1
|
Wang D, Silvani G, Schroeter L, Brynn R, Chou J, Poole K. The mechanosensitive channel ELKIN1 regulates cellular adaptations to simulated microgravity. NPJ Microgravity 2025; 11:10. [PMID: 40090965 PMCID: PMC11911437 DOI: 10.1038/s41526-025-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
In conditions of microgravity the human body undergoes extensive alterations in physiological function. However, it has proven challenging to determine how these changes are mediated at the molecular and cellular level. Here, we investigated whether ELKIN1, a mechanically activated ion channel, regulates changes in cellular and molecular structures in conditions of simulated microgravity. Deletion of ELKIN1 inhibited the simulated microgravity-induced alterations of cellular structure and attachment. In addition, cells lacking ELKIN1 did not exhibit changes in focal adhesion structures and redistribution of the YAP1 transcription factor in response to simulated microgravity, consistent with wild type cells. Finally, melanoma cell invasion of a collagen gel, from organotypic spheroids, was reduced in simulated microgravity, in an ELKIN1 dependent manner. Thus, the force sensing molecule, ELKIN1, modulates the impact of microgravity at both the molecular and cellular levels, revealing one of the molecular mechanisms that underpins cellular adaptations to conditions of microgravity.
Collapse
Affiliation(s)
- Daphne Wang
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Giulia Silvani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
- Laboratory for Advanced Biomaterials & Matrix Engineering, School of Chemistry and School of Materials Science and Engineering, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Lioba Schroeter
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Remi Brynn
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
- EXPLOR Biologics, NSW, 2000, Sydney, Australia
| | - Kate Poole
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, 2052, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Pal K. Unravelling molecular mechanobiology using DNA-based fluorogenic tension sensors. J Mater Chem B 2024; 13:37-53. [PMID: 39564891 DOI: 10.1039/d4tb01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Investigations of the biological system have revealed many principles that govern regular life processes. Recently, the analysis of tiny mechanical forces associated with many biological processes revealed their significance in understanding biological functions. Consequently, this piqued the interest of researchers, and a series of technologies have been developed to understand biomechanical cues at the molecular level. Notable techniques include single-molecule force spectroscopy, traction force microscopy, and molecular tension sensors. Well-defined double-stranded DNA structures could possess programmable mechanical characteristics, and hence, they have become one of the central molecules in molecular tension sensor technology. With the advancement of DNA technology, DNA or nucleic acid-based robust tension sensors offer the possibility of understanding mechanobiology in the bulk to single-molecule level range with desired spatiotemporal resolution. This review presents a comprehensive account of molecular tension sensors with a special emphasis on DNA-based fluorogenic tension sensors. Along with a detailed discussion on irreversible and reversible DNA-based tension sensors and their application in super-resolution microscopy, a discussion on biomolecules associated with cellular mechanotransduction and key findings in the field are included. This review ends with an elaborate discussion on the current challenges and future prospects of molecular tension sensors.
Collapse
Affiliation(s)
- Kaushik Pal
- Biophysical Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, Tirupati, AP-517619, India.
| |
Collapse
|
3
|
Wu Z, Wu D, Zhong Q, Zou X, Liu Z, Long H, Wei J, Li X, Dai F. The role of zyxin in signal transduction and its relationship with diseases. Front Mol Biosci 2024; 11:1371549. [PMID: 38712343 PMCID: PMC11070705 DOI: 10.3389/fmolb.2024.1371549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
This review highlighted the pivotal role of zyxin, an essential cell focal adhesions protein, in cellular biology and various diseases. Zyxin can orchestrate the restructuring and dynamic alterations of the cellular cytoskeleton, which is involved in cell proliferation, adhesion, motility, and gene transcription. Aberrant zyxin expression is closely correlated with tumor cell activity and cardiac function in both tumorigenesis and cardiovascular diseases. Moreover, in fibrotic and inflammatory conditions, zyxin can modulate cellular functions and inflammatory responses. Therefore, a comprehensive understanding of zyxin is crucial for deciphering signal transduction networks and disease pathogenesis. Investigating its role in diseases holds promise for novel avenues in early diagnosis and therapeutic strategies. Nevertheless, targeting zyxin as a therapeutic focal point presents challenges in terms of specificity, safety, drug delivery, and resistance. Nonetheless, in-depth studies on zyxin and the application of precision medicine could offer new possibilities for personalized treatment modalities.
Collapse
Affiliation(s)
- Zelan Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daiqin Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Zhong
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xue Zou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhongjing Liu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hehua Long
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Jing Wei
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xia Li
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fangjie Dai
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Guo H, Peng X, Dong X, Li J, Cheng C, Wei Q. Promoting Stem Cell Mechanosensing and Osteogenesis by Hybrid Soft Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47880-47892. [PMID: 37788009 DOI: 10.1021/acsami.3c07999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bone regenerative biomaterials are essential in treating bone defects as they serve as extracellular matrix (ECM) mimics, creating a favorable environment for cell attachment, proliferation, and differentiation. However, the currently used bone regenerative biomaterials mostly exhibit high stiffness, which may lead to difficulties in degradation and thus increase the risk of foreign body ingestion. In this study, we prepared soft fibrous scaffolds modified with Zn-MOF-74 nanoparticles via electrostatic spinning. The soft fibers (only 1 kPa) permit remodeling under cellular adhesive force, optimizing the mechanical cues in the microenvironment to support cell adhesion and mechanosensing. In addition, the incorporation of Zn-MOF-74 nanoparticles enables the stable and sustained release of zinc ions, promoting stem cell mechanotransduction and osteogenic differentiation. Therefore, the hybrid soft fibers facilitate the regeneration of new bone in the rat femoral defect model, which provides a promising approach for regenerative medicine.
Collapse
Affiliation(s)
- Hui Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- West China School of Basic Medical Sciences & Forensic Medicine, Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Xiangyu Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangge Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
6
|
Zhang S, Chong LH, Woon JYX, Chua TX, Cheruba E, Yip AK, Li HY, Chiam KH, Koh CG. Zyxin regulates embryonic stem cell fate by modulating mechanical and biochemical signaling interface. Commun Biol 2023; 6:62. [PMID: 36653484 PMCID: PMC9849324 DOI: 10.1038/s42003-023-04421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Biochemical signaling and mechano-transduction are both critical in regulating stem cell fate. How crosstalk between mechanical and biochemical cues influences embryonic development, however, is not extensively investigated. Using a comparative study of focal adhesion constituents between mouse embryonic stem cell (mESC) and their differentiated counterparts, we find while zyxin is lowly expressed in mESCs, its levels increase dramatically during early differentiation. Interestingly, overexpression of zyxin in mESCs suppresses Oct4 and Nanog. Using an integrative biochemical and biophysical approach, we demonstrate involvement of zyxin in regulating pluripotency through actin stress fibres and focal adhesions which are known to modulate cellular traction stress and facilitate substrate rigidity-sensing. YAP signaling is identified as an important biochemical effector of zyxin-induced mechanotransduction. These results provide insights into the role of zyxin in the integration of mechanical and biochemical cues for the regulation of embryonic stem cell fate.
