1
|
Ashraf R, Adel M, Serya RAT, Ibrahim E, Haffez H, Soror S, Abouzid KAM. Design and synthesis of novel Hydroxamate and non-Hydroxamate HDAC inhibitors based on Chromone and Quinazolone scaffolds. Bioorg Chem 2025; 161:108514. [PMID: 40319810 DOI: 10.1016/j.bioorg.2025.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The development of selective histone deacetylase (HDAC) inhibitors represents an encouraging approach for cancer therapy. In this study, we report design, synthesis, and biological evaluation of hydroxamate, amidoxime, and carboxylic acid-based derivatives as novel HDAC inhibitors. The synthesized compounds were assessed for their inhibitory activity against multiple HDAC isoforms, particularly HDAC6, 7, and 8. Compounds 13, 16, 20, and 26 exhibited potent and selective inhibition of HDAC6. Compound 26 exhibited the most potent inhibitory activity against HDAC6, with an IC50 value of 70 nM. Additionally, compounds 17 and 23 demonstrated significant broad-spectrum antiproliferative activity across various cancer cell lines compared to other tested derivatives. Furthermore, compounds 17 and 23 showed promising total pan-HDAC inhibitory activity. Subsequent biological studies revealed that compounds 13, 16, 17, 20, 23, and 26 induced a combination of early and late apoptosis along with necrosis. In silico studies, including molecular docking and ADME predictions, were also conducted. Collectively, these findings highlight the potential of these compounds as promising candidates for the development of a novel class of selective HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Rosaline Ashraf
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Sameh Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Li X, Han Z, Ai J. Synergistic targeting strategies for prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01042-6. [PMID: 40394240 DOI: 10.1038/s41585-025-01042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Prostate cancer is the second most commonly diagnosed cancer and the fifth leading cause of death among men worldwide. Androgen deprivation therapy is a common prostate cancer treatment, but its efficacy is often hindered by the development of resistance, which results in reducing survival benefits. Immunotherapy showed great promise in treating solid tumours; however, clinically significant improvements have not been demonstrated for patients with prostate cancer, highlighting specific drawbacks of this therapeutic modality. Hence, exploring novel strategies to synergistically enhance the efficacy of prostate cancer immunotherapy is imperative. Clinical investigations have focused on the combined use of targeted or gene therapy and immunotherapy for prostate cancer. Notably, tumour-specific antigens and inflammatory mediators are released from tumour cells after targeted or gene therapy, and the recruitment and infiltration of immune cells, including CD8+ T cells and natural killer cells activated by immunotherapy, are further augmented, markedly improving the efficacy and prognosis of prostate cancer. Thus, immunotherapy, targeted therapy and gene therapy could have reciprocal synergistic effects in prostate cancer in combination, resulting in a proposed synergistic model encompassing these three therapeutic modalities, presenting novel potential treatment strategies for prostate cancer.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Ibrahim S, Khan MU, Khurram I, Ghani MU, Sharifi-Rad J, Calina D. Anticancer efficacy of Spiruchostatin A: current insights into histone deacetylase inhibition and oncologic applications. Eur J Med Res 2025; 30:169. [PMID: 40082963 PMCID: PMC11907871 DOI: 10.1186/s40001-025-02401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Spiruchostatin A also referred to as YM753 and OBP801, a cyclic peptide-based natural product derived from Pseudomonas sp., is distinguished by its potent inhibition of Class I histone deacetylases (HDACs). The modulation of epigenetic mechanisms by HDAC inhibitors is fundamental for altering gene expression related to cell growth, apoptosis, and differentiation, highlighting their potential in oncologic therapies. This updated review assesses the antitumor efficacy of Spiruchostatin A across diverse cellular and animal models, scrutinizing its viability as a therapeutic agent against various cancers. A systematic literature review was executed by searching databases such as PubMed/MedLine, Scopus, and Web of Science from October 2022 to February 2023. The inclusion criteria focused on studies involving Spiruchostatin A in the context of cancer treatment, including in vitro and in vivo models. The review concentrated on the compound's mechanistic action, biological activity, and clinical applicability. Spiruchostatin A has demonstrated significant antitumor activities, including inducing apoptosis and inhibiting tumor growth effectively in multiple models. Its therapeutic potential is particularly noted in synergistic applications with other anticancer agents, enhancing its efficacy. Mechanistically, the compound facilitates chromatin relaxation and transcriptional activation of key tumor suppressor genes through increased histone acetylation. Spiruchostatin A exhibits substantial potential as an anticancer agent through effective HDAC inhibition and subsequent epigenetic modifications of cancer cell biology. However, comprehensive clinical trials are imperative to validate its efficacy and safety profiles comprehensively. Future research is warranted to elucidate detailed molecular mechanisms and to develop biomarkers for predicting treatment response. Comprehensive longitudinal clinical studies are also critical to establish Spiruchostatin A's role within the broader oncological therapeutic regimen, along with the exploration of its analogs for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
4
|
Weidle UH, Birzele F. Prostate Cancer: De-regulated Circular RNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2025; 22:136-165. [PMID: 39993805 PMCID: PMC11880926 DOI: 10.21873/cgp.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2025] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
Therapy resistance, including castration-resistance and metastasis, remains a major hurdle in the treatment of prostate cancer. In order to identify novel therapeutic targets and treatment modalities for prostate cancer, we conducted a comprehensive literature search on PubMed to identify de-regulated circular RNAs that influence treatment efficacy in preclinical prostate cancer-related in vivo models. Our analysis identified 49 circular RNAs associated with various processes, including treatment resistance, transmembrane and secreted proteins, transcription factors, signaling cascades, human antigen R, nuclear receptor binding, ubiquitination, metabolism, epigenetics and other target categories. The identified targets and circular RNAs can be further scrutinized through target validation approaches. Down-regulated circular RNAs are candidates for reconstitution therapy, while up-regulated RNAs can be inhibited using small interfering RNA (siRNA), antisense oligonucleotides (ASO) or clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR-CAS)-related approaches.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
5
|
Chouhan S, Muhammad N, Usmani D, Khan TH, Kumar A. Molecular Sentinels: Unveiling the Role of Sirtuins in Prostate Cancer Progression. Int J Mol Sci 2024; 26:183. [PMID: 39796040 PMCID: PMC11720558 DOI: 10.3390/ijms26010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context. It reveals their multifaceted impact on hallmark cancer processes, including sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, resisting cell death, inducing angiogenesis, and enabling replicative immortality. SIRT1, for example, fosters chemoresistance and castration-resistant prostate cancer through metabolic reprogramming, immune modulation, androgen receptor signaling, and enhanced DNA repair. SIRT3 and SIRT4 suppress oncogenic pathways by regulating cancer metabolism, while SIRT2 and SIRT6 influence tumor aggressiveness and androgen receptor sensitivity, with SIRT6 promoting metastatic potential. Notably, SIRT5 oscillates between oncogenic and tumor-suppressive roles by regulating key metabolic enzymes; whereas, SIRT7 drives PCa proliferation and metabolic stress adaptation through its chromatin and nucleolar regulatory functions. Furthermore, we provide a comprehensive summary of the roles of individual sirtuins, highlighting their potential as biomarkers in PCa and exploring their therapeutic implications. By examining each of these specific mechanisms through which sirtuins impact PCa, this review underscores the potential of sirtuin modulation to address gaps in managing advanced PCa. Understanding sirtuins' regulatory effects could redefine therapeutic approaches, promoting precision strategies that enhance treatment efficacy and improve outcomes for patients with aggressive disease.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H. Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
6
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
7
|
Ye PC, Leu WJ, Yeh TY, Hsu YT, Lin YC, Wei ZY, Chen YC, Chiang YC, Hsu JL, Chan SH, Hsu LC, Chern JW, Yu CW, Guh JH. A novel HDAC6 inhibitor interferes microtubule dynamics and spindle assembly checkpoint and sensitizes cisplatin-induced apoptosis in castration-resistant prostate cancer. Prostate 2024; 84:605-619. [PMID: 38375594 DOI: 10.1002/pros.24678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (CRPC), the most refractory prostate cancer, inevitably progresses and becomes unresponsive to hormone therapy, revealing a pressing unmet need for this disease. Novel agents targeting HDAC6 and microtubule dynamics can be a potential anti-CRPC strategy. METHODS Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay and anchorage-dependent colony formation assay. Flow cytometric analysis of propidium iodide staining was used to determine cell-cycle progression. Cell-based tubulin polymerization assay and confocal immunofluorescence microscopic examination determine microtubule assembly/disassembly status. Protein expressions were determined using Western blot analysis. RESULTS A total of 82 novel derivatives targeting HDAC6 were designed and synthesized, and Compound 25202 stood out, showing the highest efficacy in blocking HDAC6 (IC50, 3.5 nM in enzyme assay; IC50, 1.0 μM in antiproliferative assay in CRPC cells), superior to tubastatin A (IC50, 5.4 μM in antiproliferative assay). The selectivity and superiority of 25202 were validated by examining the acetylation of both α-tubulin and histone H3, detecting cell apoptosis and HDACs enzyme activity assessment. Notably, 25202 but not tubastatin A significantly decreased HDAC6 protein expression. 25202 prolonged mitotic arrest through the detection of cyclin B1 upregulation, Cdk1 activation, mitotic phosphoprotein levels, and Bcl-2 phosphorylation. Compound 25202 did not mimic docetaxel in inducing tubulin polymerization but disrupted microtubule organization. Compound 25202 also increased the phosphorylation of CDC20, BUB1, and BUBR1, indicating the activation of the spindle assembly checkpoint (SAC). Moreover, 25202 profoundly sensitized cisplatin-induced cell death through impairment of cisplatin-evoked DNA damage response and DNA repair in both ATR-Chk1 and ATM-Chk2 pathways. CONCLUSION The data suggest that 25202 is a novel selective and potent HDAC6 inhibitor. Compound 25202 blocks HDAC6 activity and interferes microtubule dynamics, leading to SAC activation and mitotic arrest prolongation that eventually cause apoptosis of CRPC cells. Furthermore, 25202 sensitizes cisplatin-induced cell apoptosis through impeding DNA damage repair pathways.
