1
|
Sekulovski B, Miller N. Mechanisms of social behaviour in the anti-social blind cavefish ( Astyanax mexicanus). Proc Biol Sci 2025; 292:20250052. [PMID: 40132632 PMCID: PMC11936682 DOI: 10.1098/rspb.2025.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
The evolution of social behaviour in Astyanax mexicanus, which exists as a sighted, surface-dwelling morph and a blind, cave-dwelling morph, provides a model for understanding how environmental pressures shape social behaviours. We compared the shoaling behaviour of blind and surface A. mexicanus to that of zebrafish (Danio rerio), and examined the effects of nutritional state and the neuropeptides isotocin (IT) and arginine vasotocin (AVT) on their social behaviour. Blind cavefish not only fail to form shoals, but actively avoid conspecifics, with hunger further diminishing their social cohesion. Administration of low doses of AVT and an IT antagonist partially restored social behaviour in blind cavefish, reducing distances between individuals, whereas surface fish exhibited minimal or opposite responses to these hormonal manipulations. Our findings suggest that the loss of shoaling behaviour in blind cavefish is not a consequence of visual impairment alone, as they remain capable of detecting and responding to others. Instead, this behaviour probably reflects an adaptive response to their resource-poor, predator-free cave environment, where shoaling may be disadvantageous. The differing responses to nonapeptides between the morphs indicate that blind cavefish may have lost the motivation to shoal rather than the ability, highlighting how ecological pressures can shape social behaviour.
Collapse
Affiliation(s)
- Britney Sekulovski
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Noam Miller
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Chivite M, Ceinos RM, Cerdá-Reverter JM, Soengas JL, Aldegunde M, López-Patiño MA, Míguez JM. Unraveling the periprandial changes in brain serotonergic activity and its correlation with food intake-related neuropeptides in rainbow trout Oncorhynchus mykiss. Front Endocrinol (Lausanne) 2023; 14:1241019. [PMID: 37693350 PMCID: PMC10491422 DOI: 10.3389/fendo.2023.1241019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
This study explored changes in brain serotonin content and activity together with hypothalamic neuropeptide mRNA abundance around feeding time in rainbow trout, as well as the effect of one-day fasting. Groups of trout fed at two (ZT2) and six (ZT6) hours after lights on were sampled from 90 minutes before to 240 minutes after feeding, while additional groups of non-fed trout were also included in the study. Changes in brain amine and metabolite contents were measured in hindbrain, diencephalon and telencephalon, while in the diencephalon the mRNA abundance of tryptophan hydroxylase (tph1, tph2), serotonin receptors (5htr1a, 5htr1b and 5htr2c) and several neuropeptides (npy, agrp1, cartpt, pomca1, crfb) involved in the control of food intake were also assessed. The results showed changes in the hypothalamic neuropeptides that were consistent with the expected role for each in the regulation of food intake in rainbow trout. Serotonergic activity increased rapidly at the time of food intake in the diencephalon and hindbrain and remained high for much of the postprandial period. This increase in serotonin abundance was concomitant with elevated levels of pomca1 mRNA in the diencephalon, suggesting that serotonin might act on brain neuropeptides to promote a satiety profile. Furthermore, serotonin synthesis and neuronal activity appear to increase already before the time of feeding, suggesting additional functions for this amine before and during food intake. Exploration of serotonin receptors in the diencephalon revealed only small changes for gene expression of 5htr1b and 5htr2c receptors during the postprandial phase. Therefore, the results suggest that serotonin may play a relevant role in the regulation of feeding behavior in rainbow trout during periprandial time, but a better understanding of its interaction with brain centers involved in receiving and processing food-related signals is still needed.
Collapse
Affiliation(s)
- Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Rosa M. Ceinos
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Instituto de Acuicultura Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Jose L. Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Manuel Aldegunde
- Departamento de Fisiología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos A. López-Patiño
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
3
|
Espinasa L, Collins E, Ornelas García CP, Rétaux S, Rohner N, Rutkowski J. Divergent evolutionary pathways for aggression and territoriality in Astyanax cavefish. SUBTERRANEAN BIOLOGY 2022. [DOI: 10.3897/subtbiol.73.79318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The surface morph of the Mexican tetra fish (Astyanax mexicanus) exhibits strong territoriality behavior and high levels of aggression. In contrast, the eyeless cave-adapted morph from Sierra de El Abra, México, rarely are aggressive and have totally lost the territorial behavior. These behaviors are part of what has been called the cavefish behavioral syndrome. Here, we report that several Astyanax cave populations of Sierra de Guatemala, unlike those reported for the Sierra de El Abra cave populations, display significant territoriality and aggression when confined into a reduced space. We discuss divergent evolutionary trajectories in terms of agonistic behavior for cavefish populations inhabiting different mountain ranges.
