, the c-wave is totally absent. The differential response shown here of these KO lines, that either possess homomeric channels or lack channels completely, has provided further insights into the role of K+ channels in the generation of the a-, b-, and c-wave components of the ERG.
Collapse
|
27
|
Modulator-Gated, SUMOylation-Mediated, Activity-Dependent Regulation of Ionic Current Densities Contributes to Short-Term Activity Homeostasis. J Neurosci 2018; 39:596-611. [PMID: 30504282 DOI: 10.1523/jneurosci.1379-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons operate within defined activity limits, and feedback control mechanisms dynamically tune ionic currents to maintain this optimal range. This study describes a novel, rapid feedback mechanism that uses SUMOylation to continuously adjust ionic current densities according to changes in activity. Small ubiquitin-like modifier (SUMO) is a peptide that can be post-translationally conjugated to ion channels to influence their surface expression and biophysical properties. Neuronal activity can regulate the extent of protein SUMOylation. This study on the single, unambiguously identifiable lateral pyloric neuron (LP), a component of the pyloric network in the stomatogastric nervous system of male and female spiny lobsters (Panulirus interruptus), focused on dynamic SUMOylation in the context of activity homeostasis. There were four major findings: First, neuronal activity adjusted the balance between SUMO conjugation and deconjugation to continuously and bidirectionally fine-tune the densities of two opposing conductances: the hyperpolarization activated current (Ih) and the transient potassium current (IA). Second, tonic 5 nm dopamine (DA) gated activity-dependent SUMOylation to permit and prevent activity-dependent regulation of Ih and IA, respectively. Third, DA-gated, activity-dependent SUMOylation contributed to a feedback mechanism that restored the timing and duration of LP activity during prolonged modulation by 5 μm DA, which initially altered these and other activity features. Fourth, DA modulatory and metamoduatory (gating) effects were tailored to simultaneously alter and stabilize neuronal output. Our findings suggest that modulatory tone may select a subset of rapid activity-dependent mechanisms from a larger menu to achieve homeostasis under varying conditions.SIGNIFICANCE STATEMENT Post-translational SUMOylation of ion channel subunits controls their interactions. When subunit SUMOylation is dysregulated, conductance densities mediated by the channels are distorted, leading to nervous system disorders, such as seizures and chronic pain. Regulation of ion channel SUMOylation is poorly understood. This study demonstrated that neuronal activity can regulate SUMOylation to reconfigure ionic current densities over minutes, and this regulation was gated by tonic nanomolar dopamine. Dynamic SUMOylation was necessary to maintain specific aspects of neuronal output while the neuron was being modulated by high (5 μm) concentrations of dopamine, suggesting that the gating function may ensure neuronal homeostasis during extrinsic modulation of a circuit.
Collapse
|
28
|
Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 2018; 28:307-334. [PMID: 28099137 DOI: 10.1515/revneuro-2016-0059] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
Collapse
|
29
|
Schulien AJ, Justice JA, Di Maio R, Wills ZP, Shah NH, Aizenman E. Zn(2+) -induced Ca(2+) release via ryanodine receptors triggers calcineurin-dependent redistribution of cortical neuronal Kv2.1 K(+) channels. J Physiol 2017; 594:2647-59. [PMID: 26939666 DOI: 10.1113/jp272117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/14/2016] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Increases in intracellular Zn(2+) concentrations are an early, necessary signal for the modulation of Kv2.1 K(+) channel localization and physiological function. Intracellular Zn(2+) -mediated Kv2.1 channel modulation is dependent on calcineurin, a Ca(2+) -activated phosphatase. We show that intracellular Zn(2+) induces a significant increase in ryanodine receptor-dependent cytosolic Ca(2+) transients, which leads to a calcineurin-dependent redistribution of Kv2.1 channels from pre-existing membrane clusters to diffuse localization. As such, the link between Zn(2+) and Ca(2+) signalling in this Kv2.1 modulatory pathway is established. We observe that a sublethal ischaemic preconditioning insult also leads to Kv2.1 redistribution in a ryanodine receptor-dependent fashion. We suggest that Zn(2+) may be an early and ubiquitous signalling molecule mediating Ca(2+) release from the cortical endoplasmic reticulum via ryanodine receptor activation. ABSTRACT Sublethal injurious stimuli in neurons induce transient increases in free intracellular Zn(2+) that are associated with regulating adaptive responses to subsequent lethal injury, including alterations in the function and localization of the delayed-rectifier potassium channel, Kv2.1. However, the link between intracellular Zn(2+) signalling and the observed changes in Kv2.1 remain undefined. In the present study, utilizing exogenous Zn(2+) treatment, along with a selective Zn(2+) ionophore, we show that transient elevations in intracellular Zn(2+) concentrations are sufficient to induce calcineurin-dependent Kv2.1 channel dispersal in rat cortical neurons in vitro, which is accompanied by a relatively small but significant hyperpolarizing shift in the voltage-gated activation kinetics of the channel. Critically, using a molecularly encoded calcium sensor, we found that the calcineurin-dependent changes in Kv2.1 probably occur as a result of Zn(2+) -induced cytosolic Ca(2+) release via activation of neuronal ryanodine receptors. Finally, we couple this mechanism with an established model for in vitro ischaemic preconditioning and show that Kv2.1 channel modulation in this process is also ryanodine receptor-sensitive. Our results strongly suggest that intracellular Zn(2+) -initiated signalling may represent an early and possibly widespread component of Ca(2+) -dependent processes in neurons.