Collapse
Affiliation(s)
- Songjing Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lor Huai Chong
- Bioinformatics Institute A*STAR, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jessie Yong Xing Woon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Theng Xuan Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Ai Kia Yip
- Bioinformatics Institute A*STAR, Singapore, Singapore
| | - Hoi-Yeung Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol (Dordr) 2022; 45:1119-1136. [PMID: 36149601 DOI: 10.1007/s13402-022-00720-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metastasis refers to the spread of cancer cells from a primary tumor to other parts of the body via the lymphatic system and bloodstream. With tremendous effort over the past decades, remarkable progress has been made in understanding the molecular and cellular basis of metastatic processes. Metastasis occurs through five steps, including infiltration and migration, intravasation, survival, extravasation, and colonization. Various molecular and cellular factors involved in the metastatic process have been identified, such as epigenetic factors of the extracellular matrix (ECM), cell-cell interactions, soluble signaling, adhesion molecules, and mechanical stimuli. However, the underlying cause of cancer metastasis has not been elucidated. CONCLUSION In this review, we have focused on changes in the mechanical properties of cancer cells and their surrounding environment to understand the causes of cancer metastasis. Cancer cells have unique mechanical properties that distinguish them from healthy cells. ECM stiffness is involved in cancer cell growth, particularly in promoting the epithelial-mesenchymal transition (EMT). During tumorigenesis, the mechanical properties of cancer cells change in the direction opposite to their environment, resulting in a mechanical stress imbalance between the intracellular and extracellular domains. Disruption of mechanical homeostasis may be one of the causes of EMT that triggers the metastasis of cancer cells.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
8
|
Partynska A, Gomulkiewicz A, Piotrowska A, Grzegrzolka J, Rzechonek A, Ratajczak-Wielgomas K, Podhorska-Okolow M, Dziegiel P. Expression of Zyxin in Non-Small Cell Lung Cancer-A Preliminary Study. Biomolecules 2022; 12:biom12060827. [PMID: 35740950 PMCID: PMC9221212 DOI: 10.3390/biom12060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/09/2022] Open
Abstract
Background: The potential involvement of zyxin (ZYX) in carcinogenesis has been investigated in many cancer types. However, there are a limited number of studies on the role of ZYX in the progression of non-small cell lung cancer (NSCLC). Since lung cancer is one of the most frequently diagnosed carcinomas, the aim of our study was to determine the localization and expression levels of ZYX in NSCLC and to correlate the results with the clinicopathological data. Materials and Methods: The expression of ZYX was assessed in NSCLC cases and in cell lines representing this tumor type. Levels of ZYX were determined in the clinical material using immunohistochemistry (IHC) and Western Blot. Real-time PCR was used to assess ZYX mRNA levels. The expression of ZYX was also checked in NSCLC cell lines using real-time PCR, Western Blot, and immunofluorescence/immunocytochemistry. Results: The results showed lower levels of ZYX in NSCLC cells compared with control tissues. This trend was observed at the protein and mRNA levels. The assays on the NSCLC model also demonstrated lower levels of ZYX in cancer cells compared with control cells. Conclusions: The decreased expression of ZYX in NSCLC may indicate a suppressor role of this protein in NSCLC.
Collapse
Affiliation(s)
- Aleksandra Partynska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
- Correspondence:
| | - Agnieszka Gomulkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, 53-439 Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
| | - Marzenna Podhorska-Okolow
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.G.); (A.P.); (J.G.); (K.R.-W.); (P.D.)
- Division of Human Biology, Faculty of Physiotherapy, University School of Physical Education in Wroclaw, 51-612 Wroclaw, Poland
| |
Collapse
|
9
|
miR-16-5p Is a Novel Mediator of Venous Smooth Muscle Phenotypic Switching. J Cardiovasc Transl Res 2022; 15:876-889. [PMID: 35501542 PMCID: PMC9622564 DOI: 10.1007/s12265-022-10208-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Vein graft failure after coronary artery bypass grafting (CABG) is primarily caused by intimal hyperplasia, which results from the phenotypic switching of venous smooth muscle cells (SMCs). This study investigates the role and underlying mechanism of miR-16-5p in the phenotypic switching of venous SMCs. In rats, neointimal thickness and area increased over time within 28 days after CABG, as did the time-dependent miR-16-5p downregulation and SMC phenotypic switching. Platelet-derived growth factor-BB-induced miR-16-5p downregulation in HSVSMCs was accompanied by and substantially linked with alterations in phenotypic switching indicators. Furthermore, miR-16-5p overexpression increased SMCs differentiation marker expression while suppressing HSVSMCs proliferation and migration and drastically inhibiting neointimal development in vein grafts. The miR-16-5p inhibited zyxin expression, which was necessary for HSVSMCs phenotypic switching. The miR-16-5p/zyxin axis is a novel, potentially therapeutic target for preventing and treating venous graft intimal hyperplasia.
Collapse
|
10
|
Yip AK, Zhang S, Chong LH, Cheruba E, Woon JYX, Chua TX, Goh CJH, Yang H, Tay CY, Koh CG, Chiam KH. Zyxin Is Involved in Fibroblast Rigidity Sensing and Durotaxis. Front Cell Dev Biol 2021; 9:735298. [PMID: 34869319 PMCID: PMC8637444 DOI: 10.3389/fcell.2021.735298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast's ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.
Collapse
Affiliation(s)
- Ai Kia Yip
- Bioinformatics Institute ASTAR, Singapore, Singapore
| | - Songjing Zhang
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Lor Huai Chong
- Bioinformatics Institute ASTAR, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jessie Yong Xing Woon
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Theng Xuan Chua
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Haibo Yang
- Mechanobiology Institute, Singapore, Singapore
| | - Chor Yong Tay
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Singapore, Singapore.,Energy Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | |
Collapse
|
11
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
12
|
Abstract
TRIP6, a member of the ZYXIN-family of LIM domain proteins, is a focal adhesion component. Trip6 deletion in the mouse, reported here, reveals a function in the brain: ependymal and choroid plexus epithelial cells are carrying, unexpectedly, fewer and shorter cilia, are poorly differentiated, and the mice develop hydrocephalus. TRIP6 carries numerous protein interaction domains and its functions require homodimerization. Indeed, TRIP6 disruption in vitro (in a choroid plexus epithelial cell line), via RNAi or inhibition of its homodimerization, confirms its function in ciliogenesis. Using super-resolution microscopy, we demonstrate TRIP6 localization at the pericentriolar material and along the ciliary axoneme. The requirement for homodimerization which doubles its interaction sites, its punctate localization along the axoneme, and its co-localization with other cilia components suggest a scaffold/co-transporter function for TRIP6 in cilia. Thus, this work uncovers an essential role of a LIM-domain protein assembly factor in mammalian ciliogenesis.
Collapse
|
13
|
Steering cell behavior through mechanobiology in 3D: A regenerative medicine perspective. Biomaterials 2020; 268:120572. [PMID: 33285439 DOI: 10.1016/j.biomaterials.2020.120572] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/04/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Mechanobiology, translating mechanical signals into biological ones, greatly affects cellular behavior. Steering cellular behavior for cell-based regenerative medicine approaches requires a thorough understanding of the orchestrating molecular mechanisms, among which mechanotransducive ones are being more and more elucidated. Because of their wide use and highly mechanotransduction dependent differentiation, this review focuses on mesenchymal stromal cells (MSCs), while also briefly relating the discussed results to other cell types. While the mechanotransduction pathways are relatively well-studied in 2D, much remains unknown of the role and regulation of these pathways in 3D. Ultimately, cells need to be cultured in a 3D environment to create functional de novo tissue. In this review, we explore the literature on the roles of different material properties on cellular behavior and mechanobiology in 2D and 3D. For example, while stiffness plays a dominant role in 2D MSCs differentiation, it seems to be of subordinate importance in 3D MSCs differentiation, where matrix remodeling seems to be key. Also, the role and regulation of some of the main mechanotransduction players are discussed, focusing on MSCs. We have only just begun to fundamentally understand MSCs and other stem cells behavior in 3D and more fundamental research is required to advance biomaterials able to replicate the stem cell niche and control cell activity. This better understanding will contribute to smarter tissue engineering scaffold design and the advancement of regenerative medicine.
Collapse
|
14
|
Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proc Natl Acad Sci U S A 2020; 117:29684-29690. [PMID: 33184177 PMCID: PMC7703624 DOI: 10.1073/pnas.2007213117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein–protein interactions mediated by proline-rich motifs are involved in regulation of many important signaling cascades. These motifs belong to the most abundant recognition motifs in the eukaryotic genome and preferentially adopt a left-handed polyproline helix II, a secondary structure element that has been notoriously difficult to mimic with small molecules. Here, we present a structure-guided design effort yielding a toolkit of chemical entities that enables rational construction of selective small molecule inhibitors for these protein domains. We succeeded in developing an inhibitor for the Ena/VASP protein family that is active in vivo and reduces extravasation of invasive breast cancer cells in a zebrafish model. Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein–protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor (Kd=120 nM,MW=734 Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein–protein interaction involved in actin filament processing and cell migration.