Collapse
|
4
|
Lam SM, Li J, Sun H, Mao W, Liu Z, Zhao Q, Han C, Gong X, Jiang B, Chua GH, Zhao Z, Meng F, Shui G. Quantitative lipidomics and spatial MS-Imaging uncovered neurological and systemic lipid metabolic pathways underlying troglomorphic adaptations in cave-dwelling fish. Mol Biol Evol 2022; 39:6547622. [PMID: 35277964 PMCID: PMC9011034 DOI: 10.1093/molbev/msac050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Sinocyclocheilus represents a rare, freshwater teleost genus endemic to China that comprises the river-dwelling surface fish and the cave-dwelling cavefish. Using a combinatorial approach of quantitative lipidomics and mass-spectrometry imaging (MSI), we demonstrated that neural compartmentalization of lipid distribution and lipid metabolism are associated with the evolution of troglomorphic traits in Sinocyclocheilus. Attenuated DHA biosynthesis via the Δ4 desaturase pathway led to reductions in docosahexaenoic acid (DHA)-phospholipids in cavefish cerebellum. Instead, cavefish accumulates arachidonic acid (ARA)-phospholipids that may disfavor retinotectal arbor growth. Importantly, MSI of sulfatides, coupled with immunostaining of myelin basic protein and transmission electron microscopy images of hindbrain axons revealed demyelination in cavefish raphe serotonergic neurons. Demyelination in cavefish parallels the loss of neuroplasticity governing social behavior such as aggressive dominance. Outside the brain, quantitative lipidomics and qRT-PCR revealed systemic reductions in membrane esterified DHAs in the liver, attributed to suppression of genes along the Sprecher pathway (elovl2, elovl5, acox1). Development of fatty livers was observed in cavefish, likely mediated by an impeded mobilization of storage lipids, as evident in the diminished expressions of pnpla2, lipea, lipeb, dagla and mgll; and suppressed β-oxidation of fatty acyls via both mitochondria and peroxisomes, reflected in the reduced expressions of cpt1ab, hadhaa, cpt2, decr1 and acox1. These neurological and systemic metabolic adaptations serve to reduce energy expenditure, forming the basis of recessive evolution that eliminates non-essential morphological and behavioral traits, giving cavefish a selective advantage to thrive in caves where proper resource allocation becomes a major determinant of survival.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu Province, China
| | - Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weining Mao
- Qujing Aquaculture Station, Qujing 655000, Yunan Province, China
| | - Zongmin Liu
- Qujing Aquaculture Station, Qujing 655000, Yunan Province, China
| | - Qingshuo Zhao
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China
| | - Xia Gong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Binhua Jiang
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu Province, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu Province, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, China
| | - Fanwei Meng
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Maldonado E, Rangel-Huerta E, Rodriguez-Salazar E, Pereida-Jaramillo E, Martínez-Torres A. Subterranean life: Behavior, metabolic, and some other adaptations of Astyanax cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:463-473. [PMID: 32346998 DOI: 10.1002/jez.b.22948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022]
Abstract
The ability of fishes to adapt to any aquatic environment seems limitless. It is enthralling how new species keep appearing at the deep sea or in subterranean environments. There are close to 230 known species of cavefishes, still today the best-known cavefish is Astyanax mexicanus, a Characid that has become a model organism, and has been studied and scrutinized since 1936. There are two morphotypes for A. mexicanus, a surface fish and a cavefish. The surface fish lives in central and northeastern Mexico and south of the United States, while the cavefish is endemic to the "Sierra del Abra-Tanchipa region" in northeast Mexico. The extensive genetic and genomic analysis depicts a complex origin for Astyanax cavefish, with multiple cave invasions and persistent gene flow among cave populations. The surface founder population prevails in the same region where the caves are. In this review, we focus on both morphotype's main morphological and physiological differences, but mainly in recent discoveries about behavioral and metabolic adaptations for subterranean life. These traits may not be as obvious as the troglomorphic characteristics, but are key to understand how Astyanax cavefish thrives in this environment of perpetual darkness.