Collapse
Affiliation(s)
- Pei-Chen Ye
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Tsung-Yu Yeh
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yu-Tung Hsu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yi-Chin Lin
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Zi-Yuan Wei
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yi-Chin Chen
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Yi-Chang Chiang
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Guishan, Taoyuan, Taiwan
| | - She-Hung Chan
- Department of Cosmetic Science, Providence University, Taiwan Boulevard, Shalu, Taichung, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Zhongzheng, Taipei, Taiwan
| |
Collapse
|
8
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
9
|
Biersack B, Nitzsche B, Höpfner M. Immunomodulatory properties of HDAC6 inhibitors in cancer diseases: New chances for sophisticated drug design and treatment optimization. Semin Cell Dev Biol 2024; 154:286-294. [PMID: 36127263 DOI: 10.1016/j.semcdb.2022.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Histone deacetylases (HDACs) are promising targets for the design of anticancer drugs. HDAC6 is of particular interest since it is a cytoplasmic HDAC regulating the acetylation state of cancer-relevant cytoplasmic proteins such as tubulin, Hsp90, p53, and others. HDAC6 also influences the immune system, and the combination of HDAC6 inhibitors with immune therapy showed promising anticancer results. In addition, the design of new HDAC6 inhibitors led to potent anticancer drugs with immunomodulatory activities. This review describes the current state of play, and the recent developments in the research on the interactions of HDAC6 inhibitors with the immune system, and the development of new HDAC6 inhibitors with immunomodulatory activities to improve the therapy options for cancer patients.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
10
|
Noriega Landa E, Quaye GE, Su X, Badmos S, Holbrook KL, Polascik TJ, Adams ES, Deivasigamani S, Gao Q, Annabi MH, Habib A, Lee WY. Urinary fatty acid biomarkers for prostate cancer detection. PLoS One 2024; 19:e0297615. [PMID: 38335180 PMCID: PMC10857612 DOI: 10.1371/journal.pone.0297615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
The lack of accuracy in the current prostate specific antigen (PSA) test for prostate cancer (PCa) screening causes around 60-75% of unnecessary prostate biopsies. Therefore, alternative diagnostic methods that have better accuracy and can prevent over-diagnosis of PCa are needed. Researchers have examined various potential biomarkers for PCa, and of those fatty acids (FAs) markers have received special attention due to their role in cancer metabolomics. It has been noted that PCa metabolism prefers FAs over glucose substrates for continued rapid proliferation. Hence, we proposed using a urinary FAs based model as a non-invasive alternative for PCa detection. Urine samples collected from 334 biopsy-designated PCa positive and 232 biopsy-designated PCa negative subjects were analyzed for FAs and lipid related compounds by stir bar sorptive extraction coupled with gas chromatography/mass spectrometry (SBSE-GC/MS). The dataset was split into the training (70%) and testing (30%) sets to develop and validate logit models and repeated for 100 runs of random data partitioning. Over the 100 runs, we confirmed the stability of the models and obtained optimal tuning parameters for developing the final FA based model. A PSA model using the values of the patients' PSA test results was constructed with the same cohort for the purpose of comparing the performances of the FA model against PSA test. The FA final model selected 20 FAs and rendered an AUC of 0.71 (95% CI = 0.67-0.75, sensitivity = 0.48, and specificity = 0.83). In comparison, the PSA model performed with an AUC of 0.51 (95% CI = 0.46-0.66, sensitivity = 0.44, and specificity = 0.71). The study supports the potential use of urinary FAs as a stable and non-invasive alternative test for PCa diagnosis.
Collapse
Affiliation(s)
- Elizabeth Noriega Landa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - George E. Quaye
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Xiaogang Su
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sabur Badmos
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Kiana L. Holbrook
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Thomas J. Polascik
- Department of Urological Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eric S. Adams
- Department of Urological Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sriram Deivasigamani
- Department of Urological Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Qin Gao
- Biologics Analytical Operations, Gilead Sciences Incorporated, Oceanside, California, United States of America
| | | | - Ahsan Habib
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
11
|
Zaalberg A, Pottendorfer E, Zwart W, Bergman AM. It Takes Two to Tango: The Interplay between Prostate Cancer and Its Microenvironment from an Epigenetic Perspective. Cancers (Basel) 2024; 16:294. [PMID: 38254784 PMCID: PMC10813511 DOI: 10.3390/cancers16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide and is associated with high morbidity and mortality. Consequently, there is an urgent unmet need for novel treatment avenues. In addition to somatic genetic alterations, deviations in the epigenetic landscape of cancer cells and their tumor microenvironment (TME) are critical drivers of prostate cancer initiation and progression. Unlike genomic mutations, epigenetic modifications are potentially reversible. Therefore, the inhibition of aberrant epigenetic modifications represents an attractive and exciting novel treatment strategy for castration-resistant prostate cancer patients. Moreover, drugs targeting the epigenome also exhibit synergistic interactions with conventional therapeutics by directly enhancing their anti-tumorigenic properties by "priming" the tumor and tumor microenvironment to increase drug sensitivity. This review summarizes the major epigenetic alterations in prostate cancer and its TME, and their involvement in prostate tumorigenesis, and discusses the impact of epigenome-targeted therapies.
Collapse
Affiliation(s)
- Anniek Zaalberg
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Elisabeth Pottendorfer
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Oncode Institute
| | - Andries M. Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (A.Z.); (E.P.)
- Division of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
12
|
Folliero V, Dell’Annunziata F, Chianese A, Morone MV, Mensitieri F, Di Spirito F, Mollo A, Amato M, Galdiero M, Dal Piaz F, Pagliano P, Rinaldi L, Franci G. Epigenetic and Genetic Keys to Fight HPV-Related Cancers. Cancers (Basel) 2023; 15:5583. [PMID: 38067286 PMCID: PMC10705756 DOI: 10.3390/cancers15235583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Antonio Mollo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| |
Collapse
|
13
|
Naderinezhad S, Zhang G, Wang Z, Zheng D, Hulsurkar M, Bakhoum M, Su N, Yang H, Shen T, Li W. A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression. Cancer Lett 2023; 571:216333. [PMID: 37543278 PMCID: PMC11235056 DOI: 10.1016/j.canlet.2023.216333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The mechanisms underlying the progression of prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC), an aggressive PCa variant, are largely unclear. Two prominent NEPC phenotypes are elevated NE marker expression and heightened angiogenesis. Identifying the still elusive direct molecular links connecting angiogenesis and neuroendocrine differentiation (NED) is crucial for our understanding and targeting of NEPC. Here we found that histone deacetylase 2 (HDAC2), whose role in NEPC has not been reported, is one of the most upregulated epigenetic regulators in NEPC. HDAC2 promotes both NED and angiogenesis. G protein-coupled receptor kinase 3 (GRK3), also upregulated in NEPC, is a critical promoter for both phenotypes too. Of note, GRK3 phosphorylates HDAC2 at S394, which enhances HDAC2's epigenetic repression of potent anti-angiogenic factor Thrombospondin 1 (TSP1) and master NE-repressor RE1 Silencing Transcription Factor (REST). Intriguingly, REST suppresses angiogenesis while TSP1 suppresses NE marker expression in PCa cells, indicative of their novel functions and their synergy in cross-repressing the two phenotypes. Furthermore, the GRK3-HDAC2 pathway is activated by androgen deprivation therapy and hypoxia, both known to promote NED and angiogenesis in PCa. These results indicate that NED and angiogenesis converge on GRK3-enhanced HDAC2 suppression of REST and TSP1, which constitutes a key missing link between two prominent phenotypes of NEPC.
Collapse
Affiliation(s)
- Samira Naderinezhad
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Guoliang Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dayong Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mohit Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Michael Bakhoum
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ning Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han Yang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
14
|
Maslov DV, Sember Q, Cham J, Bhangoo M. A review of treatments targeting DNA-repair gene defects in metastatic castration resistant prostate cancer. Front Oncol 2023; 13:1150777. [PMID: 36998466 PMCID: PMC10046303 DOI: 10.3389/fonc.2023.1150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Prostate cancer is the most common cancer in men. About 6% of those diagnosed will develop metastatic disease. Unfortunately, metastatic prostate cancer is fatal. Prostate cancer can be castration sensitive or castration resistant. Many treatments have been shown to improve progression free survival and overall survival in metastatic castration resistant prostate cancer (mCRPC). In recent years, studies have been exploring targeting mutations in the DNA Damage Repair (DDR) response that may amplify oncogenes. In this paper, we aim to discuss DDR, new approved targeted therapies, and the most recent clinical trials in the setting of metastatic CRPC.