Collapse
|
15
|
Zyxin (ZYX) promotes invasion and acts as a biomarker for aggressive phenotypes of human glioblastoma multiforme. J Transl Med 2020; 100:812-823. [PMID: 31949244 DOI: 10.1038/s41374-019-0368-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (ZYX), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased ZYX expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of ZYX and demonstrated the role of ZYX in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without ZYX revealed that stathmin 1 (STMN1) was a potential target of ZYX. Subsequently, we found that both mRNA and protein levels of STMN1 were positively regulated by ZYX. Functionally, STMN1 not only promoted invasion of GBM cells but also rescued the invasion repression caused by ZYX loss. Taken together, our results indicate that high ZYX expression was associated with worse prognosis and highlighted that the ZYX-STMN1 axis might be a potential therapeutic target for GBM.
Collapse
|
16
|
PHIP drives glioblastoma motility and invasion by regulating the focal adhesion complex. Proc Natl Acad Sci U S A 2020; 117:9064-9073. [PMID: 32273388 DOI: 10.1073/pnas.1914505117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The invasive behavior of glioblastoma is essential to its aggressive potential. Here, we show that pleckstrin homology domain interacting protein (PHIP), acting through effects on the force transduction layer of the focal adhesion complex, drives glioblastoma motility and invasion. Immunofluorescence analysis localized PHIP to the leading edge of glioblastoma cells, together with several focal adhesion proteins: vinculin (VCL), talin 1 (TLN1), integrin beta 1 (ITGB1), as well as phosphorylated forms of paxillin (pPXN) and focal adhesion kinase (pFAK). Confocal microscopy specifically localized PHIP to the force transduction layer, together with TLN1 and VCL. Immunoprecipitation revealed a physical interaction between PHIP and VCL. Targeted suppression of PHIP resulted in significant down-regulation of these focal adhesion proteins, along with zyxin (ZYX), and produced profoundly disorganized stress fibers. Live-cell imaging of glioblastoma cells overexpressing a ZYX-GFP construct demonstrated a role for PHIP in regulating focal adhesion dynamics. PHIP silencing significantly suppressed the migratory and invasive capacity of glioblastoma cells, partially restored following TLN1 or ZYX cDNA overexpression. PHIP knockdown produced substantial suppression of tumor growth upon intracranial implantation, as well as significantly reduced microvessel density and secreted VEGF levels. PHIP copy number was elevated in the classical glioblastoma subtype and correlated with elevated EGFR levels. These results demonstrate PHIP's role in regulating the actin cytoskeleton, focal adhesion dynamics, and tumor cell motility, and identify PHIP as a key driver of glioblastoma migration and invasion.
Collapse
|
17
|
Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation. Sci Rep 2019; 9:10460. [PMID: 31320676 PMCID: PMC6639384 DOI: 10.1038/s41598-019-46905-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Focal adhesions (FAs) are multiprotein structures that link the intracellular cytoskeleton to the extracellular matrix. They mediate cell adhesion and migration, crucial to many (patho-) physiological processes. We examined in two cell types from different species the binding dynamics of functionally related FA protein pairs: paxillin and vinculin versus zyxin and VASP. In photobleaching experiments ~40% of paxillin and vinculin remained stably associated with a FA for over half an hour. Zyxin and VASP predominantly displayed more transient interactions. We show protein binding dynamics are influenced by FA location and orientation. In FAs located close to the edge of the adherent membrane paxillin, zyxin and VASP were more dynamic and had larger bound fractions. Zyxin and VASP were also more dynamic and had larger bound fractions at FAs perpendicular compared to parallel to this edge. Finally, we developed a photoconversion assay to specifically visualise stably bound proteins within subcellular structures and organelles. This revealed that while paxillin and vinculin are distributed evenly throughout FAs, their stably bound fractions form small clusters within the FA-complex. These clusters are more concentrated for paxillin than for vinculin and are mostly found at the proximal half of the FA where actin also enters.
Collapse
|
18
|
Kiyoshima D, Tatsumi H, Hirata H, Sokabe M. Tensile Loads on Tethered Actin Filaments Induce Accumulation of Cell Adhesion-Associated Proteins in Vitro. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7443-7451. [PMID: 30204447 DOI: 10.1021/acs.langmuir.8b02076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focal adhesions (FAs) and adherens junctions (AJs), which serve as a mechanical interface of cell-matrix and cell-cell interactions, respectively, experience tensile force either originating from the deformation of the surrounding tissues or generated by the actomyosin machinery in the cell. These mechanical inputs cause enlargement of FAs and AJs, while the detailed mechanism for the force-dependent development of FAs and AJs remain unclear. Both FAs and AJs provide sites for tethering of actin filaments and actin polymerization. Here, we develop a cell-free system, in which actin filaments are tethered to glass surfaces, and show that application of tensile force to the tethered filaments in the cell extract induces accumulation of several FA and AJ proteins, associated with further accumulation of actin filaments via de novo actin polymerization. Decline in the tensile force results in a decrease in the amount of the accumulated proteins. These results suggest that the tensile force acting on the tethered actin filaments plays a crucial role in the accumulation of FA and AJ proteins.
Collapse
Affiliation(s)
- Daisuke Kiyoshima
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Department of Rehabilitation , Aichi Medical College , Kiyosu , Aichi 452-0931 , Japan
| | - Hitoshi Tatsumi
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Department of Applied Bioscience, College of Bioscience and Chemistry , Kanazawa Institute of Technology , Hakusan , Ishikawa 924-0838 , Japan
| | - Hiroaki Hirata
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Mechanobiology Laboratory , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
| | - Masahiro Sokabe
- Department of Physiology , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
- Mechanobiology Laboratory , Nagoya University Graduate School of Medicine , Nagoya , Aichi 466-8550 , Japan
| |
Collapse
|
19
|
Zhou C, Wang Q, Zhang D, Cai L, Du W, Xie J. Compliant substratum modulates vinculin expression in focal adhesion plaques in skeletal cells. Int J Oral Sci 2019; 11:18. [PMID: 31152146 PMCID: PMC6544630 DOI: 10.1038/s41368-019-0052-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023] Open
Abstract
The biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. In the skeleton system, bone shows the potential to adapt its architecture and contexture to environmental rigidity via the bone remodelling process, which involves chondrocytes, osteoblasts, osteoclasts, osteocytes and even peripheral bone marrow-derived stem/stromal cells (BMSCs). In the current study, we generated stiff (~1 014 ± 56) kPa, Young's modulus) and soft (~46 ± 11) kPa silicon-based elastomer polydimethylsiloxane (PDMS) substrates by mixing curing agent into oligomeric base at 1:5 and 1:45 ratios, respectively, and investigated the influence of substrate stiffness on the cell behaviours by characterizing cell spreading area, cell cytoskeleton and cell adhesion capacity. The results showed that the cell spreading areas of chondrocytes, osteoblasts, osteoclasts, osteocytes and BMSCs were all reduced in the soft substrate relative to those in the stiff substrate. F-actin staining confirmed that the cytoskeleton was also changed in the soft group compared to that in the stiff group. Vinculin in focal adhesion plaques was significantly decreased in response to soft substrate compared to stiff substrate. This study establishes the potential correlation between microenvironmental mechanics and the skeletal system, and the results regarding changes in cell spreading area, cytoskeleton and cell adhesion further indicate the important role of biomechanics in the cell-matrix interaction.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Zarka R, Horev MB, Volberg T, Neubauer S, Kessler H, Spatz JP, Geiger B. Differential Modulation of Platelet Adhesion and Spreading by Adhesive Ligand Density. NANO LETTERS 2019; 19:1418-1427. [PMID: 30649888 PMCID: PMC6437653 DOI: 10.1021/acs.nanolett.8b03513] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Platelets play a major role in hemostasis and thrombosis, by binding to the underlying extracellular matrix around injured blood vessels, via integrin receptors. In this study, we investigated the effects of adhesive ligand spacing on the stability of platelets' adhesion and the mode of their spreading on extracellular surfaces. Toward this end, we have examined the differential adhesion and spreading of human platelets onto nanogold-patterned surfaces, functionalized with the αIIbβ3 integrin ligand, SN528. Combining light- and scanning electron-microscopy, we found that interaction of platelets with surfaces coated with SN528 at spacing of 30-60 nm induces the extension of filopodia through which the platelets stably attach to the nanopatterned surface and spread on it. Increasing the nanopattern-gold spacing to 80-100 nm resulted in a dramatic reduction (>95%) in the number of adhering platelets. Surprisingly, a further increase in ligand spacing to 120 nm resulted in platelet binding to the surface at substantially larger numbers, yet these platelets remained discoid and were essentially devoid of filopodia and lamellipodia. These results indicate that the stimulation of filopodia extension by adhering platelets, and the consequent spreading on these surfaces depend on different ligand densities. Thus, the extension of filopodia occurs on surfaces with a ligand spacing of 100 nm or less, while the sustainability and growth of these initial adhesions and induction of extensive platelet adhesion and spreading requires lower ligand-to-ligand spacing (≤60 nm). The mechanisms underlying this differential ligand-density sensing by platelets, as well as the unexpected retention of discoid platelets on surfaces with even larger spacing (120 nm) are discussed.
