1
|
Rojas P, Wang J, Guglielmi G, Sadurnì MM, Pavlou L, Leung GHD, Rajagopal V, Spill F, Saponaro M. Genome-wide identification of replication fork stalling/pausing sites and the interplay between RNA Pol II transcription and DNA replication progression. Genome Biol 2024; 25:126. [PMID: 38773641 PMCID: PMC11106976 DOI: 10.1186/s13059-024-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.
Collapse
Affiliation(s)
- Patricia Rojas
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jianming Wang
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Giovanni Guglielmi
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Martina Mustè Sadurnì
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucas Pavlou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Geoffrey Ho Duen Leung
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Vezzoli M, de Llobet Cucalon LI, Di Vona C, Morselli M, Montanini B, de la Luna S, Teichmann M, Dieci G, Ferrari R. TFIIIC as a Potential Epigenetic Modulator of Histone Acetylation in Human Stem Cells. Int J Mol Sci 2023; 24:3624. [PMID: 36835038 PMCID: PMC9961906 DOI: 10.3390/ijms24043624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Regulation of histone acetylation dictates patterns of gene expression and hence cell identity. Due to their clinical relevance in cancer biology, understanding how human embryonic stem cells (hESCs) regulate their genomic patterns of histone acetylation is critical, but it remains largely to be investigated. Here, we provide evidence that acetylation of histone H3 lysine-18 (H3K18ac) and lysine-27 (H3K27ac) is only partially established by p300 in stem cells, while it represents the main histone acetyltransferase (HAT) for these marks in somatic cells. Our analysis reveals that whereas p300 marginally associated with H3K18ac and H3K27ac in hESCs, it largely overlapped with these histone marks upon differentiation. Interestingly, we show that H3K18ac is found at "stemness" genes enriched in RNA polymerase III transcription factor C (TFIIIC) in hESCs, whilst lacking p300. Moreover, TFIIIC was also found in the vicinity of genes involved in neuronal biology, although devoid of H3K18ac. Our data suggest a more complex pattern of HATs responsible for histone acetylations in hESCs than previously considered, suggesting a putative role for H3K18ac and TFIIIC in regulating "stemness" genes as well as genes associated with neuronal differentiation of hESCs. The results break ground for possible new paradigms for genome acetylation in hESCs that could lead to new avenues for therapeutic intervention in cancer and developmental diseases.
Collapse
Affiliation(s)
- Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | | | - Chiara Di Vona
- Genome Biology Program, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), 08003 Barcelona, Spain
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Susana de la Luna
- Genome Biology Program, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Martin Teichmann
- Université de Bordeaux INSERM U1312 (Bordeaux Institute of Oncology) 146, rue Léo Saignat, 33076 Bordeaux, France
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
3
|
Hulke ML, Massey DJ, Koren A. Genomic methods for measuring DNA replication dynamics. Chromosome Res 2020; 28:49-67. [PMID: 31848781 PMCID: PMC7131883 DOI: 10.1007/s10577-019-09624-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Genomic DNA replicates according to a defined temporal program in which early-replicating loci are associated with open chromatin, higher gene density, and increased gene expression levels, while late-replicating loci tend to be heterochromatic and show higher rates of genomic instability. The ability to measure DNA replication dynamics at genome scale has proven crucial for understanding the mechanisms and cellular consequences of DNA replication timing. Several methods, such as quantification of nucleotide analog incorporation and DNA copy number analyses, can accurately reconstruct the genomic replication timing profiles of various species and cell types. More recent developments have expanded the DNA replication genomic toolkit to assays that directly measure the activity of replication origins, while single-cell replication timing assays are beginning to reveal a new level of replication timing regulation. The combination of these methods, applied on a genomic scale and in multiple biological systems, promises to resolve many open questions and lead to a holistic understanding of how eukaryotic cells replicate their genomes accurately and efficiently.