Collapse
Affiliation(s)
- Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Elizabeth Rodriguez-Salazar
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Elizabeth Pereida-Jaramillo
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| | - Ataulfo Martínez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| |
Collapse
|
6
|
McGaugh SE, Weaver S, Gilbertson EN, Garrett B, Rudeen ML, Grieb S, Roberts J, Donny A, Marchetto P, Gluesenkamp AG. Evidence for rapid phenotypic and behavioural shifts in a recently established cavefish population. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Cave colonization offers a natural laboratory to study an extreme environmental shift, and diverse cave species from around the world often have converged on robust morphological, physiological and behavioural traits. The Mexican tetra (Astyanax mexicanus) has repeatedly colonized caves in the Sierra de El Abra and Sierra de Guatemala regions of north-east Mexico ~0.20–1 Mya, indicating an ability to adapt to the cave environment. The time frame for the evolution of these traits in any cave animal, however, is poorly understood. Astyanax mexicanus from the Río Grande in South Texas were brought to Central Texas beginning in the early 1900s and colonized underground environments. Here, we investigate whether phenotypic and behavioural differences have occurred rapidly between a surface population and a geographically proximate cave population, probably of recent origin. Fish from the cave and surface populations differ significantly in morphological traits, including coloration, lateral line expansion and dorsal fin placement. Striking behavioural shifts in aggression, feeding and wall-following have also occurred. Together, our results suggest that morphological and behavioural changes accompanying cave colonization can be established rapidly, and this system offers an exciting and unique opportunity for isolating the genetic and environmental contributions to colonization of extreme environments.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Sam Weaver
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Erin N Gilbertson
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Brianna Garrett
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Melissa L Rudeen
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Stephanie Grieb
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Jennifer Roberts
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Alexandra Donny
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Peter Marchetto
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, USA
| | | |
Collapse
|
7
|
Evolution of acoustic communication in blind cavefish. Nat Commun 2019; 10:4231. [PMID: 31530801 PMCID: PMC6748933 DOI: 10.1038/s41467-019-12078-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Acoustic communication allows the exchange of information within specific contexts and during specific behaviors. The blind, cave-adapted and the sighted, river-dwelling morphs of the species Astyanax mexicanus have evolved in markedly different environments. During their evolution in darkness, cavefish underwent a series of morphological, physiological and behavioral changes, allowing the study of adaptation to drastic environmental change. Here we discover that Astyanax is a sonic species, in the laboratory and in the wild, with sound production depending on the social contexts and the type of morph. We characterize one sound, the "Sharp Click", as a visually-triggered sound produced by dominant surface fish during agonistic behaviors and as a chemosensory-, food odor-triggered sound produced by cavefish during foraging. Sharp Clicks also elicit different reactions in the two morphs in play-back experiments. Our results demonstrate that acoustic communication does exist and has evolved in cavefish, accompanying the evolution of its behaviors.
Collapse
|
8
|
Barbosa HP, Lima-Maximino MG, Maximino C. Acute fluoxetine differently affects aggressive display in zebrafish phenotypes. Aggress Behav 2019; 45:62-69. [PMID: 30255506 DOI: 10.1002/ab.21797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
Zebrafish have been introduced as a model organism in behavioral neuroscience and biological psychiatry, increasing the breadth of findings using fish to study the neurobiology of aggression. Phenotypic differences between leopard and longfin zebrafish were exploited in order to elucidate the role of phasic serotonin in aggressive displays on this species. The present study, revealed differences in aggressive display between leopard and longfin zebrafish, and a discrepant effect of acute fluoxetine in both populations. In mirror-induced aggression, leopard animals showed higher display latencies than longfin, as well as lower display duration and frequency (Experiment 1). Moreover, 2.5 mg/kg fluoxetine decreased the duration and frequency of display in longfin, but not leopard; and 5 mg/kg fluoxetine increased display frequency in leopard, but not longfin (Experiment 2). It is suggested that zebrafish from the longfin phenotype show more aggressive motivation and readiness in the mirror-induced aggression test than leopard, and that acute fluoxetine increases aggression in leopard and decreased it in longfin zebrafish.