Collapse
Affiliation(s)
- Revital Zarka
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Melanie B. Horev
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Tova Volberg
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Stefanie Neubauer
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Horst Kessler
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Benjamin Geiger
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Zyxin promotes colon cancer tumorigenesis in a mitotic phosphorylation-dependent manner and through CDK8-mediated YAP activation. Proc Natl Acad Sci U S A 2018; 115:E6760-E6769. [PMID: 29967145 DOI: 10.1073/pnas.1800621115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Zyxin is a member of the focal adhesion complex and plays a critical role in actin filament polymerization and cell motility. Several recent studies showed that Zyxin is a positive regulator of Yki/YAP (Yes-associated protein) signaling. However, little is known about the mechanisms by which Zyxin itself is regulated and how Zyxin affects Hippo-YAP activity. We first showed that Zyxin is phosphorylated by CDK1 during mitosis. Depletion of Zyxin resulted in significantly impaired colon cancer cell proliferation, migration, anchorage-independent growth, and tumor formation in xenograft animal models. Mitotic phosphorylation is required for Zyxin activity in promoting growth. Zyxin regulates YAP activity through the colon cancer oncogene CDK8. CDK8 knockout phenocopied Zyxin knockdown in colon cancer cells, while ectopic expression of CDK8 substantially restored the tumorigenic defects of Zyxin-depletion cells. Mechanistically, we showed that CDK8 directly phosphorylated YAP and promoted its activation. Fully activated YAP is required to support the growth in CDK8-knockout colon cancer cells in vitro and in vivo. Together, these observations suggest that Zyxin promotes colon cancer tumorigenesis in a mitotic-phosphorylation-dependent manner and through CDK8-mediated YAP activation.
Collapse
|
23
|
Malik-Sheriff RS, Imtiaz S, Grecco HE, Zamir E. Diverse patterns of molecular changes in the mechano-responsiveness of focal adhesions. Sci Rep 2018; 8:2187. [PMID: 29391434 PMCID: PMC5795008 DOI: 10.1038/s41598-018-20252-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/27/2017] [Indexed: 01/09/2023] Open
Abstract
Focal adhesions anchor contractile actin fibers with the extracellular matrix, sense the generated tension and respond to it by changing their morphology and composition. Here we ask how this mechanosensing is enabled at the protein-network level, given the modular assembly and multitasking of focal adhesions. To address this, we applied a sensitive 4-color live cell imaging approach, enabling monitoring patterns of molecular changes in single focal adhesions. Co-imaging zyxin, FAK, vinculin and paxillin revealed heterogeneities in their responses to Rho-associated kinase (ROCK)-mediated perturbations of actomyosin contractility. These responses were rather weakly correlated between the proteins, reflecting diverse compositional changes in different focal adhesions. This diversity is partially attributable to the location of focal adhesions, their area, molecular content and previous contractility perturbations, suggesting that integration of multiple local cues shapes differentially focal adhesion mechano-responsiveness. Importantly, the compositional changes upon ROCK perturbations exhibited distinct paths in different focal adhesions. Moreover, the protein exhibiting the strongest response to ROCK perturbations varied among different focal adhesions. The diversity in response patterns is plausibly enabled by the modular mode of focal adhesions assembly and can provide them the needed flexibility to perform multiple tasks by combining optimally a common set of multifunctional components.
Collapse
Affiliation(s)
- Rahuman S Malik-Sheriff
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, Cambridge, UK
| | - Sarah Imtiaz
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Hernán E Grecco
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
| | - Eli Zamir
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany. .,Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
24
|
Husari A, Hülter-Hassler D, Steinberg T, Schulz SD, Tomakidi P. Disruption of adherens junction and alterations in YAP-related proliferation behavior as part of the underlying cell transformation process of alcohol-induced oral carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:209-219. [DOI: 10.1016/j.bbamcr.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/02/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
|
25
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
26
|
Tiwari R, Sahu I, Soni BL, Sathe GJ, Datta KK, Thapa P, Sinha S, Vadivel CK, Dhaka B, Gowda H, Vaidya MM. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways regulated by site-specific phosphorylation of Keratin-8 in skin squamous cell carcinoma derived cell line. Proteomics 2017; 17. [PMID: 28176443 DOI: 10.1002/pmic.201600254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/14/2017] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
Abstract
Keratin 8/18, a simple epithelia specific keratin pair, is often aberrantly expressed in squamous cell carcinomas (SCC) where its expression is correlated with increased invasion and poor prognosis. Majority of Keratin 8 (K8) functions are governed by its phosphorylation at Serine73 (head-domain) and Serine431 (tail-domain) residues. Although, deregulation of K8 phosphorylation is associated with progression of different carcinomas, its role in skin-SCC and the underlying mechanism is obscure. In this direction, we performed tandem mass tag-based quantitative phosphoproteomics by expressing K8 wild type, phosphodead, and phosphomimetic mutants in K8-deficient A431 cells. Further analysis of our phosphoproteomics data showed a significant proportion of total phosphoproteome associated with migratory, proliferative, and invasive potential of these cells to be differentially phosphorylated. Differential phosphorylation of CDK1T14,Y15 , EIF4EBP1T46,T50 , EIF4BS422 , AKT1S1T246,S247 , CTTN1T401,S405,Y421 , and CAP1S307/309 in K8-S73A/D mutant and CTTN1T401,S405,Y421 , BUB1BS1043 , and CARHSP1S30,S32 in K8-S431A/D mutants as well as some anonymous phosphosites including MYCS176 , ZYXS344 , and PNNS692 could be potential candidates associated with K8 phosphorylation mediated tumorigenicity. Biochemical validation followed by phenotypic analysis further confirmed our quantitative phosphoproteomics data. In conclusion, our study provides the first global picture of K8 site-specific phosphorylation function in neoplastic progression of A431 cells and suggests various potential starting points for further mechanistic studies.
Collapse
Affiliation(s)
- Richa Tiwari
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India.,Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Bihari Lal Soni
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India.,Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Pankaj Thapa
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Shruti Sinha
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | | | | | | | - Milind M Vaidya
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
27
|
Servin-Vences MR, Moroni M, Lewin GR, Poole K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 2017; 6. [PMID: 28135189 PMCID: PMC5279942 DOI: 10.7554/elife.21074] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
The joints of mammals are lined with cartilage, comprised of individual chondrocytes embedded in a specialized extracellular matrix. Chondrocytes experience a complex mechanical environment and respond to changing mechanical loads in order to maintain cartilage homeostasis. It has been proposed that mechanically gated ion channels are of functional importance in chondrocyte mechanotransduction; however, direct evidence of mechanical current activation in these cells has been lacking. We have used high-speed pressure clamp and elastomeric pillar arrays to apply distinct mechanical stimuli to primary murine chondrocytes, stretch of the membrane and deflection of cell-substrate contacts points, respectively. Both TRPV4 and PIEZO1 channels contribute to currents activated by stimuli applied at cell-substrate contacts but only PIEZO1 mediates stretch-activated currents. These data demonstrate that there are separate, but overlapping, mechanoelectrical transduction pathways in chondrocytes.