Collapse
Affiliation(s)
- Diana V. Maslov
- Department of Hematology/Oncology, Scripps Health System, San Diego, CA, United States
| | - Quinne Sember
- Department of Hematology/Oncology, Scripps Health System, San Diego, CA, United States
| | - Jason Cham
- Scripps Clinic/Green Hospital, Department of Internal Medicine, San Diego, CA, United States
| | - Munveer Bhangoo
- Department of Hematology/Oncology, Scripps Health System, San Diego, CA, United States
| |
Collapse
|
15
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
16
|
Bernal L, Pinzi L, Rastelli G. Identification of Promising Drug Candidates against Prostate Cancer through Computationally-Driven Drug Repurposing. Int J Mol Sci 2023; 24:ijms24043135. [PMID: 36834548 PMCID: PMC9964599 DOI: 10.3390/ijms24043135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PC) is one of the most common types of cancer in males. Although early stages of PC are generally associated with favorable outcomes, advanced phases of the disease present a significantly poorer prognosis. Moreover, currently available therapeutic options for the treatment of PC are still limited, being mainly focused on androgen deprivation therapies and being characterized by low efficacy in patients. As a consequence, there is a pressing need to identify alternative and more effective therapeutics. In this study, we performed large-scale 2D and 3D similarity analyses between compounds reported in the DrugBank database and ChEMBL molecules with reported anti-proliferative activity on various PC cell lines. The analyses included also the identification of biological targets of ligands with potent activity on PC cells, as well as investigations on the activity annotations and clinical data associated with the more relevant compounds emerging from the ligand-based similarity results. The results led to the prioritization of a set of drugs and/or clinically tested candidates potentially useful in drug repurposing against PC.
Collapse
Affiliation(s)
- Leonardo Bernal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-2058564
| |
Collapse
|
17
|
Rana Z, Rosengren RJ, Smith PF. Exploring the Mechanism and Suggesting Combination Therapies for HDAC Inhibitors in Androgen Receptor-Null Prostate Cancer Using Multivariate Statistical Analysis and Data Mining Techniques. Bioinform Biol Insights 2022; 16:11779322221145428. [PMID: 36570326 PMCID: PMC9772946 DOI: 10.1177/11779322221145428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Previously, we showed that novel histone deacetylase (HDAC) inhibitors, N1-hydroxy-N 8-(4-(pyridine-2-carbothioamido)phenyl)octanediamide (Jazz90) and [chlorido(η5-pentamethylcyclopentadienyl)(N1-hydroxy-N8-(4-(pyridine-2-carbothioamido-κ2 N, S)phenyl)octanediamide)rhodium(III)] chloride (Jazz167), have cytostatic and anti-angiogenic effects in androgen receptor-negative prostate cancer cells and are also non-toxic in BALB/c mice. However, only univariate statistical analysis was carried out to determine the role of individual proteins. In this study, multivariate statistical analyses (MVAs) and data mining procedures were carried out with the objective of determining the molecular networks that explain the growth inhibitory potential of Jazz90 and Jazz167 in PC3 cells and to determine potential inhibitors that can be used in combination with these HDAC inhibitors. Lasso regression revealed that angiogenic factors, vascular endothelial growth factor-A (VEGF-A), and vascular endothelial growth factor receptor-2 (VEGFR-2), alongside HDAC inhibition, predicted the reduction in cell number with an adjusted R 2 value of 0.99 following Jazz90 treatment, whereas VEGFR-2, acetylation of histone-3, and HDAC inhibition predicted cell number with an adjusted R 2 value of 0.84 following Jazz167 treatment. These results were further followed up with ridge regression, hierarchical cluster analysis, random forest classification (RFC), and support vector machines. RFC and support vector machines also predicted the treatment groups with a 100% accuracy. MVAs also revealed that Jazz90 should be examined in combination with epithelial to mesenchymal transitioning inhibitors, such as simvastatin and olaparib, whereas Jazz167 should be examined with venetoclax or navitoclax. Future studies should also address the roles of VEGF-A and VEGFR-2 in cellular proliferation, whereas p27 function should be examined for its role in PC3 cell migration.
Collapse
Affiliation(s)
| | | | - Paul F Smith
- Paul F Smith, Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
18
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
19
|
Abstract
Genomic DNA is organized three-dimensionally in the nucleus as chromatin. Recent accumulating evidence has demonstrated that chromatin organizes into numerous dynamic domains in higher eukaryotic cells, which act as functional units of the genome. These compacted domains facilitate DNA replication and gene regulation. Undamaged chromatin is critical for healthy cells to function and divide. However, the cellular genome is constantly threatened by many sources of DNA damage (e.g., radiation). How do cells maintain their genome integrity when subjected to DNA damage? This chapter describes how the compact state of chromatin safeguards the genome from radiation damage and chemical attacks. Together with recent genomics data, our finding suggests that DNA compaction, such as chromatin domain formation, plays a critical role in maintaining genome integrity. But does the formation of such domains limit DNA accessibility inside the domain and hinder the recruitment of repair machinery to the damaged site(s) during DNA repair? To approach this issue, we first describe a sensitive imaging method to detect changes in chromatin states in living cells (single-nucleosome imaging/tracking). We then use this method to explain how cells can overcome potential recruiting difficulties; cells can decompact chromatin domains following DNA damage and temporarily increase chromatin motion (∼DNA accessibility) to perform efficient DNA repair. We also speculate on how chromatin compaction affects DNA damage-resistance in the clinical setting.
Collapse
Affiliation(s)
- Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan.
| |
Collapse
|
20
|
Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K. Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. Int J Mol Sci 2022; 23:ijms23179521. [PMID: 36076918 PMCID: PMC9455804 DOI: 10.3390/ijms23179521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.
Collapse
Affiliation(s)
- Pourya Sarvari
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Correspondence:
| |
Collapse
|
21
|
Ishwar D, Haldavnekar R, Das S, Tan B, Venkatakrishnan K. Glioblastoma Associated Natural Killer Cell EVs Generating Tumour-Specific Signatures: Noninvasive GBM Liquid Biopsy with Self-Functionalized Quantum Probes. ACS NANO 2022; 16:10859-10877. [PMID: 35816089 DOI: 10.1021/acsnano.2c03055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diagnosis of glioblastoma (GBM) poses a recurring struggle due to many factors, including the presence of the blood-brain barrier (BBB) in addition to the significant tumor heterogeneity. Natural killer (NK) cells of the innate immune system are the primary immune surveillance mechanism for GBM and identify GBM tumors without any previous sensitization. The metabolic reprogramming of NK cells during GBM association is expected to be reflected in its extracellular vesicles. Therefore, tracking the activity of NK cell vesicles in circulation (circulating immune vesicles, CIVs) has great potential for accurate GBM diagnosis. However, identification GBM associated CIVs in circulation is immensely challenging as there is no availability of clinically validated GBM-specific circulating biomarkers. Here, we present GBM associated CIV profiling for noninvasive GBM diagnosis. We investigated the feasibility of using the signals derived from GBM associated CIVs as a de novo methodology for GBM diagnosis. An ultrasensitive sensor and a marker-free approach were essential for the detection of rare signals of GBM associated CIVs. For this purpose, we designed GBM ImmunoProfiler platform using scalable ultrafast laser multiphoton ionization mechanism and adopted surface enhanced Raman spectroscopy (SERS) ensuring simultaneous detection of multiple CIV signals to identify GBM. We experimentally demonstrated that GBM associated CIVs carry unique, tumor-specific signals. The features of GBM associated CIVs were explored through machine learning identifying its similarity with GBM patient blood (without cell isolation) using a very small amount of peripheral blood (5 μL) with 96.82% sensitivity and 100% specificity. In addition, we demonstrated that a tumor associated CIV profile can classify between multiple brain cancer types (astrocytoma, oligodendroglioma, and glioblastoma). We also experimentally demonstrated significant variation in the immune checkpoint protein expression (PDL-1 and CTLA-4) between GBM associated CIVs and uninteracted CIVs. Preclinical analysis with serum specimens of GBM patients showed the possibility of using our technology for minimally invasive GBM diagnosis. With clinical validation, our technology has potential to improve GBM diagnostics with a useful, minimally invasive GBM liquid biopsy.