Collapse
Affiliation(s)
- Hellen P Barbosa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Departamento de Morfologia e Ciências Fisiológicas, Campus VIII/Marabá, Universidade do Estado do Pará, Marabá, Pará, Brazil
| | - Monica G Lima-Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Departamento de Morfologia e Ciências Fisiológicas, Campus VIII/Marabá, Universidade do Estado do Pará, Marabá, Pará, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Marabá, Pará, Brazil
| | - Caio Maximino
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Marabá, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Neurociências e Comportamento, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Pará, Brazil
| |
Collapse
|
9
|
Territoriality and agonistic behavior of subterranean Copionodontinae catfish (Siluriformes: Trichomycteridae) from Brazil. Acta Ethol 2018. [DOI: 10.1007/s10211-018-0302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Simon V, Elleboode R, Mahé K, Legendre L, Ornelas-Garcia P, Espinasa L, Rétaux S. Comparing growth in surface and cave morphs of the species Astyanax mexicanus: insights from scales. EvoDevo 2017; 8:23. [PMID: 29214008 PMCID: PMC5710000 DOI: 10.1186/s13227-017-0086-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Background Life in the darkness of caves is accompanied, throughout phyla, by striking phenotypic changes including the loss or severe reduction in eyes and pigmentation. On the other hand, cave animals have undergone constructive changes, thought to be adaptive, to survive in this extreme environment. The present study addresses the question of the evolution of growth in caves, taking advantage of the comparison between the river-dwelling and the cave-dwelling morphs of the Mexican tetra, Astyanax mexicanus. Results A sclerochronology approach was undertaken to document the growth of the species in these two very distinct habitats. Scales from 158 wild Astyanax mexicanus specimens were analyzed from three caves (Pachón, Tinaja and Subterráneo) and two rivers (Rio Gallinas and Arroyo Lagarto) in San Luis Potosi and Tamaulipas, Mexico. A 10–13% reduction in scales size was observed in the cave morphs compared to the surface morphs. Age could be reliably inferred from annual growth increments on the scales from the two morphs of the species. Further comparisons with growth curves in laboratory conditions, obtained using the von Bertalanffy growth model, were also performed. In the wild and in the laboratory, cavefish originating from the Pachón cave reached smaller sizes than surface fish from three different locations: Rio Gallinas and Arroyo Lagarto (wild sampling) and Texas (laboratory population), respectively. Wild Pachón cavefish also seemed to grow to smaller sizes than the two other wild cavefish populations studied, Tinaja and Subterráneo. Finally, growth in the laboratory was faster than in the wild, particularly in the two first years of life. Conclusions These data suggest that cavefish originating from the Pachón cave are subjected to an intrinsic limitation of their final size, which is at least in part independent from energy/food availability. This growth limitation may be an advantageous way of limiting energy expenditure and food needs in the cave environment. Moreover, growth regulation evolved differently in independently evolved cave populations. These results are discussed with regard to the sources of energy or general ecological conditions present in caves, and to the differences in behavior or feeding skills known in cavefish.