Collapse
Affiliation(s)
- Michelle L Hulke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Leonard RJ, Preston CC, Gucwa ME, Afeworki Y, Selya AS, Faustino RS. Protein Subdomain Enrichment of NUP155 Variants Identify a Novel Predicted Pathogenic Hotspot. Front Cardiovasc Med 2020; 7:8. [PMID: 32118046 PMCID: PMC7019101 DOI: 10.3389/fcvm.2020.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023] Open
Abstract
Functional variants in nuclear envelope genes are implicated as underlying causes of cardiopathology. To examine the potential association of single nucleotide variants of nucleoporin genes with cardiac disease, we employed a prognostic scoring approach to investigate variants of NUP155, a nucleoporin gene clinically linked with atrial fibrillation. Here we implemented bioinformatic profiling and predictive scoring, based on the gnomAD, National Heart Lung and Blood Institute-Exome Sequencing Project (NHLBI-ESP) Exome Variant Server, and dbNSFP databases to identify rare single nucleotide variants (SNVs) of NUP155 potentially associated with cardiopathology. This predictive scoring revealed 24 SNVs of NUP155 as potentially cardiopathogenic variants located primarily in the N-terminal crescent-shaped domain of NUP155. In addition, a predicted NUP155 R672G variant prioritized in our study was mapped to a region within the alpha helical stack of the crescent domain of NUP155. Bioinformatic analysis of inferred protein-protein interactions of NUP155 revealed over representation of top functions related to molecular transport, RNA trafficking, and RNA post-transcriptional modification. Topology analysis revealed prioritized hubs critical for maintaining network integrity and informational flow that included FN1, SIRT7, and CUL7 with nodal enrichment of RNA helicases in the topmost enriched subnetwork. Furthermore, integration of the top 5 subnetworks to capture network topology of an expanded framework revealed that FN1 maintained its hub status, with elevation of EED, CUL3, and EFTUD2. This is the first study to report novel discovery of a NUP155 subdomain hotspot that enriches for allelic variants of NUP155 predicted to be clinically damaging, and supports a role for RNA metabolism in cardiac disease and development.
Collapse
Affiliation(s)
- Riley J. Leonard
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Biology, College of St. Benedict/St. John's University, Collegeville, MN, United States
| | - Claudia C. Preston
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
| | - Melanie E. Gucwa
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Yohannes Afeworki
- Functional Genomics & Bioinformatics Core Facility, Sanford Research, Sioux Falls, SD, United States
| | - Arielle S. Selya
- Behavioral Sciences Group, Sanford Research, Sioux Falls, SD, United States
| | - Randolph S. Faustino
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, United States
| |
Collapse
|
5
|
Kerr CL, Bol GM, Vesuna F, Raman V. Targeting RNA helicase DDX3 in stem cell maintenance and teratoma formation. Genes Cancer 2019; 10:11-20. [PMID: 30899416 PMCID: PMC6420792 DOI: 10.18632/genesandcancer.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. Besides the role of DDX3 in transformed cells, there is evidence to indicate that DDX3 expression is at its highest levels during early embryonic development and is also expressed in germ cells of adults. Even though there is a distinct pattern of DDX3 expression during embryonic development and in adults, very little is known regarding its role in embryonic stem cells and pluripotency. In this work, we examined the relationship between DDX3 and human embryonic stem cells and its differentiated lineages. DDX3 expression was analyzed by immunohistochemistry in human embryonic stem cells and embryonal carcinoma cells. From the data obtained, it was evident that DDX3 was overexpressed in undifferentiated stem cells compared to differentiated cells. Moreover, when DDX3 expression was abrogated in multiple stem cells, proliferation was decreased, but differentiation was facilitated. Importantly, this resulted in reduced potency to induce teratoma formation. Taken together, these findings indicate a distinct role for DDX3 in stem cell maintenance.
