1
|
Matos ADS, Soares IF, Rodrigues-da-Silva RN, Rodolphi CM, Albrecht L, Donassolo RA, Lopez-Camacho C, Ano Bom APD, Neves PCDC, Conte FDP, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR, Lima-Junior JDC. Immunogenicity of PvCyRPA, PvCelTOS and Pvs25 chimeric recombinant protein of Plasmodium vivax in murine model. Front Immunol 2024; 15:1392043. [PMID: 38962015 PMCID: PMC11219565 DOI: 10.3389/fimmu.2024.1392043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.
Collapse
MESH Headings
- Animals
- Plasmodium vivax/immunology
- Plasmodium vivax/genetics
- Mice
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/prevention & control
- Antibodies, Protozoan/immunology
- Mice, Inbred BALB C
- Malaria Vaccines/immunology
- Female
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Disease Models, Animal
- Adjuvants, Immunologic
- Immunogenicity, Vaccine
- Antigens, Surface
Collapse
Affiliation(s)
- Ada da Silva Matos
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Isabela Ferreira Soares
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Letusa Albrecht
- Apicomplexa Research Laboratory, Carlos Chagas Institute, Curitiba, Brazil
| | | | - Cesar Lopez-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | | | - Fernando de Paiva Conte
- Eukaryotic Pilot Laboratory, Immunobiological Technology Institute (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | - Josué da Costa Lima-Junior
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Zuo S, Lu J, Sun Y, Song J, Han S, Feng X, Han ET, Cheng Y. The Plasmodium vivax MSP1P-19 is involved in binding of reticulocytes through interactions with the membrane proteins band3 and CD71. J Biol Chem 2024; 300:107285. [PMID: 38636656 PMCID: PMC11107369 DOI: 10.1016/j.jbc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
The parasite Plasmodium vivax preferentially invades human reticulocytes. Its merozoite surface protein 1 paralog (PvMSP1P), particularly the 19-kDa C-terminal region (PvMSP1P-19), has been shown to bind to reticulocytes, and this binding can be inhibited by antisera obtained by PvMSP1P-19 immunization. The molecular mechanism of interactions between PvMSP1P-19 and reticulocytes during P. vivax invasion, however, remains unclear. In this study, we analyzed the ability of MSP1P-19 to bind to different concentrations of reticulocytes and confirmed its reticulocyte preference. LC-MS analysis was used to identify two potential reticulocyte receptors, band3 and CD71, that interact with MSP1P-19. Both PvMSP1P-19 and its sister taxon Plasmodium cynomolgi MSP1P-19 were found to bind to the extracellular loop (loop 5) of band3, where the interaction of MSP1P-19 with band3 was chymotrypsin sensitive. Antibodies against band3-P5, CD71, and MSP1P-19 reduced the binding activity of PvMSP1P-19 and Plasmodium cynomolgi MSP1P-19 to reticulocytes, while MSP1P-19 proteins inhibited Plasmodium falciparum invasion in vitro in a concentration-dependent manner. To sum up, identification and characterization of the reticulocyte receptor is important for understanding the binding of reticulocytes by MSP1P-19.
Collapse
Affiliation(s)
- Shenghuan Zuo
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Song
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Feng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Plata-Pineda SE, Cárdenas-Munévar LX, Castro-Cavadía CJ, Buitrago SP, Garzón-Ospina D. Evaluating the genetic diversity of the Plasmodium vivax siap2 locus: A promising candidate for an effective malaria vaccine? Acta Trop 2024; 251:107111. [PMID: 38151069 DOI: 10.1016/j.actatropica.2023.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Malaria is the deadliest parasitic disease in the world. Traditional control measures have become less effective; hence, there is a need to explore alternative strategies, such as antimalarial vaccines. However, designing an anti-Plasmodium vivax vaccine is considered a challenge due to the complex parasite biology and the antigens' high genetic diversity. Recently, the sporozoite invasion-associated protein 2 (SIAP2) has been suggested as a potential antigen to be considered in vaccine design due to its significance during hepatocyte invasion. However, its use may be limited by the incomplete understanding of gene/protein diversity. Here, the genetic diversity of pvsiap2 using P. vivax DNA samples from Colombia was assessed. Through PCR amplification and sequencing, we compared the Colombian sequences with available worldwide sequences, revealing that pvsiap2 displays low genetic diversity. Molecular evolutionary analyses showed that pvsiap2 appears to be influenced by directional selection. Moreover, the haplotypes found differ by a few mutational steps and several of them were shared between different geographical areas. On the other hand, several conserved regions within PvSIAP2 were predicted as potential B-cell or T-cell epitopes. Considering these characteristics and its role in hepatocyte invasion, the PvSIAP2 protein emerges as a promising antigen to be considered in a multi-antigen-multi-stage (multivalent) fully effective vaccine against P. vivax malaria.
Collapse
Affiliation(s)
- Sergio E Plata-Pineda
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Laura X Cárdenas-Munévar
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Carlos J Castro-Cavadía
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), School of Health Sciences, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Sindy P Buitrago
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Diego Garzón-Ospina
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia.