Collapse
Affiliation(s)
- Anthony J Schulien
- Department of Neurobiology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| | - Jason A Justice
- Department of Neurobiology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| | - Roberto Di Maio
- Department of Neurology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| | | | | | - Elias Aizenman
- Department of Neurobiology.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, PA, USA
| |
Collapse
|
30
|
Justice JA, Schulien AJ, He K, Hartnett KA, Aizenman E, Shah NH. Disruption of K V2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. Neuroscience 2017; 354:158-167. [PMID: 28461216 DOI: 10.1016/j.neuroscience.2017.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
As the predominant mediator of the delayed rectifier current, KV2.1 is an important regulator of neuronal excitability. KV2.1, however, also plays a well-established role in apoptotic cell death. Apoptogenic stimuli induce syntaxin-dependent trafficking of KV2.1, resulting in an augmented delayed rectifier current that acts as a conduit for K+ efflux required for pro-apoptotic protease/nuclease activation. Recent evidence suggests that KV2.1 somato-dendritic clusters regulate the formation of endoplasmic reticulum-plasma membrane junctions that function as scaffolding sites for plasma membrane trafficking of ion channels, including KV2.1. However, it is unknown whether KV2.1 somato-dendritic clusters are required for apoptogenic trafficking of KV2.1. By overexpression of a protein derived from the C-terminus of the cognate channel KV2.2 (KV2.2CT), we induced calcineurin-independent disruption of KV2.1 somato-dendritic clusters in rat cortical neurons, without altering the electrophysiological properties of the channel. We observed that KV2.2CT-expressing neurons are less susceptible to oxidative stress-induced cell death. Critically, expression of KV2.2CT effectively blocked the increased current density of the delayed rectifier current associated with oxidative injury, supporting a vital role of KV2.1-somato-dendritic clusters in apoptogenic increases in KV2.1-mediated currents.
Collapse
Affiliation(s)
- Jason A Justice
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Anthony J Schulien
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kai He
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Karen A Hartnett
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Niyathi H Shah
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
31
|
Yang YS, Jeon SC, Kim DK, Eun SY, Jung SC. Chronic Ca 2+ influx through voltage-dependent Ca 2+ channels enhance delayed rectifier K + currents via activating Src family tyrosine kinase in rat hippocampal neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:259-265. [PMID: 28280420 PMCID: PMC5343060 DOI: 10.4196/kjpp.2017.21.2.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Excessive influx and the subsequent rapid cytosolic elevation of Ca2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca2+ level in normal as well as pathological conditions. Delayed rectifier K+ channels (IDR channels) play a role to suppress membrane excitability by inducing K+ outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca2+-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of IDR channels to hyperexcitable conditions induced by high Ca2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca2+-treatment significantly increased the amplitude of IDR without changes of gating kinetics. Nimodipine but not APV blocked Ca2+-induced IDR enhancement, confirming that the change of IDR might be targeted by Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated IDR enhancement was not affected by either Ca2+-induced Ca2+ release (CICR) or small conductance Ca2+-activated K+ channels (SK channels). Furthermore, PP2 but not H89 completely abolished IDR enhancement under high Ca2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca2+-mediated IDR enhancement. Thus, SFKs may be sensitive to excessive Ca2+ influx through VDCCs and enhance IDR to activate a neuroprotective mechanism against Ca2+-mediated hyperexcitability in neurons.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Sang-Chan Jeon
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Dong-Kwan Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Su-Yong Eun
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea.; Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea.; Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
32
|
Hönigsperger C, Nigro MJ, Storm JF. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin-1E. J Physiol 2017; 595:739-757. [PMID: 27562026 PMCID: PMC5285721 DOI: 10.1113/jp273024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/19/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Kv2 channels underlie delayed-rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia. Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space-representing grid cells. We used the new Kv2 blocker Guangxitoxin-1E (GTx) to study Kv2 functions in these neurons. Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed-rectifier K+ current but not transient A-type current. In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after-depolarizations; (iii) reducing the fast and medium after-hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering. GTx is a useful tool for studying Kv2 channels and their functions in neurons. ABSTRACT The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin-1E (GTx; 10-100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond -30 mV but not transient A-type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after-depolarization (ADP); (iii) reduced fast and medium after-hyperpolarizations (AHPs); (iv) strongly enhanced burst firing and increased excitability at moderate spike rates but reduced spiking at high rates; and (v) reduced spike clustering and rebound potentials. The changes in bursting and excitability were related to the altered ADPs and AHPs. Kv2 channels strongly shape the activity of mEC SCs by affecting spike repolarization, after-potentials, excitability and spike patterns. GTx is a useful tool and may serve to further clarify Kv2 channel functions in neurons. We conclude that Kv2 channels in mEC SCs are important determinants of intrinsic properties that allow these neurons to produce spatial representation. The results of the present study may also be important for the accurate modelling of grid cells.