Collapse
Affiliation(s)
- Victor Simon
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Avenue de la terrasse, 91198 Gif-sur-Yvette, France.,Université Paris Sud and Paris-Saclay, Orsay, France
| | - Romain Elleboode
- IFREMER, Fisheries Laboratory, Sclerochronology Centre, 150 quai Gambetta, 62321 Boulogne-sur-Mer, France
| | - Kélig Mahé
- IFREMER, Fisheries Laboratory, Sclerochronology Centre, 150 quai Gambetta, 62321 Boulogne-sur-Mer, France
| | - Laurent Legendre
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Luis Espinasa
- School of Science, Marist College, 3399 North Rd, Poughkeepsie, NY 12601 USA
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Avenue de la terrasse, 91198 Gif-sur-Yvette, France.,Université Paris Sud and Paris-Saclay, Orsay, France
| |
Collapse
|
11
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
12
|
Espinasa L, Bonaroti N, Wong J, Pottin K, Queinnec E, Rétaux S. Contrasting feeding habits of post-larval and adult Astyanax cavefish. SUBTERRANEAN BIOLOGY 2017. [DOI: 10.3897/subtbiol.21.11046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Elipot Y, Legendre L, Père S, Sohm F, Rétaux S. Astyanax Transgenesis and Husbandry: How Cavefish Enters the Laboratory. Zebrafish 2014; 11:291-9. [DOI: 10.1089/zeb.2014.1005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yannick Elipot
- CNRS UPR3294, DECA Group, Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Laurent Legendre
- CNRS, UMS 3504, AMAGEN, Gif-sur-Yvette, France
- INRA, UMS 1374, AMAGEN, Jouy en Josas, France
| | - Stéphane Père
- CNRS UPR3294, DECA Group, Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Frédéric Sohm
- CNRS, UMS 3504, AMAGEN, Gif-sur-Yvette, France
- INRA, UMS 1374, AMAGEN, Jouy en Josas, France
| | - Sylvie Rétaux
- CNRS UPR3294, DECA Group, Institut Alfred Fessard, Gif-sur-Yvette, France
| |
Collapse
|
14
|
A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun 2014; 5:3647. [DOI: 10.1038/ncomms4647] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/13/2014] [Indexed: 01/15/2023] Open
|
15
|
Penney CC, Volkoff H. Peripheral injections of cholecystokinin, apelin, ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus): effects on feeding and on the brain expression levels of tyrosine hydroxylase, mechanistic target of rapamycin and appetite-related hormones. Gen Comp Endocrinol 2014; 196:34-40. [PMID: 24287340 DOI: 10.1016/j.ygcen.2013.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022]
Abstract
The effects of intraperitoneal injections of cholecystokinin (CCK), apelin, ghrelin, and orexin on food intake were examined in the blind cavefish Astyanax fasciatus mexicanus. CCK (50ng/g) induced a decrease in food intake whereas apelin (100ng/g), orexin (100ng/g), and ghrelin (100ng/g) induced an increase in food intake as compared to saline-injected control fish. In order to better understand the central mechanism by which these hormones act, we examined the effects of injections on the brain mRNA expression of two metabolic enzymes, tyrosine hydroxylase (TH), and mechanistic target of rapamycin (mTOR), and of appetite-regulating peptides, CCK, orexin, apelin and cocaine and amphetamine regulated transcript (CART). CCK injections induced a decrease in brain apelin injections, apelin injections induced an increase in TH, mTOR, and orexin brain expressions, orexin treatment increased brain TH expression and ghrelin injections induced an increase in mTOR and orexin brain expressions. CART expression was not affected by any of the injection treatments. Our results suggest that the enzymes TH and mTOR and the hormones CCK, apelin, orexin, and ghrelin all regulate food intake in cavefish through a complex network of interactions.
Collapse
Affiliation(s)
- Carla C Penney
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
16
|
López JM, González A. Organization of the Serotonergic System in the Central Nervous System of Two Basal Actinopterygian Fishes: the CladistiansPolypterus senegalusandErpetoichthys calabaricus. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:54-76. [DOI: 10.1159/000358266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022]
|
17
|
López JM, González A. Comparative analysis of the serotonergic systems in the CNS of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2013; 220:385-405. [DOI: 10.1007/s00429-013-0661-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
|
18
|
Rétaux S, Casane D. Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo 2013; 4:26. [PMID: 24079393 PMCID: PMC3849642 DOI: 10.1186/2041-9139-4-26] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022] Open
Abstract
Animals inhabiting the darkness of caves are generally blind and de-pigmented, regardless of the phylum they belong to. Survival in this environment is an enormous challenge, the most obvious being to find food and mates without the help of vision, and the loss of eyes in cave animals is often accompanied by an enhancement of other sensory apparatuses. Here we review the recent literature describing developmental biology and molecular evolution studies in order to discuss the evolutionary mechanisms underlying adaptation to life in the dark. We conclude that both genetic drift (neutral hypothesis) and direct and indirect selection (selective hypothesis) occurred together during the loss of eyes in cave animals. We also identify some future directions of research to better understand adaptation to total darkness, for which integrative analyses relying on evo-devo approaches associated with thorough ecological and population genomic studies should shed some light.
Collapse
Affiliation(s)
- Sylvie Rétaux
- DECA group, Neurobiology & Development Laboratory, CNRS, Gif sur Yvette, France
| | - Didier Casane
- LEGS, CNRS, Gif sur Yvette and Université Paris Diderot, Sorbonne Paris Cité, France
| |
Collapse
|