Collapse
Affiliation(s)
- Deeptha Ishwar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, 30 Bond Street, Toronto, M5B1W8, Canada
| | - Bo Tan
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
22
|
New approaches to targeting epigenetic regulation in prostate cancer. Curr Opin Urol 2022; 32:472-480. [DOI: 10.1097/mou.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1262-1273. [PMID: 35066777 DOI: 10.1007/s12094-022-02779-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022]
Abstract
Solid tumors including skin, lung, breast, colon, and prostate cancers comprise the most diagnosed cancers worldwide. Treatment of such cancers is still challenging specially in the advanced/metastatic setting. The growing understanding of the tumor microenvironment has revolutionized the cancer therapy paradigms. Targeting programmed death-1 (PD-1)/PD-L1 immune checkpoint has been extensively studied over this decade as a new trend in the management of hard-to-treat cancers by harnessing the power of the immune system to eradicate the tumors. Yet, low response rate and resistance were observed when immunotherapies were tested as monotherapy. This urged the need to develop combinatorial regimens of immunotherapy with other immune modulatory agents to enhance its therapeutic potential and help in reverting the resistance. Epigenetic modifiers such as histone deacetylase inhibitors (HDACIs) showed favorable effects on modulating the tumor microenvironment along with the host immune cells. This qualified HDACIs as an attractive candidate class to be tested in combination with immunotherapy. In this review we cover the ongoing clinical trials that investigate the safety and/or the efficacy of HDACI/immunotherapy combinations in solid tumors including skin cancer, prostate cancer, breast cancer, colorectal cancer, lung cancer and recapitulates areas for future research.
Collapse
|
24
|
Lu X, Fong KW, Gritsina G, Wang F, Baca SC, Brea LT, Berchuck JE, Spisak S, Ross J, Morrissey C, Corey E, Chandel NS, Catalona WJ, Yang X, Freedman ML, Zhao JC, Yu J. HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet 2022; 54:670-683. [PMID: 35468964 PMCID: PMC9117466 DOI: 10.1038/s41588-022-01045-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
Abstract
HOXB13, a homeodomain transcription factor, critically regulates androgen receptor (AR) activities and androgen-dependent prostate cancer (PCa) growth. However, its functions in AR-independent contexts remain elusive. Here we report HOXB13 interaction with histone deacetylase HDAC3, which is disrupted by the HOXB13 G84E mutation that has been associated with early-onset PCa. Independently of AR, HOXB13 recruits HDAC3 to lipogenic enhancers to catalyze histone deacetylation and suppress lipogenic regulators such as fatty acid synthase. Analysis of human tissues reveals that the HOXB13 gene is hypermethylated and downregulated in approximately 30% of metastatic castration-resistant PCa. HOXB13 loss or G84E mutation leads to lipid accumulation in PCa cells, thereby promoting cell motility and xenograft tumor metastasis, which is mitigated by pharmaceutical inhibition of fatty acid synthase. In summary, we present evidence that HOXB13 recruits HDAC3 to suppress de novo lipogenesis and inhibit tumor metastasis and that lipogenic pathway inhibitors may be useful to treat HOXB13-low PCa.
Collapse
Affiliation(s)
- Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fang Wang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sylvan C. Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lourdes T. Brea
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacob E. Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jenny Ross
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, USA
| | - Navdeep S. Chandel
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL, USA,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - William J. Catalona
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Department of Urology, Northwestern University, Chicago, IL, USA
| | - Ximing Yang
- Department of Pathology, Northwestern University, Chicago, IL, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan C. Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Co-Corresponding Authors: Jindan Yu, M.D., Ph.D. , Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine; Jonathan C. Zhao,
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA,Co-Corresponding Authors: Jindan Yu, M.D., Ph.D. , Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine; Jonathan C. Zhao,
| |
Collapse
|
25
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
26
|
Deng T, Xiao Y, Dai Y, Xie L, Li X. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Front Mol Biosci 2021; 8:743376. [PMID: 34977151 PMCID: PMC8714908 DOI: 10.3389/fmolb.2021.743376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.
Collapse
Affiliation(s)
- Tanggang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Dai
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
27
|
Rocha SM, Sousa I, Gomes IM, Arinto P, Costa-Pinheiro P, Coutinho E, Santos CR, Jerónimo C, Lemos MC, Passarinha LA, Socorro S, Maia CJ. Promoter Demethylation Upregulates STEAP1 Gene Expression in Human Prostate Cancer: In Vitro and In Silico Analysis. Life (Basel) 2021; 11:1251. [PMID: 34833128 PMCID: PMC8618799 DOI: 10.3390/life11111251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
The Six Transmembrane Epithelial Antigen of the Prostate (STEAP1) is an oncogene overexpressed in several human tumors, particularly in prostate cancer (PCa). However, the mechanisms involved in its overexpression remain unknown. It is well known that epigenetic modifications may result in abnormal gene expression patterns, contributing to tumor initiation and progression. Therefore, this study aimed to analyze the methylation pattern of the STEAP1 gene in PCa versus non-neoplastic cells. Bisulfite amplicon sequencing of the CpG island at the STEAP1 gene promoter showed a higher methylation level in non-neoplastic PNT1A prostate cells than in human PCa samples. Bioinformatic analysis of the GEO datasets also showed the STEAP1 gene promoter as being demethylated in human PCa, and a negative association with STEAP1 mRNA expression was observed. These results are supported by the treatment of non-neoplastic PNT1A cells with DNMT and HDAC inhibitors, which induced a significant increase in STEAP1 mRNA expression. In addition, the involvement of HDAC in the regulation of STEAP1 mRNA expression was corroborated by a negative association between STEAP1 mRNA expression and HDAC4,5,7 and 9 in human PCa. In conclusion, our work indicates that STEAP1 overexpression in PCa can be driven by the hypomethylation of STEAP1 gene promoter.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Inês Sousa
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Inês M. Gomes
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Patrícia Arinto
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Pedro Costa-Pinheiro
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (P.C.-P.); (C.J.)
| | - Eduarda Coutinho
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Cecília R. Santos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (P.C.-P.); (C.J.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, Universidade do Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Manuel C. Lemos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- C4-UBI, Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Luís A. Passarinha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; (S.M.R.); (I.S.); (I.M.G.); (P.A.); (E.C.); (C.R.S.); (M.C.L.); (L.A.P.); (S.S.)
- C4-UBI, Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| |
Collapse
|
28
|
Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol 2021; 10:3104-3116. [PMID: 34430414 PMCID: PMC8350251 DOI: 10.21037/tau-20-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic alterations, including changes in DNA methylation, histone modifications and nucleosome remodeling, result in abnormal gene expression patterns that contribute to prostate tumor initiation and continue to evolve during the course of disease progression. Epigenetic modifications are responsible for silencing tumor-suppressor genes, activating oncogenic drivers, and driving therapy resistance and thus have emerged as promising targets for antineoplastic therapy in prostate cancer. In this review, we discuss the role of epigenetics in prostate cancer with a particular emphasis on clinical implications. We review how epigenetic regulators crosstalk with critical biological pathways, including androgen receptor signaling, and how these interactions dynamically control prostate cancer transcriptional profiles. Because of their potentially reversible nature, restoration of a "normal" epigenome could provide a basis for innovative therapeutic strategies in prostate cancer. We highlight how particular epigenetic alterations are emerging as potential diagnostic and prognostic biomarkers and/or targets for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Judy Hess
- Weill Cornell Medicine, New York, NY, USA
| | - Yasutaka Yamada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
30
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
31
|
Mohajan S, Jaiswal PK, Vatanmakarian M, Yousefi H, Sankaralingam S, Alahari SK, Koul S, Koul HK. Hippo pathway: Regulation, deregulation and potential therapeutic targets in cancer. Cancer Lett 2021; 507:112-123. [PMID: 33737002 PMCID: PMC10370464 DOI: 10.1016/j.canlet.2021.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Hippo pathway is a master regulator of development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size control. Hippo pathway relays signals from different extracellular and intracellular events to regulate cell behavior and functions. Hippo pathway is conserved from Protista to eukaryotes. Deregulation of the Hippo pathway is associated with numerous cancers. Alteration of the Hippo pathway results in cell invasion, migration, disease progression, and therapy resistance in cancers. However, the function of the various components of the mammalian Hippo pathway is yet to be elucidated in detail especially concerning tumor biology. In the present review, we focused on the Hippo pathway in different model organisms, its regulation and deregulation, and possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Suman Mohajan
- Department of Biochemistry and Molecular Biology, LSUHSC, Shreveport, USA
| | - Praveen Kumar Jaiswal
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Mousa Vatanmakarian
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA
| | | | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Sweaty Koul
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSUHSC, School of Medicine, New Orleans, USA; Urology, LSUHSC, School of Medicine, New Orleans, USA; Stanley S. Scott Cancer Center, LSUHSC, New Orleans, USA.
| |
Collapse
|
32
|
Liu YR, Wang JQ, Huang ZG, Chen RN, Cao X, Zhu DC, Yu HX, Wang XR, Zhou HY, Xia Q, Li J. Histone deacetylase‑2: A potential regulator and therapeutic target in liver disease (Review). Int J Mol Med 2021; 48:131. [PMID: 34013366 PMCID: PMC8136123 DOI: 10.3892/ijmm.2021.4964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases are responsible for histone acetylation, while histone deacetylases (HDACs) counteract histone acetylation. An unbalanced dynamic between histone acetylation and deacetylation may lead to aberrant chromatin landscape and chromosomal function. HDAC2, a member of class I HDAC family, serves a crucial role in the modulation of cell signaling, immune response and gene expression. HDAC2 has emerged as a promising therapeutic target for liver disease by regulating gene transcription, chromatin remodeling, signal transduction and nuclear reprogramming, thus receiving attention from researchers and clinicians. The present review introduces biological information of HDAC2 and its physiological and biochemical functions. Secondly, the functional roles of HDAC2 in liver disease are discussed in terms of hepatocyte apoptosis and proliferation, liver regeneration, hepatocellular carcinoma, liver fibrosis and non-alcoholic steatohepatitis. Moreover, abnormal expression of HDAC2 may be involved in the pathogenesis of liver disease, and its expression levels and pharmacological activity may represent potential biomarkers of liver disease. Finally, research on selective HDAC2 inhibitors and non-coding RNAs relevant to HDAC2 expression in liver disease is also reviewed. The aim of the present review was to improve understanding of the multifunctional role and potential regulatory mechanism of HDAC2 in liver disease.
