1
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Xie Z, Zhou G, Zhang M, Han J, Wang Y, Li X, Wu Q, Li M, Zhang S. Recent developments on BMPs and their antagonists in inflammatory bowel diseases. Cell Death Discov 2023; 9:210. [PMID: 37391444 DOI: 10.1038/s41420-023-01520-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis, and Crohn's disease, are intestinal disorders characterized by chronic relapsing inflammation. A large proportion of patients with IBD will progress to develop colitis-associated colorectal cancer due to the chronic intestinal inflammation. Biologic agents that target tumour necrosis factor-α, integrin α4β7, and interleukin (IL)12/23p40 have been more successful than conventional therapies in treating IBD. However, drug intolerance and loss of response are serious drawbacks of current biologics, necessitating the development of novel drugs that target specific pathways in IBD pathogenesis. One promising group of candidate molecules are bone morphogenetic proteins (BMPs), members of the TGF-β family involved in regulating morphogenesis, homeostasis, stemness, and inflammatory responses in the gastrointestinal tract. Also worth examining are BMP antagonists, major regulators of these proteins. Evidence has shown that BMPs (especially BMP4/6/7) and BMP antagonists (especially Gremlin1 and follistatin-like protein 1) play essential roles in IBD pathogenesis. In this review, we provide an updated overview on the involvement of BMPs and BMP antagonists in IBD pathogenesis and in regulating the fate of intestinal stem cells. We also described the expression patterns of BMPs and BMP antagonists along the intestinal crypt-villus axis. Lastly, we synthesized available research on negative regulators of BMP signalling. This review summarizes recent developments on BMPs and BMP antagonists in IBD pathogenesis, which provides novel insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mudan Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoling Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qirui Wu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Manying Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
3
|
Zhu L, Li G, Liang Z, Qi T, Deng K, Yu J, Peng Y, Zheng J, Song Y, Chang X. Microbiota-assisted iron uptake promotes immune tolerance in the intestine. Nat Commun 2023; 14:2790. [PMID: 37188703 PMCID: PMC10185671 DOI: 10.1038/s41467-023-38444-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Iron deficiencies are the most common nonenteric syndromes observed in patients with inflammatory bowel disease, but little is known about their impacts on immune tolerance. Here we show that homeostasis of regulatory T cells in the intestine was dependent on high cellular iron levels, which were fostered by pentanoate, a short-chain fatty acid produced by intestinal microbiota. Iron deficiencies in Treg caused by the depletion of Transferrin receptor 1, a major iron transporter, result in the abrogation of Treg in the intestine and lethal autoimmune disease. Transferrin receptor 1 is required for differentiation of c-Maf+ Treg, major constituents of intestinal Treg. Mechanistically, iron enhances the translation of HIF-2α mRNA, and HIF-2α in turn induces c-Maf expression. Importantly, microbiota-produced pentanoate promotes iron uptake and Treg differentiation in the intestine. This subsequently restores immune tolerance and ameliorated iron deficiencies in mice with colitis. Our results thus reveal an association between nutrient uptake and immune tolerance in the intestine.
Collapse
Affiliation(s)
- Lizhen Zhu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Geng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhixin Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tuan Qi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kui Deng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiancheng Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Peng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jusheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yan Song
- School of Medicine, University of California San Diego, La Jolla, CA, US
| | - Xing Chang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ma YC, Dai LL, Qiu BB, Zhou Y, Zhao YQ, Ran Y, Zhang KQ, Zou CG. TOR functions as a molecular switch connecting an iron cue with host innate defense against bacterial infection. PLoS Genet 2021; 17:e1009383. [PMID: 33657091 PMCID: PMC7928448 DOI: 10.1371/journal.pgen.1009383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/26/2021] [Indexed: 01/22/2023] Open
Abstract
As both host and pathogen require iron for survival, iron is an important regulator of host-pathogen interactions. However, the molecular mechanism by which how the availability of iron modulates host innate immunity against bacterial infections remains largely unknown. Using the metazoan Caenorhabditis elegans as a model, we demonstrate that infection with a pathogenic bacterium Salmonella enterica serovar Typhimurium induces autophagy by inactivating the target of rapamycin (TOR). Although the transcripts of ftn-1 and ftn-2 encoding two H-ferritin subunits are upregulated upon S. Typhimurium infection, the ferritin protein is kept at a low level due to its degradation mediated by autophagy. Autophagy, but not ferritin, is required for defense against S. Typhimurium infection under normal circumstances. Increased abundance of iron suppresses autophagy by activating TOR, leading to an increase in the ferritin protein level. Iron sequestration, but not autophagy, becomes pivotal to protect the host from S. Typhimurium infection in the presence of exogenous iron. Our results show that TOR acts as a regulator linking iron availability with host defense against bacterial infection. Iron, an essential nutrient for both hosts and pathogens, can impact host-pathogen interactions. Thus, depending on availability of iron, hosts may use distinct strategies to defend against bacterial infections. Using the model organism Caenorhabditis elegans, we show that autophagy is activated and required for resistance to S. Typhimurium infection under normal conditions. In the presence of exogenous iron, autophagy is suppressed, leading to an increase in the protein level of ferritin, which in turn protects worms against S. Typhimurium infection. Finally, our data demonstrate that TOR is a molecular switch for turning autophagy and ferritin on and off. Thus, our study reveals a previously unknown role of TOR in modulating the transition between autophagy and iron sequestration in response to a bacterial infection via sensing an iron cue.
