1
|
Myburgh E, Geoghegan V, Alves-Ferreira EV, Nievas YR, Grewal JS, Brown E, McLuskey K, Mottram JC. TORC1 is an essential regulator of nutrient-controlled proliferation and differentiation in Leishmania. EMBO Rep 2024; 25:1075-1105. [PMID: 38396206 PMCID: PMC10933368 DOI: 10.1038/s44319-024-00084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Leishmania parasites undergo differentiation between various proliferating and non-dividing forms to adapt to changing host environments. The mechanisms that link environmental cues with the parasite's developmental changes remain elusive. Here, we report that Leishmania TORC1 is a key environmental sensor for parasite proliferation and differentiation in the sand fly-stage promastigotes and for replication of mammalian-stage amastigotes. We show that Leishmania RPTOR1, interacts with TOR1 and LST8, and identify new parasite-specific proteins that interact in this complex. We investigate TORC1 function by conditional deletion of RPTOR1, where under nutrient-rich conditions RPTOR1 depletion results in decreased protein synthesis and growth, G1 cell cycle arrest and premature differentiation from proliferative promastigotes to non-dividing mammalian-infective metacyclic forms. These parasites are unable to respond to nutrients to differentiate into proliferative retroleptomonads, which are required for their blood-meal induced amplification in sand flies and enhanced mammalian infectivity. We additionally show that RPTOR1-/- metacyclic promastigotes develop into amastigotes but do not proliferate in the mammalian host to cause pathology. RPTOR1-dependent TORC1 functionality represents a critical mechanism for driving parasite growth and proliferation.
Collapse
Affiliation(s)
- Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK.
| | - Vincent Geoghegan
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Eliza Vc Alves-Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Y Romina Nievas
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Jaspreet S Grewal
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Elaine Brown
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen McLuskey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
2
|
Chaudhary J, Gautam T, Gahlaut V, Singh K, Kumar S, Batra R, Gupta PK. Identification and characterization of RuvBL DNA helicase genes for tolerance against abiotic stresses in bread wheat (Triticum aestivum L.) and related species. Funct Integr Genomics 2023; 23:255. [PMID: 37498392 DOI: 10.1007/s10142-023-01177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Recombination UVB (sensitivity) like (RuvBL) helicase genes represent a conserved family of genes, which are known to be involved in providing tolerance against abiotic stresses like heat and drought. We identified nine wheat RuvBL genes, one each on nine different chromosomes, belonging to homoeologous groups 2, 3, and 4. The lengths of genes ranged from 1647 to 2197 bp and exhibited synteny with corresponding genes in related species including Ae. tauschii, Z. mays, O. sativa, H. vulgare, and B. distachyon. The gene sequences were associated with regulatory cis-elements and transposable elements. Two genes, namely TaRuvBL1a-4A and TaRuvBL1a-4B, also carried targets for a widely known miRNA, tae-miR164. Gene ontology revealed that these genes were closely associated with ATP-dependent formation of histone acetyltransferase complex. Analysis of the structure and function of RuvBL proteins revealed that the proteins were localized mainly in the cytoplasm. A representative gene, namely TaRuvBL1a-4A, was also shown to be involved in protein-protein interactions with ten other proteins. On the basis of phylogeny, RuvBL proteins were placed in two sub-divisions, namely RuvBL1 and RuvBL2, which were further classified into clusters and sub-clusters. In silico studies suggested that these genes were differentially expressed under heat/drought. The qRT-PCR analysis confirmed that expression of TaRuvBL genes differed among wheat cultivars, which differed in the level of thermotolerance. The present study advances our understanding of the biological role of wheat RuvBL genes and should help in planning future studies on RuvBL genes in wheat including use of RuvBL genes in breeding thermotolerant wheat cultivars.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Vijay Gahlaut
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Kalpana Singh
- Department of Bioinformatics, College of animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- IIMT University, 'O' Pocket, Ganga Nagar, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India.
| |
Collapse
|
3
|
Hsp90 and Associated Co-Chaperones of the Malaria Parasite. Biomolecules 2022; 12:biom12081018. [PMID: 35892329 PMCID: PMC9332011 DOI: 10.3390/biom12081018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.