Collapse
Affiliation(s)
| | - Maximiliano J. Nigro
- Department of PhysiologyInstitute of Basal Medical SciencesUniversity of OsloOsloNorway
- Department of Physiology and NeuroscienceNeuroscience InstituteNew York UniversityNew York, NYUSA
| | - Johan F. Storm
- Department of PhysiologyInstitute of Basal Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
33
|
Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 227:39-58. [PMID: 28980039 DOI: 10.1007/978-3-319-56895-9_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.
Collapse
|
34
|
Romer SH, Deardorff AS, Fyffe REW. Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons. Physiol Rep 2016; 4:e13039. [PMID: 27884958 PMCID: PMC5358001 DOI: 10.14814/phy2.13039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022] Open
Abstract
Homeostatic plasticity occurs through diverse cellular and synaptic mechanisms, and extensive investigations over the preceding decade have established Kv2.1 ion channels as key homeostatic regulatory elements in several central neuronal systems. As in these cellular systems, Kv2.1 channels in spinal motoneurons (MNs) localize within large somatic membrane clusters. However, their role in regulating motoneuron activity is not fully established in vivo. We have previously demonstrated marked Kv2.1 channel redistribution in MNs following in vitro glutamate application and in vivo peripheral nerve injury (Romer et al., 2014, Brain Research, 1547:1-15). Here, we extend these findings through the novel use of a fully intact, in vivo rat preparation to show that Kv2.1 ion channels in lumbar MNs rapidly and reversibly redistribute throughout the somatic membrane following 10 min of electrophysiological sensory and/or motor nerve stimulation. These data establish that Kv2.1 channels are remarkably responsive in vivo to electrically evoked and synaptically driven action potentials in MNs, and strongly implicate motoneuron Kv2.1 channels in the rapid homeostatic response to altered neuronal activity.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Robert E W Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
35
|
Tao H, Chen X, Deng M, Xiao Y, Wu Y, Liu Z, Zhou S, He Y, Liang S. Interaction site for the inhibition of tarantula Jingzhaotoxin-XI on voltage-gated potassium channel Kv2.1. Toxicon 2016; 124:8-14. [PMID: 27810559 DOI: 10.1016/j.toxicon.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/27/2023]
Abstract
Jingzhaotoxin-XI (JZTX-XI) is a 34-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom that potently inhibits both voltage-gated sodium channel Nav1.5 and voltage-gated potassium channel Kv2.1. In the present study, we further showed that JZTX-XI blocked Kv2.1 currents with the IC50 value of 0.39 ± 0.06 μM. JZTX-XI significantly shifted the current-voltage (I-V) curves and normalized conductance-voltage (G-V) curves of Kv2.1 channel to more depolarized voltages. Ala-scanning mutagenesis analyses demonstrated that mutants I273A, F274A, and E277A reduced toxin binding affinity by 10-, 16-, and 18-fold, respectively, suggesting that three common residues (I273, F274, E277) in the Kv2.1 S3b segment contribute to the formation of JZTX-XI receptor site, and the acidic residue Glu at the position 277 in Kv2.1 is the most important residue for JZTX-XI sensitivity. A single replacement of E277 with Asp(D) increased toxin inhibitory activity. These results establish that JZTX-XI inhibits Kv2.1 activation by trapping the voltage sensor in the rested state through a similar mechanism to that of HaTx1, but these two toxins have small differences in the most crucial molecular determinant. Furthermore, the in-depth investigation of the subtle differences in molecular determinants may be useful for increasing our understanding of the molecular details regarding toxin-channel interactions.
Collapse
Affiliation(s)
- Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Meichun Deng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yucheng Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuanyuan Wu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhonghua Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Sainan Zhou
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yingchun He
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
36
|
Stas JI, Bocksteins E, Jensen CS, Schmitt N, Snyders DJ. The anticonvulsant retigabine suppresses neuronal K V2-mediated currents. Sci Rep 2016; 6:35080. [PMID: 27734968 PMCID: PMC5062084 DOI: 10.1038/srep35080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/09/2022] Open
Abstract
Enhancement of neuronal M-currents, generated through KV7.2-KV7.5 channels, has gained much interest for its potential in developing treatments for hyperexcitability-related disorders such as epilepsy. Retigabine, a KV7 channel opener, has proven to be an effective anticonvulsant and has recently also gained attention due to its neuroprotective properties. In the present study, we found that the auxiliary KCNE2 subunit reduced the KV7.2-KV7.3 retigabine sensitivity approximately 5-fold. In addition, using both mammalian expression systems and cultured hippocampal neurons we determined that low μM retigabine concentrations had ‘off-target’ effects on KV2.1 channels which have recently been implicated in apoptosis. Clinical retigabine concentrations (0.3–3 μM) inhibited KV2.1 channel function upon prolonged exposure. The suppression of the KV2.1 conductance was only partially reversible. Our results identified KV2.1 as a new molecular target for retigabine, thus giving a potential explanation for retigabine’s neuroprotective properties.