Collapse
Affiliation(s)
- Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Zhao-Gang Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ruo-Nan Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dong-Chun Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Xia Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiu-Rong Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hai-Yun Zhou
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jun Li
- The Key Laboratory of Anti‑inflammatory Immune Medicines, School of Pharmacy, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
33
|
Fernández-Ponce C, Navarro Quiroz R, Díaz Perez A, Aroca Martinez G, Cadena Bonfanti A, Acosta Hoyos A, Gómez Escorcia L, Hernández Agudelo S, Orozco Sánchez C, Villarreal Camacho J, Atencio Ibarra L, Consuegra Machado J, Espinoza Garavito A, García-Cózar F, Navarro Quiroz E. MicroRNAs overexpressed in Crohn's disease and their interactions with mechanisms of epigenetic regulation explain novel aspects of Crohn's disease pathogenesis. Clin Epigenetics 2021; 13:39. [PMID: 33602320 PMCID: PMC7890887 DOI: 10.1186/s13148-021-01022-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background In this review, we were interested to identify the wide universe of enzymes associated with epigenetic modifications, whose gene expression is regulated by miRNAs with a high relative abundance in Crohn's disease (CD) affected tissues, with the aim to determine their impact in the pathogenesis and evolution of the disease. Methods We used HMDD and Bibliometrix R-package in order to identify the miRNAs overexpressed in CD. The identified enzymes associated with epigenetic mechanisms and post-translational modifications, regulated by miRNAs upregulated in CD, were analyzed using String v11 database. Results We found 190 miRNAs with great abundance in patients with CD, of which 26 miRNAs regulate the gene expression of enzymes known to catalyze epigenetic modifications involved in essentials pathophysiological processes, such as chromatin architecture reorganization, immune response regulation including CD4+ T cells polarization, integrity of gut mucosa, gut microbiota composition and tumorigenesis. Conclusion The integrated analysis of miRNAs with a high relative abundance in patients with CD showed a combined and superimposed gene expression regulation of enzymes associated with relevant epigenetic mechanisms and that could explain, in part, the pathogenesis of CD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01022-8.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Cadiz, Spain
| | - Roberto Navarro Quiroz
- CMCC-Centro de Matemática, Computação E Cognição, Laboratório do Biología Computacional e Bioinformática-LBCB, Universidade Federal Do ABC, Sao Paulo, 01023, Brazil
| | - Anderson Díaz Perez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Universidad Rafael Nuñez, 130001, Cartagena, Colombia
| | - Gustavo Aroca Martinez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Andrés Cadena Bonfanti
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Antonio Acosta Hoyos
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | - Lorena Gómez Escorcia
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Universidad Rafael Nuñez, 130001, Cartagena, Colombia
| | - Sandra Hernández Agudelo
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Christian Orozco Sánchez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | | | | | | | - Alberto Espinoza Garavito
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Cadiz, Spain
| | - Elkin Navarro Quiroz
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia. .,Centro de Investigación E Innovación en Biomoléculas, C4U S.A.S, 080001, Barranquilla, Colombia.
| |
Collapse
|
34
|
Corno C, Arrighetti N, Ciusani E, Corna E, Carenini N, Zaffaroni N, Gatti L, Perego P. Synergistic Interaction of Histone Deacetylase 6- and MEK-Inhibitors in Castration-Resistant Prostate Cancer Cells. Front Cell Dev Biol 2020; 8:610. [PMID: 32754596 PMCID: PMC7365948 DOI: 10.3389/fcell.2020.00610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022] Open
Abstract
In spite of new knowledge on prostate cancer molecular landscape, this has been only partially translated to the therapeutic setting. The activation of Ras/Mitogen-activated protein kinase (MAPK) signaling plays an important role in progression of prostate cancer in which deregulation of histone deacetylases (HDAC) is frequent. Based on the notion that HDAC inhibitors may reactivate the expression of genes favoring cell response to drugs, the aim of this study was to investigate the interaction between the HDAC6-specific inhibitor ricolinostat (ACY1215) and the MEK-inhibitor selumetinib (AZD6244) to identify effective combinations in prostate cancer models. Using cell lines exhibiting differential activation of survival pathways (PC3, DU145, 22Rv1) and following different treatment schedules, a synergistic interaction was observed in all cell models, the drug combination being particularly effective in 22Rv1 cells. Marginal levels of apoptosis were observed in PC3 cells after combined treatment, whereas higher levels were achieved in DU145 and 22Rv1 cells. RNAi-mediated knockdown of HDAC6 in selumetinib-treated 22Rv1 cells resulted in increased apoptosis. Combined treatment suppressed the constitutively deregulated survival pathways in all cell lines. A decrease of androgen receptor (AR)-dependent gene (KLK2, DUSP1) mRNA levels was observed in 22Rv1 treated cells, associated with increased AR cytoplasmatic expression, suggesting AR signaling down-regulation, not involving Hsp90 acetylation. When a taxane was used in combination with AZD6244 and ACY1215 by a simultaneous schedule, a synergistic cytotoxic effect together with increased apoptosis was evidenced in all cell models. These results support a rational use of targeted agents to improve prostate cancer cell apoptotic response.
Collapse
Affiliation(s)
- Cristina Corno
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emilio Ciusani
- Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisabetta Corna
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Gatti
- Cellular Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
35
|
Shankar E, Pandey M, Verma S, Abbas A, Candamo M, Kanwal R, Shukla S, MacLennan GT, Gupta S. Role of class I histone deacetylases in the regulation of maspin expression in prostate cancer. Mol Carcinog 2020; 59:955-966. [PMID: 32391971 DOI: 10.1002/mc.23214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Maspin repression is frequently observed in prostate cancer; however, the molecular mechanism(s) causing the loss is not completely understood. Here, we demonstrate that inhibition of class I histone deacetylases (HDACs) mediates re-expression of maspin which plays an essential role in suppressing proliferation and migration capability in prostate cancer cells. Human prostate cancer LNCaP and DU145 cells treated with HDAC inhibitors, sodium butyrate, and trichostatin A, resulted in maspin re-expression. Interestingly, an exploration into the molecular mechanisms demonstrates that maspin repression in prostate tumor and human prostate cancer cell lines occurs via epigenetic silencing through an increase in HDAC activity/expression, independent of promoter DNA hypermethylation. Furthermore, transcriptional activation of maspin was accompanied with the suppression of HDAC1 and HDAC8 with significant p53 enrichment at the maspin promoter associated with an increase in histone H3/H4 acetylation. Our results provide evidence of maspin induction as a critical epigenetic event altered by class I HDACs in the restoration of balance to delay proliferation and migration ability of prostate cancer cells.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mitali Pandey
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ata Abbas
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mario Candamo
- College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Rajnee Kanwal
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Department of Nutrition, Case Western Reserve University, Cleveland, Ohio.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
36
|
Mohammadi M, Irani S, Salahshourifar I, Hosseini J, Moradi A, Pouresmaeili F. Investigation of GSTP1 and epigenetic regulators expression pattern in a population of Iranian patients with prostate cancer. Hum Antibodies 2020; 28:327-334. [PMID: 32831196 DOI: 10.3233/hab-200424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIM Prostate cancer is the leading cause of death in many countries. It is important to diagnose the disease in the early stages. Current methods detect the disease with low specificity. Examining the expression of genes responsible for disease and their epigenetic regulators are good tools in this regard. MATERIAL AND METHODS In this prospective case-control study, 40 Iranian patients with cancer, 40 Iranian patients with prostate hyperplasia, and 40 control samples were examined. After blood sampling from each individual, RNA extraction and cDNA synthesis, GSTP1, HDAC, DNMT3A, and DNMT3B expressions were measured in three understudy groups using specific primers and Real-Time PCR method. RESULTS A reverse correlation was identified between loss of GSTP1 expression and overexpression of HDAC, DNMT3A, and DNMT3B (P value < 0.0001) with a beneficial pattern of cancer development with high efficiency. The significant decrease of GSTP1 expression in patients in comparison to the healthy controls and the elevated expression levels of the studied epigenetic regulators in PCA and BPH samples indicate the impact of the regulators on GSTP1 expression activity. CONCLUSION This study showed that the measurement of combined GSTP1 and its epigenetic regulators' expression could be used as suitable genetic markers for the detection and separation of healthy individuals from prostatic patient groups in the Iranian population. However, a similar study in a larger population of case and control could help us to distinguish between normal, benign, and malignant conditions.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Salahshourifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moradi
- Department of Pathology, Shohadaye Tajrish Hospital, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Sanaei M, Kavoosi F. Histone Deacetylases and Histone Deacetylase Inhibitors: Molecular Mechanisms of Action in Various Cancers. Adv Biomed Res 2019; 8:63. [PMID: 31737580 PMCID: PMC6839273 DOI: 10.4103/abr.abr_142_19] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epigenetic modifications such as histone modification play an important role in tumorigenesis. There are several evidence that histone deacetylases (HDACs) play a key role in cancer induction and progression by histone deacetylation. Besides, histone acetylation is being accessed as a therapeutic target because of its role in regulating gene expression. HDAC inhibitors (HDACIs) are a family of synthetic and natural compounds that differ in their target specificities and activities. They affect markedly cancer cells, inducing cell differentiation, cell cycle arrest and cell death, reduction of angiogenesis, and modulation of the immune system. Here, we summarize the mechanisms of HDACs and the HDACIs in several cancers. An online search of different sources such as PubMed, ISI, and Scopus was performed to find available data on mechanisms and pathways of HDACs and HDACIs in different cancers. The result indicated that HDACs induce cancer through multiple mechanisms in various tissues. This effect can be inhibited by HDACIs which affect cancer cell by different pathways such as cell differentiation, cell cycle arrest, and cell death. In conclusion, these findings indicate that the HDACs play a major role in carcinogenesis through various pathways, and HDACIs can inhibit HDAC activity by multiple mechanisms resulting in cell cycle arrest, cell growth inhibition, and apoptosis induction.