Collapse
|
4
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
5
|
Abrahão J, Amaro BT, Peres BR, Quel NG, Aragão AZB, Morea EGO, Cano MIN, Houry WA, Ramos CHI. Leishmania major RUVBL1 has a hexameric conformation in solution and, in the presence of RUVBL2, forms a heterodimer with ATPase activity. Arch Biochem Biophys 2021; 703:108841. [PMID: 33775623 DOI: 10.1016/j.abb.2021.108841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
ATPases belonging to the AAA+ superfamily are associated with diverse cellular activities and are mainly characterized by a nucleotide-binding domain (NBD) containing the Walker A and Walker B motifs. AAA+ proteins have a range of functions, from DNA replication to protein degradation. Rvbs, also known as RUVBLs, are AAA+ ATPases with one NBD domain and were described from human to yeast as participants of the R2TP (Rvb1-Rvb2-Tah1-Pih1) complex. Although essential for the assembly of multiprotein complexes-containing DNA and RNA, the protozoa Rvb orthologs are less studied. For the first time, this work describes the Rvbs from Leishmania major, one of the causative agents of Tegumentar leishmaniasis in human. Recombinant LmRUVBL1 and LmRUVBL2 his-tagged proteins were successfully purified and investigated using biophysical tools. LmRUVBL1 was able to form a well-folded elongated hexamer in solution, while LmRUVBL2 formed a large aggregate. However, the co-expression of LmRUVBL1 and LmRUVBL2 assembled the proteins into an elongated heterodimer in solution. Thermo-stability and fluorescence experiments indicated that the LmRUVBL1/2 heterodimer had ATPase activity in vitro. This is an interesting result because hexameric LmRUVBL1 alone had low ATPase activity. Additionally, using independent SL-RNAseq libraries, it was possible to show that both proteins are expressed in all L. major life stages. Specific antibodies obtained against LmRUVBLs identified the proteins in promastigotes and metacyclics cell extracts. Together, the results here presented are the first step towards the characterization of Leishmania Rvbs, and may contribute to the development of possible strategies to intervene against leishmaniasis, a neglected tropical disease of great medical importance.
Collapse
Affiliation(s)
- Josielle Abrahão
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Bárbara T Amaro
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Bárbara R Peres
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Natália G Quel
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Annelize Z B Aragão
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - Edna G O Morea
- Department of Chemical and Biological Sciences, Biosciences Institute, Sao Paulo State University, Botucatu, SP, 18618689, Brazil
| | - Maria Isabel N Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, Sao Paulo State University, Botucatu, SP, 18618689, Brazil
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
6
|
Shonhai A, Blatch GL. Heat Shock Proteins of Malaria: Highlights and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:237-246. [PMID: 34569028 DOI: 10.1007/978-3-030-78397-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa.
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia. .,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa. .,The Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia. .,Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Plasmodium falciparum R2TP complex: driver of parasite Hsp90 function. Biophys Rev 2019; 11:1007-1015. [PMID: 31734827 DOI: 10.1007/s12551-019-00605-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/30/2019] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is essential for the development of the main malaria agent, Plasmodium falciparum. Inhibitors that target Hsp90 function are known to not only kill the parasite, but also reverse resistance of the parasite to traditional antimalarials such as chloroquine. For this reason, Hsp90 has been tagged as a promising antimalarial drug target. As a molecular chaperone, Hsp90 facilitates folding of proteins such as steroid hormone receptors and kinases implicated in cell cycle and development. Central to Hsp90 function is its regulation by several co-chaperones. Various co-chaperones interact with Hsp90 to modulate its co-operation with other molecular chaperones such as Hsp70 and to regulate its interaction with substrates. The role of Hsp90 in the development of malaria parasites continues to receive research attention, and several Hsp90 co-chaperones have been mapped out. Recently, focus has shifted to P. falciparum R2TP proteins, which are thought to couple Hsp90 to a diverse set of client proteins. R2TP proteins are generally known to form a complex with Hsp90, and this complex drives multiple cellular processes central to signal transduction and cell division. Given the central role that the R2TP complex may play, the current review highlights the structure-function features of Hsp90 relative to R2TPs of P. falciparum.