Collapse
Affiliation(s)
| | - Mirko Moroni
- Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Gary R Lewin
- Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Kate Poole
- Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia.,EMBL Australia node for Single Molecule Sciences, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
28
|
Li Z, Lee H, Zhu C. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Exp Cell Res 2016; 349:85-94. [PMID: 27720950 DOI: 10.1016/j.yexcr.2016.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
Abstract
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation.
Collapse
Affiliation(s)
- Zhenhai Li
- Molecular Modeling and Simulation Group, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hyunjung Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
29
|
Polycystins and intercellular mechanotransduction: A precise dosage of polycystin 2 is necessary for alpha-actinin reinforcement of junctions upon mechanical stimulation. Exp Cell Res 2016; 348:23-35. [PMID: 27575580 DOI: 10.1016/j.yexcr.2016.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/06/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
Polycystins 1 and 2, which are mutated in Autosomal Polycystic Kidney Disease, are involved in mechanotransduction through various mechanisms. In renal cells, polycystins not only have an important mechanotransductive role in primary cilia but are also present in intercellular contacts but their role there remains unclear. Here, we address the hypothesis that polycystins are involved in mechanotransduction via intercellular junctions, which would be expected to have consequences on tissue organization. We focused on the role of polycystin 2, which could be involved in mechanical organization at junctions either by its channel activity or by the direct recruitment of cytoskeleton components such as the F-actin cross-linker α-actinin. After mechanical stimulation of intercellular junctions in MDCK renal epithelial cells, α-actinin is rapidly recruited but this is inhibited upon overexpression of PC2 or the D509V mutant that lacks channel activity, and is also decreased upon PC2 silencing. This suggests that a precise dosage of PC2 is necessary for an adequate mechanosensitive α-actinin recruitment at junctions. At the multicellular level, a change in PC2 expression was associated with changes in velocity in confluent epithelia and during wound healing together with a loss of orientation. This study suggests that the mechanosensitive regulation of cytoskeleton by polycystins in intercellular contacts may be important in the context of ADPKD.
Collapse
|
30
|
Harizanova J, Fermin Y, Malik-Sheriff RS, Wieczorek J, Ickstadt K, Grecco HE, Zamir E. Highly Multiplexed Imaging Uncovers Changes in Compositional Noise within Assembling Focal Adhesions. PLoS One 2016; 11:e0160591. [PMID: 27519053 PMCID: PMC4982658 DOI: 10.1371/journal.pone.0160591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 07/21/2016] [Indexed: 12/25/2022] Open
Abstract
Integrin adhesome proteins bind each other in alternative manners, forming within the cell diverse cell-matrix adhesion sites with distinct properties. An intriguing question is how such modular assembly of adhesion sites is achieved correctly solely by self-organization of their components. Here we address this question using high-throughput multiplexed imaging of eight proteins and two phosphorylation sites in a large number of single focal adhesions. We found that during the assembly of focal adhesions the variances of protein densities decrease while the correlations between them increase, suggesting reduction in the noise levels within these structures. These changes correlate independently with the area and internal density of focal adhesions, but not with their age or shape. Artificial neural network analysis indicates that a joint consideration of multiple components improves the predictability of paxillin and zyxin levels in internally dense focal adhesions. This suggests that paxillin and zyxin densities in focal adhesions are fine-tuned by integrating the levels of multiple other components, thus averaging-out stochastic fluctuations. Based on these results we propose that increase in internal protein densities facilitates noise suppression in focal adhesions, while noise suppression enables their stable growth and further density increase—hence forming a feedback loop giving rise to a quality-controlled assembly.
Collapse
Affiliation(s)
- Jana Harizanova
- Department of Systemic Cell Biology, Max Planck Institute of Molecular, Physiology, Dortmund, Germany
| | - Yessica Fermin
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Rahuman S. Malik-Sheriff
- Department of Systemic Cell Biology, Max Planck Institute of Molecular, Physiology, Dortmund, Germany
| | - Jakob Wieczorek
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Katja Ickstadt
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Hernán E. Grecco
- Department of Systemic Cell Biology, Max Planck Institute of Molecular, Physiology, Dortmund, Germany
- * E-mail: (HEG); (EZ)
| | - Eli Zamir
- Department of Systemic Cell Biology, Max Planck Institute of Molecular, Physiology, Dortmund, Germany
- * E-mail: (HEG); (EZ)
| |
Collapse
|
31
|
Han MKL, de Rooij J. Converging and Unique Mechanisms of Mechanotransduction at Adhesion Sites. Trends Cell Biol 2016; 26:612-623. [PMID: 27036655 DOI: 10.1016/j.tcb.2016.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
Abstract
The molecular mechanisms by which physical forces control tissue development are beginning to be elucidated. Sites of adhesion between both cells and the extracellular environment [extracellular matrix (ECM) or neighboring cells] contain protein complexes capable of sensing fluctuations in tensile forces. Tension-dependent changes in the dynamics and composition of these complexes mark the transformation of physical input into biochemical signals that defines mechanotransduction. It is becoming apparent that, although the core constituents of these different adhesions are distinct, principles and proteins involved in mechanotransduction are conserved. Here, we discuss the current knowledge of overlapping and distinct aspects of mechanotransduction between integrin and cadherin adhesion complexes.
Collapse
Affiliation(s)
- Mitchell K L Han
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Johan de Rooij
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
32
|
Hadzic E, Catillon M, Halavatyi A, Medves S, Van Troys M, Moes M, Baird MA, Davidson MW, Schaffner-Reckinger E, Ampe C, Friederich E. Delineating the Tes Interaction Site in Zyxin and Studying Cellular Effects of Its Disruption. PLoS One 2015; 10:e0140511. [PMID: 26509500 PMCID: PMC4624954 DOI: 10.1371/journal.pone.0140511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/25/2015] [Indexed: 01/21/2023] Open
Abstract
Focal adhesions are integrin-based structures that link the actin cytoskeleton and the extracellular matrix. They play an important role in various cellular functions such as cell signaling, cell motility and cell shape. To ensure and fine tune these different cellular functions, adhesions are regulated by a large number of proteins. The LIM domain protein zyxin localizes to focal adhesions where it participates in the regulation of the actin cytoskeleton. Because of its interactions with a variety of binding partners, zyxin has been proposed to act as a molecular scaffold. Here, we studied the interaction of zyxin with such a partner: Tes. Similar to zyxin, Tes harbors three highly conserved LIM domains of which the LIM1 domain directly interacts with zyxin. Using different zyxin variants in pull-down assays and ectopic recruitment experiments, we identified the Tes binding site in zyxin and showed that four highly conserved amino acids are crucial for its interaction with Tes. Based upon these findings, we used a zyxin mutant defective in Tes-binding to assess the functional consequences of abrogating the zyxin-Tes interaction in focal adhesions. Performing fluorescence recovery after photobleaching, we showed that zyxin recruits Tes to focal adhesions and modulates its turnover in these structures. However, we also provide evidence for zyxin-independent localization of Tes to focal adhesions. Zyxin increases focal adhesion numbers and reduces focal adhesion lifetimes, but does so independent of Tes. Quantitative analysis showed that the loss of interaction between zyxin and Tes affects the process of cell spreading. We conclude that zyxin influences focal adhesion dynamics, that it recruits Tes and that this interaction is functional in regulating cell spreading.