Collapse
Affiliation(s)
- Candace L Kerr
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guus M Bol
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| |
Collapse
|
6
|
Cocco E, Leo M, Canzonetta C, Di Vito S, Mai A, Rotili D, Di Napoli A, Vecchione A, De Nunzio C, Filetici P, Stoppacciaro A. KAT3B-p300 and H3AcK18/H3AcK14 levels are prognostic markers for kidney ccRCC tumor aggressiveness and target of KAT inhibitor CPTH2. Clin Epigenetics 2018; 10:44. [PMID: 29632619 PMCID: PMC5885315 DOI: 10.1186/s13148-018-0473-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background Kidney cancer and clear cell renal carcinoma (ccRCC) are the 16th most common cause of death worldwide. ccRCC is often metastasized at diagnosis, and surgery remains the main treatment; therefore, early diagnosis and new therapeutic strategies are highly desirable. KAT inhibitor CPTH2 lowers histone H3 acetylation and induces apoptosis in colon cancer and cultured cerebellar granule neurons. In this study, we have evaluated the effects of CPTH2 on ccRCC 786-O cell line and analyzed drug targets expressed in ccRCC tumor tissues at different grade. Results CPTH2 decreases cell viability, adhesion, and invasiveness in ccRCC cell line 786-O. It shows preferential inhibition for KAT3B-p300 with hypoacetilating effects on histone H3 at specific H3-K18. Immunohistochemical analysis of 70 ccRCC tumor tissues compared with peritumoral normal epithelium showed a statistical significant reduction of p300/H3AcK18 paralleled by an increase of H3AcK14 in G1 grade and an opposed trend during tumor progression to worst grades. In this study, we demonstrate that these marks are CPTH2 targets and significative prognosticators of low-grade ccRCC tumor. Conclusions ccRCC is substantially insensitive to current therapies, and the efficacy of clinical treatment is dependent on the dissemination stage of the tumor. The present study shows that CPTH2 is able to induce apoptosis and decrease the invasiveness of a ccRCC cell line through the inhibition of KAT3B. In a tumor tissue analysis, we identified new prognosticator marks in grade G1 ccRCC tumors. Low KAT3B/H3AcK18 vs. high H3AcK14 were found in G1 while an opposed trend characterized tumor progression to worst grades. Our collected results suggest that CPTH2 reducing KAT3B and H3AcK18 can be considered a promising candidate for counteracting the progression of ccRCC tumors. Electronic supplementary material The online version of this article (10.1186/s13148-018-0473-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Cocco
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Manuela Leo
- 2Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Claudia Canzonetta
- 3Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Serena Di Vito
- 4Institute of Molecular Biology and Pathology-CNR, La Sapienza University of Rome, P.le, A. Moro 5, Rome, Italy
| | - Antonello Mai
- 5Department of Drug Chemistry and Technology, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, La Sapienza University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Dante Rotili
- 5Department of Drug Chemistry and Technology, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, La Sapienza University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Arianna Di Napoli
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Andrea Vecchione
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Cosimo De Nunzio
- 6Urology Unit, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| | - Patrizia Filetici
- 4Institute of Molecular Biology and Pathology-CNR, La Sapienza University of Rome, P.le, A. Moro 5, Rome, Italy
| | - Antonella Stoppacciaro
- 1Surgical Pathology Units, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, La Sapienza University, Rome, Italy
| |
Collapse
|
7
|
Miousse IR, Murphy LA, Lin H, Schisler MR, Sun J, Chalbot MCG, Sura R, Johnson K, LeBaron MJ, Kavouras IG, Schnackenberg LK, Beger RD, Rasoulpour RJ, Koturbash I. Dose-response analysis of epigenetic, metabolic, and apical endpoints after short-term exposure to experimental hepatotoxicants. Food Chem Toxicol 2017; 109:690-702. [PMID: 28495587 DOI: 10.1016/j.fct.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/16/2022]
Abstract
Identification of sensitive and novel biomarkers or endpoints associated with toxicity and carcinogenesis is of a high priority. There is increasing interest in the incorporation of epigenetic and metabolic biomarkers to complement apical data; however, a number of questions, including the tissue specificity, dose-response patterns, early detection of those endpoints, and the added value need to be addressed. In this study, we investigated the dose-response relationship between apical, epigenetic, and metabolomics endpoints following short-term exposure to experimental hepatotoxicants, clofibrate (CF) and phenobarbital (PB). Male F344 rats were exposed to PB (0, 5, 25, and 100 mg/kg/day) or CF (0, 10, 50, and 250 mg/kg/day) for seven days. Exposure to PB or CF resulted in dose-dependent increases in relative liver weights, hepatocellular hypertrophy and proliferation, and increases in Cyp2b1 and Cyp4a1 transcripts. These changes were associated with altered histone modifications within the regulatory units of cytochrome genes, LINE-1 DNA hypomethylation, and altered microRNA profiles. Metabolomics data indicated alterations in the metabolism of bile acids. This study provides the first comprehensive analysis of the apical, epigenetic and metabolic alterations, and suggests that the latter two occur within or near the dose response curve of apical endpoint alterations following exposure to experimental hepatotoxicants.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Lynea A Murphy
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI, USA.
| | - Haixia Lin
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Melissa R Schisler
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI, USA.