Collapse
Affiliation(s)
- Yi-Cheng Ma
- State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Li-Li Dai
- State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- School of Agronomy and Life Sciences, Kunming University, Kunming, Yunnan, China
| | - Bei-Bei Qiu
- State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ying Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, China
| | - Yu-Qiang Zhao
- College of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, China
| | - Yu Ran
- State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- * E-mail: (K-QZ); (C-GZ)
| | - Cheng-Gang Zou
- State Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- * E-mail: (K-QZ); (C-GZ)
| |
Collapse
|
5
|
Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals (Basel) 2018; 11:ph11040098. [PMID: 30301142 PMCID: PMC6315993 DOI: 10.3390/ph11040098] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.
Collapse
|
6
|
Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 2014; 38:1202-34. [PMID: 25205464 DOI: 10.1111/1574-6976.12086] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine, The Radboud Institute for Molecular Life Sciences (RIMLS) of the Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
7
|
Wang L, Trebicka E, Fu Y, Ellenbogen S, Hong CC, Babitt JL, Lin HY, Cherayil BJ. The bone morphogenetic protein-hepcidin axis as a therapeutic target in inflammatory bowel disease. Inflamm Bowel Dis 2012; 18:112-9. [PMID: 21351217 PMCID: PMC3139830 DOI: 10.1002/ibd.21675] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/12/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND A debilitating anemia associated with low serum iron often accompanies inflammatory bowel disease (IBD). Increased production of the iron regulatory hormone hepcidin is implicated in its pathogenesis and may also contribute to the inflammatory process itself. Hepcidin expression is dependent on bone morphogenetic proteins (BMPs) like BMP6, but the mechanisms that increase hepcidin levels during intestinal inflammation are not clear. Here we test the hypothesis that inhibiting hepcidin expression may have beneficial effects in IBD, and also shed light on the mechanism of colitis-induced hepcidin upregulation. METHODS Mice with T cell transfer colitis were treated with vehicle or one of three anti-BMP reagents: HJV.Fc, a recombinant protein that prevents binding of BMPs to their receptor, LDN-193189, a small molecule inhibitor of BMP signal transduction, and an anti-BMP6 antibody. The effects of these reagents on colitis severity, liver hepcidin mRNA, and serum iron were determined. The mechanism of hepcidin upregulation was investigated by examining BMP6 expression and activity and the effects of IL-6 deficiency. RESULTS All the anti-BMP reagents inhibited hepcidin expression and increased serum iron levels in the colitic mice. They also produced modest reductions in colon inflammatory cytokine expression. Although hepcidin upregulation during colitis was dependent on BMP6, it was not associated with increased BMP6 expression or activity. IL-6 was required for increased hepcidin expression during colitis. CONCLUSIONS Inhibiting hepcidin expression may help to correct the anemia of IBD and may also attenuate intestinal inflammation. The mechanism of colitis-induced hepcidin upregulation involves both BMP6 and IL-6.
Collapse
Affiliation(s)
- Lijian Wang
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129
| | - Estela Trebicka
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129
| | - Ying Fu
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129
| | - Shiri Ellenbogen
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129
| | - Charles C. Hong
- Veterans Affairs TVHS, Nashville, TN 37121 and Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jodie L. Babitt
- Program in Membrane Biology, Division of Nephrology and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Herbert Y. Lin
- Program in Membrane Biology, Division of Nephrology and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Abstract
My laboratory has been interested for some time in the influence of iron, a nutrient that is essential for both microbial pathogens and their mammalian hosts, on the course of infectious disease. Our studies indicate that alterations in the expression of host molecules that sequester or transport iron can have direct effects on pathogen growth and can also have an impact on the ability to mount normal immune responses. We have elucidated the mechanistic basis for some of these observations, and have started to apply our findings in strategies to control abnormalities of inflammation and iron metabolism. I will review here what we have learned about the interactions between iron and immunity and discuss the implications of the information that we have acquired.
Collapse
Affiliation(s)
- Bobby J Cherayil
- Mucosal Immunology Laboratory, MassGeneral Hospital for Children, Charlestown, MA 02129, USA.
| |
Collapse
|