Collapse
Affiliation(s)
- Masumeh Sanaei
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
38
|
Jang YG, Hwang KA, Choi KC. Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines. Nutrients 2018; 10:E1784. [PMID: 30453545 PMCID: PMC6266655 DOI: 10.3390/nu10111784] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
Rosmarinic acid (RA), a main phenolic compound contained in rosemary which is used as tea, oil, medicine and so on, has been known to present anti-inflammatory, anti-oxidant and anti-cancer effects. Histone deacetylases (HDACs) are enzymes that play important roles in gene expression by removing the acetyl group from histone. The aberrant expression of HDAC in human tumors is related with the onset of human cancer. Especially, HDAC2, which belongs to HDAC class I composed of HDAC 1, 2, 3 and 8, has been reported to be highly expressed in prostate cancer (PCa) where it downregulates the expression of p53, resulting in an inhibition of apoptosis. The purpose of this study is to investigate the effect of RA in comparison with suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor used as an anti-cancer agent, on survival and apoptosis of PCa cell lines, PC-3 and DU145, and the expression of HDAC. RA decreased the cell proliferation in cell viability assay, and inhibited the colony formation and tumor spheroid formation. Additionally, RA induced early- and late-stage apoptosis of PC-3 and DU145 cells in Annexin V assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively. In western blot analysis, RA inhibited the expression of HDAC2, as SAHA did. Proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E1 were downregulated by RA, whereas p21 was upregulated. In addition, RA modulated the protein expression of intrinsic mitochondrial apoptotic pathway-related genes, such as Bax, Bcl-2, caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1) (cleaved) via the upregulation of p53 derived from HDAC2 downregulation, leading to the increased apoptosis of PC-3 and DU145 cells. Taken together, treatment of RA to PCa cell lines inhibits the cell survival and induces cell apoptosis, and it can be used as a novel therapeutic agent toward PCa.
Collapse
Affiliation(s)
- Yin-Gi Jang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| |
Collapse
|
39
|
In silico approaches for investigating the binding propensity of apigenin and luteolin against class I HDAC isoforms. Future Med Chem 2018; 10:1925-1945. [PMID: 29992822 DOI: 10.4155/fmc-2018-0020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Aberrant activity of class I histone deacetylases (HDACs) has strong implications for various cancers. Targeting these HDACs with synthetic HDAC inhibitors has shown significant side effects such as atrial fibrillation and QT prolongation emphasizing the need of natural inhibitors as substitutes to synthetic ones. RESULTS The binding propensity of the two plant-derived inhibitors apigenin and luteolin towards class I HDAC isoforms was checked using extra-precision molecular docking and implicit solvation MMGBSA. Apigenin showed a superior binding affinity against these isoforms as compared to luteolin. Both inhibitors docked stable to the binding pocket of these HDACs as determined by molecular dynamics simulation study. CONCLUSION Apigenin and luteolin may serve as substitutes to synthetic inhibitors for effective HDAC based anticancer therapy.
Collapse
|
40
|
The multifaceted role of glutathione S-transferases in cancer. Cancer Lett 2018; 433:33-42. [PMID: 29959055 DOI: 10.1016/j.canlet.2018.06.028] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Glutathione S-transferases (GSTs) are phase II detoxifying enzymes involved in the maintenance of cell integrity, oxidative stress and protection against DNA damage by catalyzing the conjugation of glutathione to a wide variety of electrophilic substrates. Though enzymes of the glutathione synthesis and salvage pathways have been well characterized in the past, there is still a lack of comprehensive understanding of their independent and coordinate regulatory mechanisms in carcinogenesis. The present review discusses implication of GST in cancer development and progression, gene polymorphism, drug resistance, signaling and epigenetic regulation involving their role in cancer. It is anticipated that GST especially the GSTP1 class can be developed as a biomarker either used alone or in combination with other biomarkers for early cancer detection and/or diagnosis as well as for future targeted preventive and therapeutic interventions with dietary agents.
Collapse
|
41
|
Motawi TK, Darwish HA, Diab I, Helmy MW, Noureldin MH. Combinatorial strategy of epigenetic and hormonal therapies: A novel promising approach for treating advanced prostate cancer. Life Sci 2018; 198:71-78. [PMID: 29455003 DOI: 10.1016/j.lfs.2018.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
AIMS Estrogens act as key factors in prostate biology, cellular proliferation and differentiation as well as cancer development and progression. The expression of estrogen receptor (ER)-β appears to be lost during prostate cancer progression through hypermethylation mechanism. Epigenetic drugs such as 5-aza-2'-deoxycytidine (5-AZAC) and Trichostatin A (TSA) showed efficacy in restoring ERβ expression in prostate cancer cells. This study was designed to explore the potential anti-carcinogenic effects resulting from re-expressing ERβ1 using 5-AZAC and/or TSA, followed by its stimulation with Diarylpropionitrile (DPN), a selective ERβ1 agonist, in prostate cancer cell line PC-3. MAIN METHODS Cells were treated with 5-AZAC, TSA, DPN and their combination. Subsequently, they were subjected to proliferation assays, determinations of ERβ1 expression, protein levels of active caspase-3, cyclin D1, β-catenin and VEGF. KEY FINDINGS Treatment with these drugs exhibited an increase in ERβ1 expression to different extents as well as active caspase-3 levels. Meanwhile, a significant reduction in cyclin D1, VEGF and β-catenin levels was achieved as compared to the vehicle control group (p < 0.05). Interestingly, the triple combination regimen led to the most prominent anti-tumor responses in terms of increased apoptosis, reduced proliferation as well as angiogenesis. SIGNIFICANCE The results support the notion that ERβ1 acts as a tumor suppressor protein and suggest that sequential ERβ1 expression and activation can offer significant anti-tumor responses. The study highlights that the strategy of merging epigenetic and hormonal therapies may be beneficial in treating advanced prostate cancer.
Collapse
Affiliation(s)
- Tarek K Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo, Egypt.
| | - Iman Diab
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, El-Bahira, Egypt.
| | - Mohamed H Noureldin
- Department of Pharmacology and Biochemistry, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| |
Collapse
|
42
|
Constructing Bayesian networks by integrating gene expression and copy number data identifies NLGN4Y as a novel regulator of prostate cancer progression. Oncotarget 2018; 7:68688-68707. [PMID: 27626693 PMCID: PMC5356583 DOI: 10.18632/oncotarget.11925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
To understand the heterogeneity of prostate cancer (PCa) and identify novel underlying drivers, we constructed integrative molecular Bayesian networks (IMBNs) for PCa by integrating gene expression and copy number alteration data from published datasets. After demonstrating such IMBNs with superior network accuracy, we identified multiple sub-networks within IMBNs related to biochemical recurrence (BCR) of PCa and inferred the corresponding key drivers. The key drivers regulated a set of common effectors including genes preferentially expressed in neuronal cells. NLGN4Y—a protein involved in synaptic adhesion in neurons—was ranked as the top gene closely linked to key drivers of myogenesis subnetworks. Lower expression of NLGN4Y was associated with higher grade PCa and an increased risk of BCR. We show that restoration of the protein expression of NLGN4Y in PC-3 cells leads to decreased cell proliferation, migration and inflammatory cytokine expression. Our results suggest that NLGN4Y is an important negative regulator in prostate cancer progression. More importantly, it highlights the value of IMBNs in generating biologically and clinically relevant hypotheses about prostate cancer that can be validated by independent studies.