Collapse
Affiliation(s)
- Jeroen I Stas
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium.,Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Camilla S Jensen
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nicole Schmitt
- Ion Channel Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Dirk J Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
37
|
Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer's disease mouse model. Cell Death Dis 2016; 7:e2100. [PMID: 26890139 PMCID: PMC5399189 DOI: 10.1038/cddis.2016.18] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/28/2015] [Accepted: 01/03/2016] [Indexed: 01/02/2023]
Abstract
Altered neuronal excitability is emerging as an important feature in Alzheimer's disease (AD). Kv2.1 potassium channels are important modulators of neuronal excitability and synaptic activity. We investigated Kv2.1 currents and its relation to the intrinsic synaptic activity of hippocampal neurons from 3xTg-AD (triple transgenic mouse model of Alzheimer's disease) mice, a widely employed preclinical AD model. Synaptic activity was also investigated by analyzing spontaneous [Ca2+]i spikes. Compared with wild-type (Non-Tg (non-transgenic mouse model)) cultures, 3xTg-AD neurons showed enhanced spike frequency and decreased intensity. Compared with Non-Tg cultures, 3xTg-AD hippocampal neurons revealed reduced Kv2.1-dependent Ik current densities as well as normalized conductances. 3xTg-AD cultures also exhibited an overall decrease in the number of functional Kv2.1 channels. Immunofluorescence assay revealed an increase in Kv2.1 channel oligomerization, a condition associated with blockade of channel function. In Non-Tg neurons, pharmacological blockade of Kv2.1 channels reproduced the altered pattern found in the 3xTg-AD cultures. Moreover, compared with untreated sister cultures, pharmacological inhibition of Kv2.1 in 3xTg-AD neurons did not produce any significant modification in Ik current densities. Reactive oxygen species (ROS) promote Kv2.1 oligomerization, thereby acting as negative modulator of the channel activity. Glutamate receptor activation produced higher ROS levels in hippocampal 3xTg-AD cultures compared with Non-Tg neurons. Antioxidant treatment with N-Acetyl-Cysteine was found to rescue Kv2.1-dependent currents and decreased spontaneous hyperexcitability in 3xTg-AD neurons. Analogous results regarding spontaneous synaptic activity were observed in neuronal cultures treated with the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Our study indicates that AD-related mutations may promote enhanced ROS generation, oxidative-dependent oligomerization, and loss of function of Kv2.1 channels. These processes can be part on the increased neuronal excitability of these neurons. These steps may set a deleterious vicious circle that eventually helps to promote excitotoxic damage found in the AD brain.
Collapse
|
38
|
Distinct Cell- and Layer-Specific Expression Patterns and Independent Regulation of Kv2 Channel Subtypes in Cortical Pyramidal Neurons. J Neurosci 2016; 35:14922-42. [PMID: 26538660 DOI: 10.1523/jneurosci.1897-15.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The Kv2 family of voltage-gated potassium channel α subunits, comprising Kv2.1 and Kv2.2, mediate the bulk of the neuronal delayed rectifier K(+) current in many mammalian central neurons. Kv2.1 exhibits robust expression across many neuron types and is unique in its conditional role in modulating intrinsic excitability through changes in its phosphorylation state, which affect Kv2.1 expression, localization, and function. Much less is known of the highly related Kv2.2 subunit, especially in forebrain neurons. Here, through combined use of cortical layer markers and transgenic mouse lines, we show that Kv2.1 and Kv2.2 are localized to functionally distinct cortical cell types. Kv2.1 expression is consistently high throughout all cortical layers, especially in layer (L) 5b pyramidal neurons, whereas Kv2.2 expression is primarily limited to neurons in L2 and L5a. In addition, L4 of primary somatosensory cortex is strikingly devoid of Kv2.2 immunolabeling. The restricted pattern of Kv2.2 expression persists in Kv2.1-KO mice, suggesting distinct cell- and layer-specific functions for these two highly related Kv2 subunits. Analyses of endogenous Kv2.2 in cortical neurons in situ and recombinant Kv2.2 expressed in heterologous cells reveal that Kv2.2 is largely refractory to stimuli that trigger robust, phosphorylation-dependent changes in Kv2.1 clustering and function. Immunocytochemistry and voltage-clamp recordings from outside-out macropatches reveal distinct cellular expression patterns for Kv2.1 and Kv2.2 in intratelencephalic and pyramidal tract neurons of L5, indicating circuit-specific requirements for these Kv2 paralogs. Together, these results support distinct roles for these two Kv2 channel family members in mammalian cortex. SIGNIFICANCE STATEMENT Neurons within the neocortex are arranged in a laminar architecture and contribute to the input, processing, and/or output of sensory and motor signals in a cell- and layer-specific manner. Neurons of different cortical layers express diverse populations of ion channels and possess distinct intrinsic membrane properties. Here, we show that the Kv2 family members Kv2.1 and Kv2.2 are expressed in distinct cortical layers and pyramidal cell types associated with specific corticostriatal pathways. We find that Kv2.1 and Kv2.2 exhibit distinct responses to acute phosphorylation-dependent regulation in brain neurons in situ and in heterologous cells in vitro. These results identify a molecular mechanism that contributes to heterogeneity in cortical neuron ion channel function and regulation.