Collapse
Affiliation(s)
- Ermin Hadzic
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Marie Catillon
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Aliaksandr Halavatyi
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Sandrine Medves
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | | | - Michèle Moes
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Michelle A. Baird
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Michael W. Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Elisabeth Schaffner-Reckinger
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium
- * E-mail:
| | - Evelyne Friederich
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| |
Collapse
|
33
|
Schardt L, Ander JJ, Lohmann I, Papagiannouli F. Stage-specific control of niche positioning and integrity in the Drosophila testis. Mech Dev 2015; 138 Pt 3:336-48. [PMID: 26226434 DOI: 10.1016/j.mod.2015.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
A fundamental question is how complex structures are maintained after their initial specification. Stem cells reside in a specialized microenvironment, called niche, which provides essential signals controlling stem cell behavior. We addressed this question by studying the Drosophila male stem cell niche, called the hub. Once specified, the hub cells need to maintain their position and architectural integrity through embryonic, larval and pupal stages of testis organogenesis and during adult life. The Hox gene Abd-B, in addition to its described role in male embryonic gonads, maintains the architecture and positioning of the larval hub from the germline by affecting integrin localization in the neighboring somatic cyst cells. We find that the AbdB-Boss/Sev cascade affects integrin independent of Talin, while genetic interactions depict integrin as the central downstream player in this system. Focal adhesion and integrin-adaptor proteins within the somatic stem cells and cyst cells, such as Paxillin, Pinch and Vav, also contribute to proper hub integrity and positioning. During adult stages, hub positioning is controlled by Abd-B activity in the outer acto-myosin sheath, while Abd-B expression in adult spermatocytes exerts no effect on hub positioning and integrin localization. Our data point at a cell- and stage-specific function of Abd-B and suggest that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the whole system by reusing the same players for male stem cell niche positioning and integrity in an alternative manner.
Collapse
Affiliation(s)
- Lisa Schardt
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany; Deutsches Krebsforschungszentrum (DKFZ), D-69120, Germany
| | - Janina-Jacqueline Ander
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| | - Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| |
Collapse
|
34
|
Young K, Tweedie E, Conley B, Ames J, FitzSimons M, Brooks P, Liaw L, Vary CPH. BMP9 Crosstalk with the Hippo Pathway Regulates Endothelial Cell Matricellular and Chemokine Responses. PLoS One 2015; 10:e0122892. [PMID: 25909848 PMCID: PMC4409298 DOI: 10.1371/journal.pone.0122892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
Endoglin is a type III TGFβ auxiliary receptor that is upregulated in endothelial cells during angiogenesis and, when mutated in humans, results in the vascular disease hereditary hemorrhagic telangiectasia (HHT). Though endoglin has been implicated in cell adhesion, the underlying molecular mechanisms are still poorly understood. Here we show endoglin expression in endothelial cells regulates subcellular localization of zyxin in focal adhesions in response to BMP9. RNA knockdown of endoglin resulted in mislocalization of zyxin and altered formation of focal adhesions. The mechanotransduction role of focal adhesions and their ability to transmit regulatory signals through binding of the extracellular matrix are altered by endoglin deficiency. BMP/TGFβ transcription factors, SMADs, and zyxin have recently been implicated in a newly emerging signaling cascade, the Hippo pathway. The Hippo transcription coactivator, YAP1 (yes-associated protein 1), has been suggested to play a crucial role in mechanotransduction and cell-cell contact. Identification of BMP9-dependent nuclear localization of YAP1 in response to endoglin expression suggests a mechanism of crosstalk between the two pathways. Suppression of endoglin and YAP1 alters BMP9-dependent expression of YAP1 target genes CCN1 (cysteine-rich 61, CYR61) and CCN2 (connective tissue growth factor, CTGF) as well as the chemokine CCL2 (monocyte chemotactic protein 1, MCP-1). These results suggest a coordinate effect of endoglin deficiency on cell matrix remodeling and local inflammatory responses. Identification of a direct link between the Hippo pathway and endoglin may reveal novel mechanisms in the etiology of HHT.
Collapse
Affiliation(s)
- Kira Young
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Eric Tweedie
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
| | - Barbara Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
| | - Jacquelyn Ames
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - MaryLynn FitzSimons
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Peter Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, United States of America
- * E-mail:
| |
Collapse
|
35
|
Davis JR, Luchici A, Mosis F, Thackery J, Salazar JA, Mao Y, Dunn GA, Betz T, Miodownik M, Stramer BM. Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 2015; 161:361-73. [PMID: 25799385 PMCID: PMC4398973 DOI: 10.1016/j.cell.2015.02.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/24/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022]
Abstract
Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors.
Collapse
Affiliation(s)
- John R Davis
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Andrei Luchici
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Mechanical Engineering, University College London, London WC2R 2LS, UK
| | - Fuad Mosis
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - James Thackery
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Jesus A Salazar
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Graham A Dunn
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Timo Betz
- Centre de Recherche, Institut Curie, Paris, UMR168, France
| | - Mark Miodownik
- Department of Mechanical Engineering, University College London, London WC2R 2LS, UK.
| | - Brian M Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
36
|
Papagiannouli F, Lohmann I. Stage-specific control of stem cell niche architecture in the Drosophila testis by the posterior Hox gene Abd-B. Comput Struct Biotechnol J 2015; 13:122-30. [PMID: 25750700 PMCID: PMC4348433 DOI: 10.1016/j.csbj.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
A fundamental question in biology is how complex structures are maintained after their initial specification. We address this question by reviewing the role of the Hox gene Abd-B in Drosophila testis organogenesis, which proceeds through embryonic, larval and pupal stages to reach maturation in adult stages. The data presented in this review highlight a cell- and stage-specific function of Abd-B, since the mechanisms regulating stem cell niche positioning and architecture at different stages seem to be different despite the employment of similar factors. In addition to its described role in the male embryonic gonads, sustained activity of Abd-B in the pre-meiotic germline spermatocytes during larval stages is required to maintain the architecture of the stem cell niche by regulating βPS-integrin localization in the neighboring somatic cyst cells. Loss of Abd-B is associated with cell non-autonomous effects within the niche, leading to a dramatic reduction of pre-meiotic cell populations in adult testes. Identification of Abd-B target genes revealed that Abd-B mediates its effects by controlling the activity of the sevenless ligand Boss via its direct targets Src42A and Sec63. During adult stages, when testis morphogenesis is completed with the addition of the acto-myosin sheath originating from the genital disc, stem cell niche positioning and integrity are regulated by Abd-B activity in the acto-myosin sheath whereas integrin acts in an Abd-B independent way. It seems that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the system to the new cellular conditions by reusing the same players for testis stem cell niche positioning in an alternative manner.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| |
Collapse
|
37
|
Balanis N, Carlin CR. Mutual cross-talk between fibronectin integrins and the EGF receptor: Molecular basis and biological significance. CELLULAR LOGISTICS 2014; 2:46-51. [PMID: 22645710 PMCID: PMC3355975 DOI: 10.4161/cl.20112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extension of the plasma membrane is one of the first steps in cell migration. Understanding how cells “choose” between various types of membrane protrusion enhances our knowledge of both normal and cancer cell physiology. The EGF receptor is a paradigm for understanding how transmembrane receptor tyrosine kinases regulate intracellular signaling following ligand stimulation. Evidence from the past decade indicates that EGF receptors also form macromolecular complexes with integrin receptors leading to EGF receptor transactivation during cell adhesion. However, relatively little is known about how these complexes form and impact cell migration. Our recent work characterized a molecular complex between EGF receptor and β3 integrin which recognizes RGD motifs in extracellular matrix proteins. Complex formation requires a dileucine motif (679-LL) in the intracellular juxtamembrane region of the EGF receptor that also controls whether or not the receptor undergoes Src kinase-dependent phosphorylation at Tyr-845. In contrast to wild-type receptors, mutant EGF receptors defective for Tyr-845 phosphorylation form complexes with β1 integrin that also binds RGD motifs. In addition, we have discovered that EGF receptor antagonizes small GTPase RhoA by mediating membrane recruitment of its regulatory GAP p190RhoGAP. In this addendum we discuss a potential new role for Src-dependent EGF receptor transactivation in integrin/EGF receptor complex formation. We also discuss how our study fits with previous observations linking p190RhoGAP to RhoA-dependent cytoskeletal rearrangements involved in cell migration, and provide new data that the EGF receptor is compartmentalized to relatively immature zyxin-poor focal adhesions which are the likely site of p190RhoGAP signaling.