Collapse
|
43
|
Dong Z, Yang Y, Liu S, Lu J, Huang B, Zhang Y. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer. Oncotarget 2017; 9:512-523. [PMID: 29416632 PMCID: PMC5787485 DOI: 10.18632/oncotarget.23070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
HDAC inhibitors (HDACis) have been demonstrated with profound antiproliferative activities in various tumor types. Previously, we screened several polyoxometalate HDACis based on our p21 luciferase promoter system and demonstrated that such HDACis have antitumor activity. Here, we further investigate the antitumor mechanism of PAC-320, a compound among the polyoxometalates, in human prostate cancer. We demonstrate that PAC-320 is a broad-spectrum HDACi and could inhibit growth of prostate cancer cells in vitro and in vivo. Furthermore, we find that PAC-320 induces cell cycle arrest at G2/M phase and apoptosis. Mechanically, PAC-320 induced cell cycle arrest is associated with an increase of p21 and decrease of cyclin A and cyclin B1, while PAC-320 induced apoptosis is mediated through mitochondria apoptotic pathway and is closely associated with increase of BH3-only proteins Noxa and Hrk. Meanwhile, we demonstrate that p38 MAPK pathway is involved in PAC-320 induced antiproliferative activities in prostate cancer. Taken together, our data indicates that PAC-320 has potent prostate cancer inhibitory activity in vitro and in vivo, which is mediated by G2/M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Zhixiong Dong
- Institute of Genetics and Cytology, The Key Laboratory of Molecular Epigenetic of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.,Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yang Yang
- Institute of Genetics and Cytology, The Key Laboratory of Molecular Epigenetic of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.,Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, China
| | - Shuxia Liu
- The Key Laboratory of Polyoxometalates Science of Ministry of Education (MOE), College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jun Lu
- Institute of Genetics and Cytology, The Key Laboratory of Molecular Epigenetic of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Baiqu Huang
- Institute of Genetics and Cytology, The Key Laboratory of Molecular Epigenetic of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- Institute of Genetics and Cytology, The Key Laboratory of Molecular Epigenetic of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
44
|
Shi XY, Ding W, Li TQ, Zhang YX, Zhao SC. Histone Deacetylase (HDAC) Inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), Induces Apoptosis in Prostate Cancer Cell Lines via the Akt/FOXO3a Signaling Pathway. Med Sci Monit 2017; 23:5793-5802. [PMID: 29211704 PMCID: PMC5727751 DOI: 10.12659/msm.904597] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are emerging as a new class of anti-cancer drugs that promote cancer cell apoptosis, and include suberoylanilide hydroxamic acid (SAHA). The aim of this study was to investigate the mechanism of SAHA-induced apoptosis in human prostate cancer cell lines, DU145 and PC-3. Material/Methods Cell lines, DU145 and PC-3, were studied before and after treatment with SAHA. The effects of SAHA treatment on cell proliferation were studied using the MTT cell proliferation assay. Annexin-V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining were used to study the effects of SAHA treatment on cell apoptosis. Western blotting, quantitative polymerase chain reaction (qPCR) and short interfering (si)RNA assays were performed to study the effects of SAHA treatment on apoptotic and cell cycle proteins and the Akt/FOXO3a signaling pathway. Results Treatment with SAHA inhibited cell proliferation in human prostate cancer cell lines DU145 and PC-3 cells in a dose-dependent way. Cell cycle analysis and Annexin-V FITC/PI staining showed that treatment with SAHA resulted in G2/M cell cycle arrest and increased cell apoptosis in a dose-dependent way. Also, treatment with SAHA reduced the protein expression levels cyclin B and cyclin A2 and promoted the activation of FOXO3a by inhibiting Akt activation. Western blotting, the siRNA assay, and qPCR showed that FOXO3a, the Bcl-2 family of proteins, survivin, and FasL were involved in SAHA-induced apoptosis in prostate cancer cells grown in vitro. Conclusions Treatment with SAHA promoted apoptosis via the Akt/FOXO3a signaling pathway in prostate cancer cells in vitro.
Collapse
Affiliation(s)
- Xuan-Yan Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Emergency, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Wei Ding
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Tie-Qiu Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan normal University, Changsha, Hunan, China (mainland)
| | - Yi-Xiong Zhang
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan normal University, Changsha, Hunan, China (mainland)
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
45
|
Patil M, Choudhari AS, Pandita S, Islam MA, Raina P, Kaul-Ghanekar R. Cinnamaldehyde, Cinnamic Acid, and Cinnamyl Alcohol, the Bioactives of Cinnamomum cassia Exhibit HDAC8 Inhibitory Activity: An In vitro and In silico Study. Pharmacogn Mag 2017; 13:S645-S651. [PMID: 29142427 PMCID: PMC5669110 DOI: 10.4103/pm.pm_389_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Background The altered expression of histone deacetylase family member 8 (HDAC8) has been found to be linked with various cancers, thereby making its selective inhibition a potential strategy in cancer therapy. Recently, plant secondary metabolites, particularly phenolic compounds, have been shown to possess HDAC inhibitory activity. Objective In the present work, we have evaluated the potential of cinnamaldehyde (CAL), cinnamic acid (CA), and cinnamyl alcohol (CALC) (bioactives of Cinnamomum) as well as aqueous cinnamon extract (ACE), to inhibit HDAC8 activity in vitro and in silico. Materials and Methods HDAC8 inhibitory activity of ACE and cinnamon bioactives was determined in vitro using HDAC8 inhibitor screening kit. Trichostatin A (TSA), a well-known anti-cancer agent and HDAC inhibitor, was used as a positive control. In silico studies included molecular descriptor Analysis molecular docking absorption, distribution, metabolism, excretion, and toxicity prediction, density function theory calculation and synthetic accessibility program. Results Pharmacoinformatics studies implicated that ACE and its Bioactives (CAL, CA, and CALC) exhibited comparable activity with that of TSA. The highest occupied molecular orbitals and lowest unoccupied molecular orbitals along with binding energy of cinnamon bioactives were comparable with that of TSA. Molecular docking results suggested that all the ligands maintained two hydrogen bond interactions within the active site of HDAC8. Finally, the synthetic accessibility values showed that cinnamon bioactives were easy to synthesize compared to TSA. Conclusion It was evident from both the experimental and computational data that cinnamon bioactives exhibited significant HDAC8 inhibitory activity, thereby suggesting their potential therapeutic implications against cancer. SUMMARY Pharmacoinformatics studies revealed that cinnamon bioactives bound to the active site of HDAC8 enzyme in a way similar to that of TSAThe molecular descriptors of cinnamon compounds successfully correlated with TSA values. The binding interactions and energies were also found to be close to TSASynthetic accessibility values showed that cinnamon bioactives were easy to synthesize compared to TSA. Abbreviations used: ACE: Aqueous Cinnamon Extract; DFT: Density Function Theory; CAL: Cinnamaldehyde; CA: Cinnamic Acid; CALC: Cinnamyl Alcohol; MW: Molecular Weight; ROTBs: Rotatable Bonds; ROF: Lipinski's Rule of Five; TSA: Trichostatin A; PDB: Protein Data Bank; RMSD: Root Mean Square Deviation; HBA: Hydrogen Bond Acceptor; HBD: Hydrogen Bond Donor; ADMET: Absorption, Distribution, Metabolism, Excretion and Toxicity; FO: Frontier Orbital; HOMOs: Highest Occupied Molecular Orbitals; LUMOs: Lowest Unoccupied Molecular Orbitals; BE: Binding Energy.