Collapse
|
39
|
Gupte RP, Kadunganattil S, Shepherd AJ, Merrill R, Planer W, Bruchas MR, Strack S, Mohapatra DP. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide. Neuropharmacology 2015; 101:291-308. [PMID: 26456351 DOI: 10.1016/j.neuropharm.2015.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 12/30/2022]
Abstract
The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is secreted by both neuronal and non-neuronal cells in the brain and spinal cord, in response to pathological conditions such as stroke, seizures, chronic inflammatory and neuropathic pain. PACAP has been shown to exert various neuromodulatory and neuroprotective effects. However, direct influence of PACAP on the function of intrinsically excitable ion channels that are critical to both hyperexcitation as well as cell death, remain largely unexplored. The major dendritic K(+) channel Kv4.2 is a critical regulator of neuronal excitability, back-propagating action potentials in the dendrites, and modulation of synaptic inputs. We identified, cloned and characterized the downstream signaling originating from the activation of three PACAP receptor (PAC1) isoforms that are expressed in rodent hippocampal neurons that also exhibit abundant expression of Kv4.2 protein. Activation of PAC1 by PACAP leads to phosphorylation of Kv4.2 and downregulation of channel currents, which can be attenuated by inhibition of either PKA or ERK1/2 activity. Mechanistically, this dynamic downregulation of Kv4.2 function is a consequence of reduction in the density of surface channels, without any influence on the voltage-dependence of channel activation. Interestingly, PKA-induced effects on Kv4.2 were mediated by ERK1/2 phosphorylation of the channel at two critical residues, but not by direct channel phosphorylation by PKA, suggesting a convergent phosphomodulatory signaling cascade. Altogether, our findings suggest a novel GPCR-channel signaling crosstalk between PACAP/PAC1 and Kv4.2 channel in a manner that could lead to neuronal hyperexcitability.
Collapse
Affiliation(s)
- Raeesa P Gupte
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suraj Kadunganattil
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew J Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ronald Merrill
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Planer
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefan Strack
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Durga P Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, IA 52242, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
He K, McCord MC, Hartnett KA, Aizenman E. Regulation of Pro-Apoptotic Phosphorylation of Kv2.1 K+ Channels. PLoS One 2015; 10:e0129498. [PMID: 26115091 PMCID: PMC4482604 DOI: 10.1371/journal.pone.0129498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Caspase activity during apoptosis is inhibited by physiological concentrations of intracellular K+. To enable apoptosis in injured cortical and hippocampal neurons, cellular loss of this cation is facilitated by the insertion of Kv2.1 K+ channels into the plasma membrane via a Zn2+/CaMKII/SNARE-dependent process. Pro-apoptotic membrane insertion of Kv2.1 requires the dual phosphorylation of the channel by Src and p38 at cytoplasmic N- and C-terminal residues Y124 and S800, respectively. In this study, we investigate if these phosphorylation sites are mutually co-regulated, and whether putative N- and C-terminal interactions, possibly enabled by Kv2.1 intracellular cysteine residues C73 and C710, influence the phosphorylation process itself. Studies were performed with recombinant wild type and mutant Kv2.1 expressed in Chinese hamster ovary (CHO) cells. Using immunoprecipitated Kv2.1 protein and phospho-specific antibodies, we found that an intact Y124 is required for p38 phosphorylation of S800, and, importantly, that Src phosphorylation of Y124 facilitates the action of the p38 at the S800 residue. Moreover, the actions of Src on Kv2.1 are substantially decreased in the non-phosphorylatable S800A channel mutant. We also observed that mutations of either C73 or C710 residues decreased the p38 phosphorylation at S800 without influencing the actions of Src on tyrosine phosphorylation of Kv2.1. Surprisingly, however, apoptotic K+ currents were suppressed only in cells expressing the Kv2.1(C73A) mutant but not in those transfected with Kv2.1(C710A), suggesting a possible structural alteration in the C-terminal mutant that facilitates membrane insertion. These results show that intracellular N-terminal domains critically regulate phosphorylation of the C-terminal of Kv2.1, and vice versa, suggesting possible new avenues for modifying the apoptotic insertion of these channels during neurodegenerative processes.