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental Health Sciences, Ryals School of Public Health, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35246, USA.
| | - Radhakrishna Sura
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI, USA.
| | - Kamin Johnson
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI, USA.
| | - Matthew J LeBaron
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI, USA.
| | - Ilias G Kavouras
- Department of Environmental Health Sciences, Ryals School of Public Health, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35246, USA.
| | - Laura K Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Reza J Rasoulpour
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
8
|
Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026534. [PMID: 27881443 DOI: 10.1101/cshperspect.a026534] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
p300 and CREB-binding protein (CBP), two homologous lysine acetyltransferases in metazoans, have a myriad of cellular functions. They exert their influence mainly through their roles as transcriptional regulators but also via nontranscriptional effects inside and outside of the nucleus on processes such as DNA replication and metabolism. The versatility of p300/CBP as molecular tools has led to their exploitation by viral oncogenes for cellular transformation and by cancer cells to achieve and maintain an oncogenic phenotype. How cancer cells use p300/CBP in their favor varies depending on the cellular context and is evident by the growing list of loss- and gain-of-function genetic alterations in p300 and CBP in solid tumors and hematological malignancies. Here, we discuss the biological functions of p300/CBP and how disruption of these functions by mutations and alterations in expression or subcellular localization contributes to the cancer phenotype.
Collapse
Affiliation(s)
- Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
9
|
Rodríguez-Martínez M, Pinzón N, Ghommidh C, Beyne E, Seitz H, Cayrou C, Méchali M. The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans. Nat Struct Mol Biol 2017; 24:290-299. [PMID: 28112731 DOI: 10.1038/nsmb.3363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023]
Abstract
Although some features underlying replication-origin activation in metazoan cells have been determined, little is known about their regulation during metazoan development. Using the nascent-strand purification method, here we identified replication origins throughout Caenorhabditis elegans embryonic development and found that the origin repertoire is thoroughly reorganized after gastrulation onset. During the pluripotent embryonic stages (pregastrula), potential cruciform structures and open chromatin are determining factors that establish replication origins. The observed enrichment of replication origins in transcription factor-binding sites and their presence in promoters of highly transcribed genes, particularly operons, suggest that transcriptional activity contributes to replication initiation before gastrulation. After the gastrula transition, when embryonic differentiation programs are set, new origins are selected at enhancers, close to CpG-island-like sequences, and at noncoding genes. Our findings suggest that origin selection coordinates replication initiation with transcriptional programs during metazoan development.
Collapse
Affiliation(s)
| | | | - Charles Ghommidh
- Agropolymer Engineering and Emerging Technologies, University of Montpellier, Montpellier, France
| | | | - Hervé Seitz
- Institute of Human Genetics, CNRS, Montpellier, France
| | | | | |
Collapse
|
10
|
Stejskal S, Stepka K, Tesarova L, Stejskal K, Matejkova M, Simara P, Zdrahal Z, Koutna I. Cell cycle-dependent changes in H3K56ac in human cells. Cell Cycle 2016; 14:3851-63. [PMID: 26645646 DOI: 10.1080/15384101.2015.1106760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication.