Collapse
Affiliation(s)
- Mangesh Patil
- NBN Sinhgad Technical Institutes Campus, NBN Sinhgad School of Computer Studies, Pune, Maharashtra, India
| | - Amit S Choudhari
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra, India
| | - Savita Pandita
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra, India
| | - Md Ataul Islam
- Department of Chemical Pathology, Faculty of Health Sciences, Tshwane Academic Division of the National Health Laboratory Service, University of Pretoria, Pretoria, South Africa
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra, India
| |
Collapse
|
46
|
Yu Q, Shi X, Feng Y, Kent KC, Li L. Improving data quality and preserving HCD-generated reporter ions with EThcD for isobaric tag-based quantitative proteomics and proteome-wide PTM studies. Anal Chim Acta 2017; 968:40-49. [PMID: 28395773 PMCID: PMC5509462 DOI: 10.1016/j.aca.2017.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 11/22/2022]
Abstract
Mass spectrometry (MS)-based isobaric labeling has undergone rapid development in recent years due to its capability for high throughput quantitation. Apart from its originally designed use with collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD), isobaric tagging technique could also work with electron-transfer dissociation (ETD), which provides complementarity to CID and is preferred in sequencing peptides with post-translational modifications (PTMs). However, ETD suffers from long reaction time, reduced duty cycle and bias against peptides with lower charge states. In addition, common fragmentation mechanism in ETD results in altered reporter ion production, decreased multiplexing capability, and even loss of quantitation capability for some of the isobaric tags, including custom-designed dimethyl leucine (DiLeu) tags. Here, we demonstrate a novel electron-transfer/higher-energy collision dissociation (EThcD) approach that preserves original reporter ion channels, mitigates bias against lower charge states, improves sensitivity, and significantly improves data quality for quantitative proteomics and proteome-wide PTM studies. Systematic optimization was performed to achieve a balance between data quality and sensitivity. We provide direct comparison of EThcD with ETD and HCD for DiLeu- and TMT-labeled HEK cell lysate and IMAC enriched phosphopeptides. Results demonstrate improved data quality and phosphorylation localization accuracy while preserving sufficient reporter ion production. Biological studies were performed to investigate phosphorylation changes in a mouse vascular smooth muscle cell line treated with four different conditions. Overall, EThcD exhibits superior performance compared to conventional ETD and offers distinct advantages compared to HCD in isobaric labeling based quantitative proteomics and quantitative PTM studies.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Yu Feng
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
47
|
Sun JY, Wang JD, Wang X, Liu HC, Zhang MM, Liu YC, Zhang CH, Su Y, Shen YY, Guo YW, Shen AJ, Geng MY. Marine-derived chromopeptide A, a novel class I HDAC inhibitor, suppresses human prostate cancer cell proliferation and migration. Acta Pharmacol Sin 2017; 38:551-560. [PMID: 28112184 DOI: 10.1038/aps.2016.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs), especially HDAC1, 2, 3 and 4, are abundantly expressed and over-activated in prostate cancer that is correlated with the poor prognosis. Thus, inhibition of HDAC activity has emerged as a potential alternative option for prostate cancer therapy. Chromopeptide A is a depsipeptide isolated from the marine sediment-derived bacterium Chromobacterium sp. HS-13-94; it has a chemical structure highly similar to FK228, a class I HDAC inhibitor that is approved by FDA for treating T-cell lymphoma. In this study, we determined whether chromopeptide A, like FK228, acted as a class I HDAC inhibitor, and whether chromopeptide A could inhibit the growth and migration of human prostate cancer in vitro and in vivo. HDAC enzyme selectivity and kinetic analysis revealed that chromopeptide A selectively inhibited the enzymatic activities of HDAC1, 2, 3 and 8 in a substrate non-competitive manner with comparable IC50 values for each HDAC member as FK228 in vitro. Importantly, chromopeptide A dose-dependently suppressed the proliferation of human prostate cancer cell lines PC3, DU145 and LNCaP with IC50 values of 2.43±0.02, 2.08±0.16, and 1.75±0.06 nmol/L, respectively, accompanied by dose-dependent inhibition of HDAC enzymatic activity in PC3 and DU145 cells. Chromopeptide A (0.2-50 nmol/L) caused G2/M phase arrest and induced apoptosis in the prostate cancer cell lines. Moreover, chromopeptide A dose-dependently inhibited the migration of PC3 cells. In mice bearing PC3 prostate cancer xenografts, intravenous injection of chromopeptide A (1.6, 3.2 mg/kg, once a week for 18 d) significantly suppressed the tumor growth, which was associated with increased expression levels of Ac-H3 and p21 in tumor tissues. Our results identify chromopeptide A as a novel class I HDAC inhibitor and provide therapeutic strategies that may be implemented in prostate cancer.
Collapse
|
48
|
Mehndiratta S, Wang RS, Huang HL, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP. 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur J Med Chem 2017; 134:13-23. [PMID: 28395150 DOI: 10.1016/j.ejmech.2017.03.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 11/16/2022]
Abstract
A series of 4,5-indolyl-N-hydroxyphenylacrylamides, as HDAC inhibitors, has been synthesized and evaluated in vitro and in vivo. 4-Indolyl compounds 13 and 17 functions as potent inhibitors of HDAC1 (IC50 1.28 nM and 1.34 nM) and HDAC 2 (IC50 0.90 and 0.53 nM). N-Hydroxy-3-{4-[2-(1H-indol-4-yl)-ethylsulfamoyl]-phenyl}-acrylamide (13) inhibited the human cancer cell growth of PC3, A549, MDA-MB-231 and AsPC-1 with a GI50 of 0.14, 0.25, 0.32, and 0.24 μM, respectively. In in vivo evaluations bearing prostate PC3 xenografts nude mice model, compound 13 suppressed tumor growth with a tumor growth inhibition (TGI) of 62.2%. Immunohistochemistry of protein expressions, in PC-3 xenograft model indicated elevated acetyl-histone 3 and prominently inhibited HDAC2 protein expressions. Therefore, compound 13 could be a suitable lead for further investigation and the development of selective HDAC 2 inhibitors as potent anti-cancer compounds.
Collapse
Affiliation(s)
- Samir Mehndiratta
- School of Pharmacy, College of Pharmacy, Taipei Medical University (TMU), Taiwan
| | - Ruei-Shian Wang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, TMU, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | - Han-Li Huang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, TMU, Taiwan
| | - Chih-Jou Su
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, TMU, Taiwan
| | - Chia-Ming Hsu
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, TMU, Taiwan
| | - Yi-Wen Wu
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, TMU, Taiwan
| | - Shiow-Lin Pan
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, TMU, Taiwan; Department of Pharmacology, College of Medicine, Taipei Medical University, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University (TMU), Taiwan.
| |
Collapse
|
49
|
Dhar S, Kumar A, Gomez CR, Akhtar I, Hancock JC, Lage JM, Pound CR, Levenson AS. MTA1-activated Epi-microRNA-22 regulates E-cadherin and prostate cancer invasiveness. FEBS Lett 2017; 591:924-933. [PMID: 28231399 DOI: 10.1002/1873-3468.12603] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/14/2022]
Abstract
We have previously shown that metastasis-associated protein 1 (MTA1), a chromatin remodeler, plays an important role in prostate cancer invasiveness, likely through regulation of epithelial-to-mesenchymal transition. Here, we identified miR-22 as an epigenetic-microRNA (Epi-miR) directly induced by MTA1 and predicted to target E-cadherin. Loss-of-function and overexpression studies of MTA1 reinforced its regulatory role in miR-22 expression. MiR-22 directly targets the 3'-untranslated region of E-cadherin, and ectopic overexpression of miR-22 diminishes E-cadherin expression. Overexpression of miR-22 in prostate cancer cells promotes cell invasiveness and migration. Meta-analysis of patient tumor samples indicates a positive correlation between MTA1 and miR-22, supporting their inhibitory effect on E-cadherin expression. Our findings implicate the MTA1/Epi-miR-22/E-cadherin axis as a new epigenetic signaling pathway that promotes tumor invasion in prostate cancer.
Collapse
Affiliation(s)
- Swati Dhar
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- School of Medicine-Department of Radiation/Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Avinash Kumar
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- School of Medicine-Department of Radiation/Oncology, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Israh Akhtar
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - John C Hancock
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Janice M Lage
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles R Pound
- Division of Urology, Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
50
|
Wang Y, Xu P, Yao J, Yang R, Shi Z, Zhu X, Feng X, Gao S. MicroRNA-216b is Down-Regulated in Human Gastric Adenocarcinoma and Inhibits Proliferation and Cell Cycle Progression by Targeting Oncogene HDAC8. Target Oncol 2017; 11:197-207. [PMID: 26408293 DOI: 10.1007/s11523-015-0390-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Accumulating evidence indicates that micro (mi)RNAs play a critical role in carcinogenesis and cancer progression; however, their role in the tumorigenesis of gastric adenocarcinoma remains unclear so the present study investigated this in gastric cancer (GC) tissues and cell lines. METHODS Human GC specimens (n = 57) and patient-paired non-cancerous specimens were obtained from patients at the First Affiliated Hospital, Henan University of Science and Technology. The AGS and GC9811 gastric cancer cell lines were also used. Expression levels of miR-216b and HDAC8 were examined by quantitative real-time PCR and the expression of HDAC8 was also examined by Western blotting and immunohistochemistry assay. The cell cycle progression was determined by FACS. MiR-216b inhibitor, mimics, and siRNA-HDAC8 transfections were performed to study the loss and gain of function. RESULTS We reported a significantly decreased expression of miR-216b in GC clinical specimens compared with paired non-cancerous tissues. We also observed a significant down-regulation of miR-216b expression in GC cell lines AGS and GC9811 (p < 0.0001). The introduction of miR-216b suppressed GC cell proliferation and cell cycle progression by targeting HDAC8, an oncogene shown to promote malignant tumor development with a potential miR-216b binding site in its 3' untranslated region. HDAC8 expression was shown to be significantly increased in AGS and GC9811 cell lines (p < 0.0001) and GC tissues compared with controls. Moreover, HDAC8 inhibition suppressed cell cycle progression compared with control groups (22 % ± 1.6 % vs 34 % ± 2.1), indicating that HDAC8 may function as an oncogene in the development of GC. Furthermore, HDAC8 expression was negatively correlated (p < 0.0001), while miR-216b expression was positively correlated with the clinical outcome of GC patients (p < 0.0001). DISCUSSION Our data suggest that miR-216b functions as a tumor suppressor in human GC by, at least partially, targeting HDAC8.
Collapse
Affiliation(s)
- Ying Wang
- Oncology Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China.
| | - Po Xu
- Urology Surgery Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China
| | - Jun Yao
- Oncology Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China
| | - Ruina Yang
- Oncology Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China
| | - Zhenguo Shi
- Urology Surgery Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China
| | - Xiaojuan Zhu
- Oncology Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China
| | - Xiaoshan Feng
- Oncology Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China.
| | - Shegan Gao
- Oncology Department of the First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, 471003, China.
| |
Collapse
|