Collapse
|
38
|
Luo S, Schaefer AM, Dour S, Nonet ML. The conserved LIM domain-containing focal adhesion protein ZYX-1 regulates synapse maintenance in Caenorhabditis elegans. Development 2014; 141:3922-33. [PMID: 25252943 DOI: 10.1242/dev.108217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe the identification of zyxin as a regulator of synapse maintenance in mechanosensory neurons in C. elegans. zyx-1 mutants lacked PLM mechanosensory synapses as adult animals. However, most PLM synapses initially formed during development but were subsequently lost as the animals developed. Vertebrate zyxin regulates cytoskeletal responses to mechanical stress in culture. Our work provides in vivo evidence in support of such a role for zyxin. In particular, zyx-1 mutant synaptogenesis phenotypes were suppressed by disrupting locomotion of the mutant animals, suggesting that zyx-1 protects mechanosensory synapses from locomotion-induced forces. In cultured cells, zyxin is recruited to focal adhesions and stress fibers via C-terminal LIM domains and modulates cytoskeletal organization via the N-terminal domain. The synapse-stabilizing activity was mediated by a short isoform of ZYX-1 containing only the LIM domains. Consistent with this notion, PLM synaptogenesis was independent of α-actinin and ENA-VASP, both of which bind to the N-terminal domain of zyxin. Our results demonstrate that the LIM domain moiety of zyxin functions autonomously to mediate responses to mechanical stress and provide in vivo evidence for a role of zyxin in neuronal development.
Collapse
Affiliation(s)
- Shuo Luo
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Anneliese M Schaefer
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA Department of Neurology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Scott Dour
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| | - Michael L Nonet
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 S Euclid Ave, St Louis, MO 63110, USA
| |
Collapse
|
39
|
Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 2014; 158:143-156. [PMID: 24995985 DOI: 10.1016/j.cell.2014.05.035] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/21/2022]
Abstract
Mechanical forces have been proposed to modulate organ growth, but a molecular mechanism that links them to growth regulation in vivo has been lacking. We report that increasing tension within the cytoskeleton increases Drosophila wing growth, whereas decreasing cytoskeletal tension decreases wing growth. These changes in growth can be accounted for by changes in the activity of Yorkie, a transcription factor regulated by the Hippo pathway. The influence of myosin activity on Yorkie depends genetically on the Ajuba LIM protein Jub, a negative regulator of Warts within the Hippo pathway. We further show that Jub associates with α-catenin and that its localization to adherens junctions and association with α-catenin are promoted by cytoskeletal tension. Jub recruits Warts to junctions in a tension-dependent manner. Our observations delineate a mechanism that links cytoskeletal tension to regulation of Hippo pathway activity, providing a molecular understanding of how mechanical forces can modulate organ growth.
Collapse
|
40
|
Hirata H, Tatsumi H, Hayakawa K, Sokabe M. Non-channel mechanosensors working at focal adhesion-stress fiber complex. Pflugers Arch 2014; 467:141-55. [PMID: 24965068 DOI: 10.1007/s00424-014-1558-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 01/05/2023]
Abstract
Mechanosensitive ion channels (MSCs) have long been the only established molecular class of cell mechanosensors; however, in the last decade, a variety of non-channel type mechanosensor molecules have been identified. Many of them are focal adhesion-associated proteins that include integrin, talin, and actin. Mechanosensors must be non-soluble molecules firmly interacting with relatively rigid cellular structures such as membranes (in terms of lateral stiffness), cytoskeletons, and adhesion structures. The partner of MSCs is the membrane in which MSC proteins efficiently transduce changes in the membrane tension into conformational changes that lead to channel opening. By contrast, the integrin, talin, and actin filament form a linear complex of which both ends are typically anchored to the extracellular matrices via integrins. Upon cell deformation by forces, this structure turns out to be a portion that efficiently transduces the generated stress into conformational changes of composite molecules, leading to the activation of integrin (catch bond with extracellular matrices) and talin (unfolding to induce vinculin bindings). Importantly, this structure also serves as an "active" mechanosensor to detect substrate rigidity by pulling the substrate with contraction of actin stress fibers (SFs), which may induce talin unfolding and an activation of MSCs in the vicinity of integrins. A recent study demonstrates that the actin filament acts as a mechanosensor with unique characteristics; the filament behaves as a negative tension sensor in which increased torsional fluctuations by tension decrease accelerate ADF/cofilin binding, leading to filament disruption. Here, we review the latest progress in the study of those non-channel mechanosensors and discuss their activation mechanisms and physiological roles.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | | | | | | |
Collapse
|
41
|
Diepenbruck M, Waldmeier L, Ivanek R, Berninger P, Arnold P, van Nimwegen E, Christofori G. Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci 2014; 127:1523-36. [PMID: 24554433 DOI: 10.1242/jcs.139865] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cellular changes during an epithelial-mesenchymal transition (EMT) largely rely on global changes in gene expression orchestrated by transcription factors. Tead transcription factors and their transcriptional co-activators Yap and Taz have been previously implicated in promoting an EMT; however, their direct transcriptional target genes and their functional role during EMT have remained elusive. We have uncovered a previously unanticipated role of the transcription factor Tead2 during EMT. During EMT in mammary gland epithelial cells and breast cancer cells, levels of Tead2 increase in the nucleus of cells, thereby directing a predominant nuclear localization of its co-factors Yap and Taz via the formation of Tead2-Yap-Taz complexes. Genome-wide chromatin immunoprecipitation and next generation sequencing in combination with gene expression profiling revealed the transcriptional targets of Tead2 during EMT. Among these, zyxin contributes to the migratory and invasive phenotype evoked by Tead2. The results demonstrate that Tead transcription factors are crucial regulators of the cellular distribution of Yap and Taz, and together they control the expression of genes critical for EMT and metastasis.
Collapse
Affiliation(s)
- Maren Diepenbruck
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Soliman H, Khalil F, Antonia S. PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS One 2014; 9:e88557. [PMID: 24551119 PMCID: PMC3925108 DOI: 10.1371/journal.pone.0088557] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tumor cells express programmed death ligand 1 (PD-L1) and is a key immune evasion mechanism. PD-L1 expression in multiple breast cancer cell lines was evaluated to identify intrinsic differences that affect their potential for immune evasion. METHODS PD-L1 expression was analyzed in six breast cancer cell lines: AU565&MCF7 (luminal), BT20&HCC1143 (basal A), MDA231&HCC38 (basal B). Surface and intracellular PD-L1 expression +/- interferon γ for 48 hours was measured by flow cytometry. PD-L1 gene expression data for all breast cancer cell lines in the Comprehensive Cell Line Encyclopedia (CCLE) was analyzed. Correlation between PD-L1 levels and clinicopathologic parameters was analyzed within Oncomine datasets. A tissue microarray containing 61 invasive breast cancer primary tumor cores was stained for PD-L1 expression and analyzed. RESULTS Basal breast cancer cells constitutively express the highest levels of PD-L1. All cell lines increased PD-L1 expression with interferon γ, but basal B cells (MDA-231 and HCC38) demonstrated the largest increases. There were no differences in protein localization between cell lines. In the CCLE data, basal cell lines demonstrated higher mean PD-L1 expression compared to luminal cell lines. High PD-L1 expressing basal cell lines over-express genes involved in invasion, proliferation, and chemoresistance compared to low PD-L1 basal cell lines. High PD-L1 basal cell lines had lower expression of IRF2BP2 and higher STAT1 levels compared to low PD-L1 expressing cell lines. Within Oncomine datasets PDL1 mRNA levels were higher in basal type tumors. The TMA analysis demonstrated that lymph node positive cases had higher levels of PD-L1 protein expression compared to lymph node negative cases. CONCLUSIONS Basal type breast cancer (especially basal B) express greater levels of PD-L1 constitutively and with IFN γ. High PD-L1 basal cells over-express genes involved in invasion, motility, and chemoresistance. Targeting PD-L1 may enhance eradication of aggressive breast cancer cells by the immune system.