Collapse
Affiliation(s)
- Stanislav Stejskal
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stepka
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Lenka Tesarova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stejskal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Martina Matejkova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Pavel Simara
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Zbynek Zdrahal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Irena Koutna
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| |
Collapse
|
11
|
The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS One 2016; 11:e0155409. [PMID: 27187594 PMCID: PMC4871326 DOI: 10.1371/journal.pone.0155409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022] Open
Abstract
Much of our understanding of the function of histone post-translational modifications in metazoans is inferred from their genomic localization and / or extrapolated from yeast studies. For example, acetylation of histone H3 lysine 56 (H3 K56Ac) is assumed to be important for transcriptional regulation in metazoan cells based on its occurrence at promoters and its function in yeast. Here we directly assess the function of H3 K56Ac during chromatin disassembly from gene regulatory regions during transcriptional induction in human cells by using mutations that either mimic or prevent H3 K56Ac. Although there is rapid histone H3 disassembly during induction of some estrogen receptor responsive genes, depletion of the histone chaperone ASF1A/B, which is required for H3 K56 acetylation, has no effect on chromatin disassembly at these regions. During the course of this work, we found that all the commercially available antibodies to H3 K56Ac are non-specific in human cells and in Drosophila. We used H3-YFP fusions to show that the H3 K56Q mutation can promote chromatin disassembly from regulatory regions of some estrogen responsive genes in the context of transcriptional induction. However, neither the H3 K56R nor K56Q mutation significantly altered chromatin disassembly dynamics by FRAP analysis. These results indicate that unlike the situation in yeast, human cells do not use H3 K56Ac to promote chromatin disassembly from regulatory regions or from the genome in general. Furthermore, our work highlights the need for rigorous characterization of the specificity of antibodies to histone post-translational modifications in vivo.
Collapse
|
12
|
Smith OK, Kim R, Fu H, Martin MM, Lin CM, Utani K, Zhang Y, Marks AB, Lalande M, Chamberlain S, Libbrecht MW, Bouhassira EE, Ryan MC, Noble WS, Aladjem MI. Distinct epigenetic features of differentiation-regulated replication origins. Epigenetics Chromatin 2016; 9:18. [PMID: 27168766 PMCID: PMC4862150 DOI: 10.1186/s13072-016-0067-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Eukaryotic genome duplication starts at discrete sequences (replication origins) that coordinate cell cycle progression, ensure genomic stability and modulate gene expression. Origins share some sequence features, but their activity also responds to changes in transcription and cellular differentiation status. RESULTS To identify chromatin states and histone modifications that locally mark replication origins, we profiled origin distributions in eight human cell lines representing embryonic and differentiated cell types. Consistent with a role of chromatin structure in determining origin activity, we found that cancer and non-cancer cells of similar lineages exhibited highly similar replication origin distributions. Surprisingly, our study revealed that DNase hypersensitivity, which often correlates with early replication at large-scale chromatin domains, did not emerge as a strong local determinant of origin activity. Instead, we found that two distinct sets of chromatin modifications exhibited strong local associations with two discrete groups of replication origins. The first origin group consisted of about 40,000 regions that actively initiated replication in all cell types and preferentially colocalized with unmethylated CpGs and with the euchromatin markers, H3K4me3 and H3K9Ac. The second group included origins that were consistently active in cells of a single type or lineage and preferentially colocalized with the heterochromatin marker, H3K9me3. Shared origins replicated throughout the S-phase of the cell cycle, whereas cell-type-specific origins preferentially replicated during late S-phase. CONCLUSIONS These observations are in line with the hypothesis that differentiation-associated changes in chromatin and gene expression affect the activation of specific replication origins.
Collapse
Affiliation(s)
- Owen K. Smith
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - RyanGuk Kim
- />In Silico Solutions, Falls Church, VA 22033 USA
| | - Haiqing Fu
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Melvenia M. Martin
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Chii Mei Lin
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Koichi Utani
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ya Zhang
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anna B. Marks
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Marc Lalande
- />Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06032 USA
| | - Stormy Chamberlain
- />Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06032 USA
| | - Maxwell W. Libbrecht
- />Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA
| | - Eric E. Bouhassira
- />Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | | | - William S. Noble
- />Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA
- />Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Mirit I. Aladjem
- />DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
13
|
Gallego-Perez D, Otero JJ, Czeisler C, Ma J, Ortiz C, Gygli P, Catacutan FP, Gokozan HN, Cowgill A, Sherwood T, Ghatak S, Malkoc V, Zhao X, Liao WC, Gnyawali S, Wang X, Adler AF, Leong K, Wulff B, Wilgus TA, Askwith C, Khanna S, Rink C, Sen CK, Lee LJ. Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:399-409. [PMID: 26711960 DOI: 10.1016/j.nano.2015.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. FROM THE CLINICAL EDITOR In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs.