Collapse
Affiliation(s)
- Kai He
- Department of Neurobiology, University of Pittsburgh School of Medicine, E1456 BST, 3500 Terrace St., Pittsburgh, PA, 15261, United States of America
| | - Meghan C. McCord
- Department of Neurobiology, University of Pittsburgh School of Medicine, E1456 BST, 3500 Terrace St., Pittsburgh, PA, 15261, United States of America
| | - Karen A. Hartnett
- Department of Neurobiology, University of Pittsburgh School of Medicine, E1456 BST, 3500 Terrace St., Pittsburgh, PA, 15261, United States of America
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, E1456 BST, 3500 Terrace St., Pittsburgh, PA, 15261, United States of America
- * E-mail:
| |
Collapse
|
41
|
Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachichi NT, Elies J, Johnson E, Gamper N, Steele DS. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol 2015; 172:1546-56. [PMID: 24818840 PMCID: PMC4369263 DOI: 10.1111/bph.12760] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
Carbon monoxide (CO) is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins, it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, NO and cGMP levels, as well as regulate MAPK signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca(2+) -sensitive K(+) channels. More recent studies have revealed the ability of CO to inhibit T-type Ca(2+) channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.
Collapse
Affiliation(s)
- C Peers
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - J P Boyle
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - J L Scragg
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - M L Dallas
- School of Pharmacy, University of ReadingReading, UK
| | - M M Al-Owais
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - N T Hettiarachichi
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - J Elies
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - E Johnson
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of LeedsLeeds, UK
| | - N Gamper
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - D S Steele
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| |
Collapse
|
42
|
Peers C, Boyle JP. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging. Antioxid Redox Signal 2015; 22:505-21. [PMID: 25333910 DOI: 10.1089/ars.2014.6007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress and damage are well-established components of neurodegenerative diseases, contributing to neuronal death during disease progression. Here, we consider key K(+) channels as target proteins that can undergo oxidative modulation, describe what is understood about how this influences disease progression, and consider regulation of these channels by gasotransmitters as a means of cellular protection. RECENT ADVANCES Oxidative regulation of the delayed rectifier Kv2.1 and the Ca(2+)- and voltage-sensitive BK channel are established, but recent studies contest how their redox sensitivity contributes to altered excitability, progression of neurodegenerative diseases, and healthy aging. CRITICAL ISSUES Both Kv2.1 and BK channels have recently been established as target proteins for regulation by the gasotransmitters carbon monoxide and hydrogen sulfide. Establishing the molecular basis of such regulation, and exactly how this influences excitability and vulnerability to apoptotic cell death will determine whether such regulation can be exploited for therapeutic benefit. FUTURE DIRECTIONS Developing a more comprehensive picture of the oxidative modulation of K(+) channels (and, indeed, other ion channels) within the central nervous system in health and disease will enable us to better understand processes associated with healthy aging as well as distinct processes underlying progression of neurodegenerative diseases. Advances in the growing understanding of how gasotransmitters can regulate ion channels, including redox-sensitive K(+) channels, are a research priority for this field, and will establish their usefulness in design of future approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Chris Peers
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
43
|
King AN, Manning CF, Trimmer JS. A unique ion channel clustering domain on the axon initial segment of mammalian neurons. J Comp Neurol 2015; 522:2594-608. [PMID: 24477962 DOI: 10.1002/cne.23551] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
The axon initial segment (AIS) plays a key role in initiation of action potentials and neuronal output. The plasma membrane of the AIS contains high densities of voltage-gated ion channels required for these electrical events, and much recent work has focused on defining the mechanisms for generating and maintaining this unique neuronal plasma membrane domain. The Kv2.1 voltage-gated potassium channel is abundantly present in large clusters on the soma and proximal dendrites of mammalian brain neurons. Kv2.1 is also a component of the ion channel repertoire at the AIS. Here we show that Kv2.1 clusters on the AIS of brain neurons across diverse mammalian species including humans define a noncanonical ion channel clustering domain deficient in Ankyrin-G. The sites of Kv2.1 clustering on the AIS are sites where cisternal organelles, specialized intracellular calcium release membranes, come into close apposition with the plasma membrane, and are also sites of clustering of γ-aminobutyric acid (GABA)ergic synapses. Using an antibody specific for a single Kv2.1 phosphorylation site, we find that the phosphorylation state differs between Kv2.1 clusters on the proximal and distal portions of the AIS. Together, these studies show that the sites of Kv2.1 clustering on the AIS represent specialized domains containing components of diverse neuronal signaling pathways that may contribute to local regulation of Kv2.1 function and AIS membrane excitability.