Collapse
|
8
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Saifi SK, Passricha N, Tuteja R, Tuteja N. Stress-induced Oryza sativa RuvBL1a is DNA-independent ATPase and unwinds DNA duplex in 3' to 5' direction. PROTOPLASMA 2018; 255:669-684. [PMID: 29103092 DOI: 10.1007/s00709-017-1178-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
RuvB, a member of AAA+ (ATPases Associated with diverse cellular Activities) superfamily of proteins, is essential, highly conserved and multifunctional in nature as it is involved in DNA damage repair, mitotic assembly, switching of histone variants and assembly of telomerase core complex. RuvB family is widely studied in various systems such as Escherichia coli, yeast, human, Drosophila, Plasmodium falciparum and mouse, but not well studied in plants. We have studied the transcript level of rice homologue of RuvB gene (OsRuvBL1a) under various abiotic stress conditions, and the results suggest that it is upregulated under salinity, cold and heat stress. Therefore, the OsRuvBL1a protein was characterized using in silico and biochemical approaches. In silico study confirmed the presence of all the four characteristic motifs of AAA+ superfamily-Walker A, Walker B, Sensor I and Sensor II. Structurally, OsRuvBL1a is similar to RuvB1 from Chaetomium thermophilum. The purified recombinant OsRuvBL1a protein shows unique DNA-independent ATPase activity. Using site-directed mutagenesis, the importance of two conserved motifs (Walker B and Sensor I) in ATPase activity has been also reported with mutants D302N and N332H. The OsRuvBL1a protein unwinds the duplex DNA in the 3' to 5' direction. The presence of unique DNA-independent ATPase and DNA unwinding activities of OsRuvBL1a protein and upregulation of its transcript under abiotic stress conditions suggest its involvement in multiple cellular pathways. The first detailed characterization of plant RuvBL1a in this study may provide important contribution in exploiting the role of RuvB for developing the stress tolerant plants of agricultural importance.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Paci A, Liu PXH, Zhang L, Zhao R. The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae. J Biol Chem 2016; 291:11761-75. [PMID: 27053109 DOI: 10.1074/jbc.m115.702043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
Pih1 is a scaffold protein of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) protein complex, which is conserved in fungi and animals. The chaperone-like activity of the R2TP complex has been implicated in the assembly of multiple protein complexes, such as the small nucleolar RNA protein complex. However, the mechanism of the R2TP complex activity in vivo and the assembly of the complex itself are still largely unknown. Pih1 is an unstable protein and tends to aggregate when expressed alone. The C-terminal fragment of Pih1 contains multiple destabilization factors and acts as a degron when fused to other proteins. In this study, we investigated Pih1 interactors and identified a specific interaction between Pih1 and the proteasome subunit Rpn8 in yeast Saccharomyces cerevisiae when HSP90 co-chaperone Tah1 is depleted. By analyzing truncation mutants, we identified that the C-terminal 30 amino acids of Rpn8 are sufficient for the binding to Pih1 C terminus. With in vitro and in vivo degradation assays, we showed that the Pih1 C-terminal fragment Pih1(282-344) is able to induce a ubiquitin-independent degradation of GFP. Additionally, we demonstrated that truncation of the Rpn8 C-terminal disordered region does not affect proteasome assembly but specifically inhibits the degradation of the GFP-Pih1(282-344) fusion protein in vivo and Pih1 in vitro We propose that Pih1 is a ubiquitin-independent proteasome substrate, and the direct interaction with Rpn8 C terminus mediates its proteasomal degradation.
Collapse
Affiliation(s)
- Alexandr Paci
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Peter X H Liu
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Lingjie Zhang
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Rongmin Zhao
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
11
|
Raymond AA, Benhamouche S, Neaud V, Di Martino J, Javary J, Rosenbaum J. Reptin regulates DNA double strand breaks repair in human hepatocellular carcinoma. PLoS One 2015; 10:e0123333. [PMID: 25875766 PMCID: PMC4398330 DOI: 10.1371/journal.pone.0123333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the growth and viability of HCC cells. Reptin is involved in several chromatin remodeling complexes, some of which are involved in the detection and repair of DNA damage, but data on Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objective was to study the effects of Reptin silencing on the repair of DNA double-strand breaks (DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 μM, 30 min) or γ irradiation (4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respectively. These values were significantly reduced by 35 and 65 % after Reptin silencing with inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5 fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects in activation and/or recruitment of repair proteins were not due to a decreased number of DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was significantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered. Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs. The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Finally, depletion of Reptin was synergistic with etoposide or γ irradiation to reduce cell growth and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs. Our data, combined with those of the literature suggests that it operates at least in part by regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of Reptin in HCC could be a factor of resistance to treatment, consistent with the observed overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers.
Collapse
Affiliation(s)
- Anne-Aurélie Raymond
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Samira Benhamouche
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Véronique Neaud
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Julie Di Martino
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Joaquim Javary
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
| | - Jean Rosenbaum
- INSERM, U1053, F-33076 Bordeaux, France
- Université de Bordeaux, F 33076, Bordeaux, France
- * E-mail:
| |
Collapse
|