Collapse
Affiliation(s)
- Daniel Gallego-Perez
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH; Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Jose J Otero
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH.
| | - Catherine Czeisler
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Junyu Ma
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Cristina Ortiz
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Patrick Gygli
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Fay Patsy Catacutan
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Hamza Numan Gokozan
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Aaron Cowgill
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Thomas Sherwood
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Subhadip Ghatak
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Veysi Malkoc
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Xi Zhao
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Wei-Ching Liao
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Surya Gnyawali
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Xinmei Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Andrew F Adler
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Kam Leong
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Brian Wulff
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Traci A Wilgus
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Candice Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Savita Khanna
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Cameron Rink
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH
| | - Chandan K Sen
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH.
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH; Center for Regenerative Medicine and Cell-Based Therapies (CRMCBT), The Ohio State University, Columbus, OH.
| |
Collapse
|
14
|
Cayrou C, Ballester B, Peiffer I, Fenouil R, Coulombe P, Andrau JC, van Helden J, Méchali M. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res 2015; 25:1873-85. [PMID: 26560631 PMCID: PMC4665008 DOI: 10.1101/gr.192799.115] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
To unveil the still-elusive nature of metazoan replication origins, we identified them genome-wide and at unprecedented high-resolution in mouse ES cells. This allowed initiation sites (IS) and initiation zones (IZ) to be differentiated. We then characterized their genetic signatures and organization and integrated these data with 43 chromatin marks and factors. Our results reveal that replication origins can be grouped into three main classes with distinct organization, chromatin environment, and sequence motifs. Class 1 contains relatively isolated, low-efficiency origins that are poor in epigenetic marks and are enriched in an asymmetric AC repeat at the initiation site. Late origins are mainly found in this class. Class 2 origins are particularly rich in enhancer elements. Class 3 origins are the most efficient and are associated with open chromatin and polycomb protein-enriched regions. The presence of Origin G-rich Repeated elements (OGRE) potentially forming G-quadruplexes (G4) was confirmed at most origins. These coincide with nucleosome-depleted regions located upstream of the initiation sites, which are associated with a labile nucleosome containing H3K64ac. These data demonstrate that specific chromatin landscapes and combinations of specific signatures regulate origin localization. They explain the frequently observed links between DNA replication and transcription. They also emphasize the plasticity of metazoan replication origins and suggest that in multicellular eukaryotes, the combination of distinct genetic features and chromatin configurations act in synergy to define and adapt the origin profile.
Collapse
Affiliation(s)
| | - Benoit Ballester
- INSERM, U1090 TAGC, Marseille F-13288, France; Aix Marseille University, U1090 TAGC, Marseille F-13288, France
| | | | - Romain Fenouil
- Centre d'Immunologie de Marseille-Luminy (CIML), 13009 Marseille, France
| | | | | | - Jacques van Helden
- INSERM, U1090 TAGC, Marseille F-13288, France; Aix Marseille University, U1090 TAGC, Marseille F-13288, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS, 34396 Montpellier, France
| |
Collapse
|
15
|
Ma F, Li B, Liu SY, Iyer SS, Yu Y, Wu A, Cheng G. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. THE JOURNAL OF IMMUNOLOGY 2015; 194:1545-54. [PMID: 25609843 DOI: 10.4049/jimmunol.1402066] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.
Collapse
Affiliation(s)
- Feng Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Bing Li
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Su-yang Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Shankar S Iyer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yongxin Yu
- Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095
| | - Aiping Wu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
16
|
Ma F, Li B, Yu Y, Iyer SS, Sun M, Cheng G. Positive feedback regulation of type I interferon by the interferon-stimulated gene STING. EMBO Rep 2015; 16:202-12. [PMID: 25572843 DOI: 10.15252/embr.201439366] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stimulator of interferon genes (STING) is an important regulator of the innate immune response to cytoplasmic DNA. However, regulation of STING itself is largely unknown. Here, we show that STING transcription is induced by innate immune activators, such as cyclic dinucleotides (CDNs), through an IFNAR1- and STAT1-dependent pathway. We also identify a STAT1 binding site in the STING promoter that contributes to the activation of STING transcription. Furthermore, we show that induction of STING mediates the positive feedback regulation of CDN-triggered IFN-I. Thus, our study demonstrates that STING is an interferon-stimulated gene (ISG) and its induction is crucial for the IFN-I positive feedback loop.
Collapse
Affiliation(s)
- Feng Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Bing Li
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yongxin Yu
- Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Shankar S Iyer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Mingyu Sun
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|