Collapse
Affiliation(s)
- Anna N King
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | | | | |
Collapse
|
44
|
Sosanya NM, Brager DH, Wolfe S, Niere F, Raab-Graham KF. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol Dis 2014; 73:96-105. [PMID: 25270294 DOI: 10.1016/j.nbd.2014.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/11/2014] [Accepted: 09/21/2014] [Indexed: 01/12/2023] Open
Abstract
Changes in ion channel expression are implicated in the etiology of epilepsy. However, the molecular leading to long-term aberrant expression of ion channels are not well understood. The mechanistic/mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates activity-dependent protein synthesis in neurons. mTOR is overactive in epilepsy, suggesting that excessive protein synthesis may contribute to the neuronal pathology. In contrast, we found that mTOR activity and the microRNA miR-129-5p reduce the expression of the voltage-gated potassium channel Kv1.1 in an animal model of temporal lobe epilepsy (TLE). When mTOR activity is low, Kv1.1 expression is high and the frequency of behavioral seizures is low. However, as behavioral seizure activity rises, mTOR activity increases and Kv1.1 protein levels drop. In CA1 pyramidal neurons, the reduction in Kv1.1 lowers the threshold for action potential firing. Interestingly, blocking mTOR activity with rapamycin reduces behavioral seizures and temporarily keeps Kv1.1 levels elevated. Overtime, seizure activity increases and Kv1.1 protein decreases in all animals, even those treated with rapamycin. Notably, the concentration of miR-129-5p, the negative regulator of Kv1.1 mRNA translation, increases by 21days post-status epilepticus (SE), sustaining Kv1.1 mRNA translational repression. Our results suggest that following kainic-acid induced status epilepticus there are two phases of Kv1.1 repression: (1) an initial mTOR-dependent repression of Kv1.1 that is followed by (2) a miR-129-5p persistent reduction of Kv1.1.
Collapse
Affiliation(s)
- Natasha M Sosanya
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, USA
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA
| | - Sarah Wolfe
- Institute for Cell and Molecular Biology, University of Texas at Austin, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin University Station C7000, Austin, TX 78712, USA
| | - Farr Niere
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin University Station C7000, Austin, TX 78712, USA.
| |
Collapse
|
45
|
Deardorff AS, Romer SH, Sonner PM, Fyffe REW. Swimming against the tide: investigations of the C-bouton synapse. Front Neural Circuits 2014; 8:106. [PMID: 25278842 PMCID: PMC4167003 DOI: 10.3389/fncir.2014.00106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
C-boutons are important cholinergic modulatory loci for state-dependent alterations in motoneuron firing rate. m2 receptors are concentrated postsynaptic to C-boutons, and m2 receptor activation increases motoneuron excitability by reducing the action potential afterhyperpolarization. Here, using an intensive review of the current literature as well as data from our laboratory, we illustrate that C-bouton postsynaptic sites comprise a unique structural/functional domain containing appropriate cellular machinery (a “signaling ensemble”) for cholinergic regulation of outward K+ currents. Moreover, synaptic reorganization at these critical sites has been observed in a variety of pathologic states. Yet despite recent advances, there are still great challenges for understanding the role of C-bouton regulation and dysregulation in human health and disease. The development of new therapeutic interventions for devastating neurological conditions will rely on a complete understanding of the molecular mechanisms that underlie these complex synapses. Therefore, to close this review, we propose a comprehensive hypothetical mechanism for the cholinergic modification of α-MN excitability at C-bouton synapses, based on findings in several well-characterized neuronal systems.
Collapse
Affiliation(s)
- Adam S Deardorff
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Shannon H Romer
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Patrick M Sonner
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Robert E W Fyffe
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| |
Collapse
|
46
|
Siddoway B, Hou H, Yang J, Sun L, Yang H, Wang GY, Xia H. Potassium channel Kv2.1 is regulated through protein phosphatase-1 in response to increases in synaptic activity. Neurosci Lett 2014; 583:142-7. [PMID: 25220706 DOI: 10.1016/j.neulet.2014.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
The functional stability of neurons in the face of large variations in both activity and efficacy of synaptic connections suggests that neurons possess intrinsic negative feedback mechanisms to balance and tune excitability. While NMDA receptors have been established to play an important role in glutamate receptor-dependent plasticity through protein dephosphorylation, the effects of synaptic activation on intrinsic excitability are less well characterized. We show that increases in synaptic activity result in dephosphorylation of the potassium channel subunit Kv2.1. This dephosphorylation is induced through NMDA receptors and is executed through protein phosphatase-1 (PP1), an enzyme previously established to play a key role in regulating ligand gated ion channels in synaptic plasticity. Dephosphorylation of Kv2.1 by PP1 in response to synaptic activity results in substantial shifts in the inactivation curve of IK, resulting in a reduction in intrinsic excitability, facilitating negative feedback to neuronal excitability.