Collapse
Affiliation(s)
- Hatem Soliman
- Department of Women’s Oncology and Experimental Therapeutics, Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail:
| | - Farah Khalil
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Scott Antonia
- Department of Thoracic Oncology and Immunology, Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
43
|
Molecular Mechanisms Underlying the Force-Dependent Regulation of Actin-to-ECM Linkage at the Focal Adhesions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:135-54. [DOI: 10.1016/b978-0-12-394624-9.00006-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Kuo JC. Focal adhesions function as a mechanosensor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:55-73. [PMID: 25081614 DOI: 10.1016/b978-0-12-394624-9.00003-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that engage with the surrounding extracellular matrix (ECM) via integrin receptors and physically connect with the actin cytoskeleton through the recruitment of numerous FA-associated proteins. FAs undergo a maturation process, which is known to be induced by biochemical or physical cues, to grow and change composition. Varying FA size, distribution, dynamics, and compositions during maturation process is required for transducing the specific signaling networks that reflect the requirements of a cell to sense, adapt, and response to a variety of the environments. While advances have been demonstrated in understanding how important FAs are in mediating various biological processes, less is known about how FA composition is regulated and coordinately transduces the specific signals in mediating the distinct biological outcomes, especially cell migration.
Collapse
Affiliation(s)
- Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
45
|
Ampe C, Libbrecht J, Van Troys M. β-actin knock-out mouse embryonic fibroblasts show increased expression of LIM-, CH-, EFh-domain containing proteins with predicted common upstream regulators. Cytoskeleton (Hoboken) 2013; 70:766-74. [DOI: 10.1002/cm.21147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/22/2013] [Accepted: 09/26/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Christophe Ampe
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Ghent
| | - Jelle Libbrecht
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Ghent
| | - Marleen Van Troys
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Ghent
| |
Collapse
|
46
|
Lavelin I, Wolfenson H, Patla I, Henis YI, Medalia O, Volberg T, Livne A, Kam Z, Geiger B. Differential effect of actomyosin relaxation on the dynamic properties of focal adhesion proteins. PLoS One 2013; 8:e73549. [PMID: 24039980 PMCID: PMC3767655 DOI: 10.1371/journal.pone.0073549] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022] Open
Abstract
Treatment of cultured cells with inhibitors of actomyosin contractility induces rapid deterioration of stress fibers, and disassembly of the associated focal adhesions (FAs). In this study, we show that treatment with the Rho kinase inhibitor Y-27632, which blocks actomyosin contractility, induces disarray in the FA-associated actin bundles, followed by the differential dissociation of eight FA components from the adhesion sites. Live-cell microscopy indicated that the drug triggers rapid dissociation of VASP and zyxin from FAs (τ values of 7-8 min), followed by talin, paxillin and ILK (τ ~16 min), and then by FAK, vinculin and kindlin-2 (τ = 25-28 min). Examination of the molecular kinetics of the various FA constituents, using Fluorescence Recovery After Photobleaching (FRAP), in the absence of or following short-term treatment with the drug, revealed major changes in the kon and koff values of the different proteins tested, which are in close agreement with their differential dissociation rates from the adhesion sites. These findings indicate that mechanical, actomyosin-generated forces differentially regulate the molecular kinetics of individual FA-associated molecules, and thereby modulate FA composition and stability.
Collapse
Affiliation(s)
- Irena Lavelin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Haguy Wolfenson
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| | - Israel Patla
- Department of Life Sciences and the National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Yoav I. Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Medalia
- Department of Life Sciences and the National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er-Sheva, Israel
- Department of Biochemistry, University of Zurich, Zürich, Switzerland
| | - Tova Volberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
47
|
Kuo JC. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 2013; 17:704-12. [PMID: 23551528 PMCID: PMC3823174 DOI: 10.1111/jcmm.12054] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/25/2013] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA-related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration-related human diseases.
Collapse
Affiliation(s)
- Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
48
|
Ngan E, Northey JJ, Brown CM, Ursini-Siegel J, Siegel PM. A complex containing LPP and α-actinin mediates TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. J Cell Sci 2013; 126:1981-91. [PMID: 23447672 DOI: 10.1242/jcs.118315] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a potent modifier of the malignant phenotype in ErbB2-expressing breast cancers. We demonstrate that epithelial-derived breast cancer cells, which undergo a TGFβ-induced epithelial-to-mesenchymal transition (EMT), engage signaling molecules that normally facilitate cellular migration and invasion of mesenchymal cells. We identify lipoma preferred partner (LPP) as an indispensable regulator of TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. We show that LPP re-localizes to focal adhesion complexes upon TGFβ stimulation and is a critical determinant in TGFβ-mediated focal adhesion turnover. Finally, we have determined that the interaction between LPP and α-actinin, an actin cross-linking protein, is necessary for TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. Thus, our data reveal that LPP, which is normally operative in cells of mesenchymal origin, can be co-opted by breast cancer cells during an EMT to promote their migration and invasion.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
49
|
Lecroisey C, Brouilly N, Qadota H, Mariol MC, Rochette NC, Martin E, Benian GM, Ségalat L, Mounier N, Gieseler K. ZYX-1, the unique zyxin protein of Caenorhabditis elegans, is involved in dystrophin-dependent muscle degeneration. Mol Biol Cell 2013; 24:1232-49. [PMID: 23427270 PMCID: PMC3623643 DOI: 10.1091/mbc.e12-09-0679] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In vertebrates, zyxin is a LIM-domain protein belonging to a family composed of seven members. We show that the nematode Caenorhabditis elegans has a unique zyxin-like protein, ZYX-1, which is the orthologue of the vertebrate zyxin subfamily composed of zyxin, migfilin, TRIP6, and LPP. The ZYX-1 protein is expressed in the striated body-wall muscles and localizes at dense bodies/Z-discs and M-lines, as well as in the nucleus. In yeast two-hybrid assays ZYX-1 interacts with several known dense body and M-line proteins, including DEB-1 (vinculin) and ATN-1 (α-actinin). ZYX-1 is mainly localized in the middle region of the dense body/Z-disk, overlapping the apical and basal regions containing, respectively, ATN-1 and DEB-1. The localization and dynamics of ZYX-1 at dense bodies depend on the presence of ATN-1. Fluorescence recovery after photobleaching experiments revealed a high mobility of the ZYX-1 protein within muscle cells, in particular at dense bodies and M-lines, indicating a peripheral and dynamic association of ZYX-1 at these muscle adhesion structures. A portion of the ZYX-1 protein shuttles from the cytoplasm into the nucleus, suggesting a role for ZYX-1 in signal transduction. We provide evidence that the zyx-1 gene encodes two different isoforms, ZYX-1a and ZYX-1b, which exhibit different roles in dystrophin-dependent muscle degeneration occurring in a C. elegans model of Duchenne muscular dystrophy.
Collapse
|
50
|
Sun Z, Huang S, Li Z, Meininger GA. Zyxin is involved in regulation of mechanotransduction in arteriole smooth muscle cells. Front Physiol 2012; 3:472. [PMID: 23267329 PMCID: PMC3526782 DOI: 10.3389/fphys.2012.00472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/03/2012] [Indexed: 01/16/2023] Open
Abstract
Zyxin is a focal adhesion protein that has been implicated in the modulation of cell adhesion and motility, and is hypothesized to be a mechano-sensor in integrin-mediated responses to mechanical force. To test the functional role of zyxin in the mechanotransduction of microvascular smooth muscle cells (VSMC), we utilized atomic force microscopy (AFM) to apply localized pulling forces to VSMC through a fibronectin (FN) focal adhesion induced by a FN-coated bead on cell surface. Application of force with the AFM induced an increase of zyxin accumulation at the site of the FN-bead focal adhesion that accompanied the VSMC contractile response. Whereas, reduction of zyxin expression by using a zyxin-shRNA construct abolished the VSMC contractile response to AFM pulling forces, even though the zyxin-silenced VSMCs displayed increased adhesion to FN in both AFM adhesion assays and cell adhesion assays. The reduced zyxin expression significantly impaired cell spreading and reorganization of the actin cytoskeleton that could indicate a possible underlying reason for the loss of a contractile response to mechanical force. Consistent with these observations, in zyxin-silenced VSMC, we also observed a reduced expression of Rac1, which plays an important role in the actin reorganization in VSMC, but increased thyroid receptor-interacting proteins (TRIP6) and FAK expression, the latter being a major protein that promote cell adhesion. In conclusion, these data support an important enabling role for zyxin in VSMCs ability to mechanically respond to applied force.
Collapse
Affiliation(s)
- Zhe Sun
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| | | | | | | |
Collapse
|