Collapse
Affiliation(s)
- Benjamin Siddoway
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States.
| | - Hailong Hou
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Jinnan Yang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Lu Sun
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Hongtian Yang
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Guo-yong Wang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Houhui Xia
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
47
|
Mandikian D, Bocksteins E, Parajuli LK, Bishop HI, Cerda O, Shigemoto R, Trimmer JS. Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors. J Comp Neurol 2014; 522:3555-74. [PMID: 24962901 DOI: 10.1002/cne.23641] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 11/08/2022]
Abstract
The Kv2.1 voltage-gated K+ channel is widely expressed throughout mammalian brain, where it contributes to dynamic activity-dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+ -release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy-immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR-mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing green fluorescent protein in specific MSN populations reveals the most prominent juxtaposed Kv2.1:RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared with levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared with those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage dependence of activation of Kv2.1, typical of Ca2+ /calcineurin-dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell- and circuit-specific mechanism for coupling intracellular Ca2+ release to phosphorylation-dependent regulation of Kv2.1 to dynamically impact intrinsic excitability.
Collapse
Affiliation(s)
- Danielle Mandikian
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, 95616
| | | | | | | | | | | | | |
Collapse
|
48
|
Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J Neurosci 2014; 34:5486-96. [PMID: 24741039 DOI: 10.1523/jneurosci.4861-12.2014] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The hypothalamic arcuate nucleus (ARH) is a brain region critical for regulation of food intake and a primary area for the action of leptin in the CNS. In lean mice, the adipokine leptin inhibits neuropeptide Y (NPY) and agouti-related peptide (AgRP) neuronal activity, resulting in decreased food intake. Here we show that diet-induced obesity in mice is associated with persistent activation of NPY neurons and a failure of leptin to reduce the firing rate or hyperpolarize the resting membrane potential. However, the molecular mechanism whereby diet uncouples leptin's effect on neuronal excitability remains to be fully elucidated. In NPY neurons from lean mice, the Kv channel blocker 4-aminopyridine inhibited leptin-induced changes in input resistance and spike rate. Consistent with this, we found that ARH NPY neurons have a large, leptin-sensitive delayed rectifier K(+) current and that leptin sensitivity of this current is blunted in neurons from diet-induced obese mice. This current is primarily carried by Kv2-containing channels, as the Kv2 channel inhibitor stromatoxin-1 significantly increased the spontaneous firing rate in NPY neurons from lean mice. In HEK cells, leptin induced a significant hyperpolarizing shift in the voltage dependence of Kv2.1 but had no effect on the function of the closely related channel Kv2.2 when these channels were coexpressed with the long isoform of the leptin receptor LepRb. Our results suggest that dynamic modulation of somatic Kv2.1 channels regulates the intrinsic excitability of NPY neurons to modulate the spontaneous activity and the integration of synaptic input onto these neurons in the ARH.
Collapse
|
49
|
Effects of SKF83959 on the excitability of hippocampal CA1 pyramidal neurons: a modeling study. Acta Pharmacol Sin 2014; 35:738-51. [PMID: 24858313 DOI: 10.1038/aps.2014.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
Abstract
AIM 3-Methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) have been shown to affect several types of voltage-dependent channels in hippocampal pyramidal neurons. The aim of this study was to determine how modulation of a individual type of the channels by SKF83959 contributes to the overall excitability of CA1 pyramidal neurons during either direct current injections or synaptic activation. METHODS Rat hippocampal slices were prepared. The kinetics of voltage-dependent Na(+) channels and neuronal excitability and depolarization block in CA1 pyramidal neurons were examined using whole-cell recording. A realistic mathematical model of hippocampal CA1 pyramidal neuron was used to simulate the effects of SKF83959 on neuronal excitability. RESULTS SKF83959 (50 μmol/L) shifted the inactivation curve of Na(+) current by 10.3 mV but had no effect on the activation curve in CA1 pyramidal neurons. The effects of SKF83959 on passive membrane properties, including a decreased input resistance and depolarized resting potential, predicted by our simulations were in agreement with the experimental data. The simulations showed that decreased excitability of the soma by SKF83959 (examined with current injection at the soma) was only observed when the membrane potential was compensated to the control levels, whereas the decreased dendritic excitability (examined with current injection at the dendrite) was found even without membrane potential compensation, which led to a decreased number of action potentials initiated at the soma. Moreover, SKF83959 significantly facilitated depolarization block in CA1 pyramidal neurons. SKF83959 decreased EPSP temporal summation and, of physiologically greater relevance, the synaptic-driven firing frequency. CONCLUSION SKF83959 decreased the excitability of CA1 pyramidal neurons even though the drug caused the membrane potential depolarization. The results may reveal a partial mechanism for the drug's anti-Parkinsonian effects and may also suggest that SKF83959 has a potential antiepileptic effect.
Collapse
|
50
|
Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci 2014; 34:4991-5002. [PMID: 24695716 DOI: 10.1523/jneurosci.1925-13.2014] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.
Collapse
|