| |
Collapse
|
4
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
There Is No Last Name For This Author P, Kaur H, Persoons L, Andrei G, Singh K. Quinoline-dihydropyrimidin-2(1H)-one hybrids: Synthesis, biological activity and mechanistic studies. ChemMedChem 2022; 17:e202200031. [PMID: 35174629 DOI: 10.1002/cmdc.202200031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Indexed: 11/10/2022]
Abstract
A novel class of quinoline-dihydropyrimidin-2(1H)-one (DHPM) hybrids was synthesized and in vitro antiplasmodial activity was evaluated against chloroquine sensitive (D10) and chloroquine resistant (Dd2) strains of Plasmodium falciparum, the human malaria parasite. The antiplasmodial activity was compared to previously reported DHPM based molecular hybrids. Dual mode of antiplasmodial action of the most active member has been evaluated through heme binding study and in silico docking in the active site of dihydrofolate enzymes (wild-type as well as mutant). Favourable pharmacokinetic parameters were predicted in the ADMET evaluation. The new hybrids were also tested against a number of DNA and RNA viruses. No antiviral activity was found, except for one hybrid that showed mild inhibitory activity against two strains of cytomegalovirus (AD-169 and Davis), The most active hybrid was found to be a selective inhibitor of the growth of P. falciparum as well as a modest inhibitor of varicella zoster virus in HEL cells. Cytotoxicity of all hybrids was assessed in HEL, HeLa, Vero, MDCK, and CRFK cell cultures.
Collapse
Affiliation(s)
| | | | - Leentje Persoons
- KU Leuven: Katholieke Universiteit Leuven, Microbiology, BELGIUM
| | - Graciela Andrei
- KU Leuven: Katholieke Universiteit Leuven, Microbiology, BELGIUM
| | - Kamaljit Singh
- Guru Nanak Dev University, Chemistry, GT Road, 143005, Amritsar, INDIA
| |
Collapse
|
6
|
Reyes-Sandoval A. Plasmodium vivax pre-erythrocytic vaccines. Parasitol Int 2021; 84:102411. [PMID: 34166786 PMCID: PMC8606753 DOI: 10.1016/j.parint.2021.102411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
An estimated 229 million cases of malaria occurred worldwide in 2019. Both, Plasmodium falciparum and P. vivax are responsible for most of the malaria disease burden in the world. Despite difficulties in obtaining an accurate number, the global estimates of cases in 2019 are approximately 229 million of which 2.8% are due to P. vivax, and the total number of malaria deaths are approximately 409 million. Regional elimination or global eradication of malaria will be a difficult task, particularly for P. vivax due to the particular biological features related to the hypnozoite, leading to relapse. Countries that have shown successful episodes of a decrease in P. falciparum malaria, are left with remaining P. vivax malaria cases. This is caused by the mechanism that the parasite has evolved to remain dormant in the liver forming hypnozoites. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials. We discuss the challenge that represent the hypnozoite for P. vivax vaccine development, the potential of Controlled Human Malaria Challenges (CHMI) and the leading vaccine candidates assessed in clinical trials.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; Instituto Politécnico Nacional, IPN, Av. Luis Enrique Erro s/n, Unidad Adolfo López Mateos, Mexico City, Mexico.
| |
Collapse
|
7
|
Asali S, Raz A, Turki H, Mafakher L, Razmjou E, Solaymani-Mohammadi S. Restricted genetic heterogeneity of the Plasmodium vivax transmission-blocking vaccine (TBV) candidate Pvs48/45 in a low transmission setting: Implications for the Plasmodium vivax malaria vaccine development. INFECTION GENETICS AND EVOLUTION 2021; 89:104710. [PMID: 33421653 DOI: 10.1016/j.meegid.2021.104710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium vivax is the most widespread malaria species parasitizing humans outside Africa, with approximately 100 million cases reported per year. Most human cases of P. vivax are asymptomatic with low parasitemia, making active case detection-based elimination programme challenging and less effective. Despite the widespread distribution of P. vivax, no effective vaccines are currently available. Transmission blocking vaccines have recently emerged as potential vaccine candidates to reduce transmission rates to below the essential levels required for the maintenance of the parasite life cycle. Here, we demonstrated that P. vivax was the predominant species found in a malaria-endemic area, although P. vivax/P. falciparum co-infections were also common. Through genomic sequence analysis and neighbor-joining algorithms, we demonstrated limited genetic heterogeneity in the P. vivax transmission-blocking vaccine candidate Pvs48/45 among clinical isolates of P. vivax. Restricted genetic polymorphism occurred at both nucleotide and amino acid levels. The most frequent mutation was A → G at nucleotide position 77 (46.7%), whereas the least frequent was C → T at nucleotide position 1230 (3.3%). The occurrence of single nucleotide polymorphisms (SNPs) distribution at 6/8 positions (75%) led to changes in amino acid sequences in the Pvs48/45 loci, whereas 2/8 (25%) of SNPs resulted in no amino acid sequence variations. Consistently, the nucleotide diversity in the Pvs48/45 locus among the P. vivax population studied was extremely low (π = 0.000525). Changes in amino acid sequences in the Pvs48/45 protein did not result in substantial conformational modifications in the tertiary structures of these proteins. Unveiling the population genetic structure and genetic heterogeneity of vaccine target antigens are necessary for rational design of transmission-blocking antibody vaccines and to monitor the vaccine efficacy in clinical trials in endemic areas for malaria.
Collapse
Affiliation(s)
- Soheila Asali
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Habibollah Turki
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ladan Mafakher
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center (MBiRC), Iran University of Medical Sciences, Tehran, Iran.
| | - Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
8
|
Capobianco MP, Cassiano GC, Storti-Melo LM, Pimenta TS, Rodrigues APD, Arruda JEG, Pinto MR, Baptista ARDS, Pratt-Riccio LR, Bonini-Domingos CR, de Oliveira-Ferreira J, Machado RLD. Polymorphism in the IL-1β promoter is associated with IgG antibody response to circumsporozoite protein repeats of Plasmodium vivax. Trans R Soc Trop Med Hyg 2020; 114:858-865. [PMID: 32766886 DOI: 10.1093/trstmh/traa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is well established that infection by Plasmodium vivax is a result of host-parasite interactions. In the present study, association with the IL1/IL2 cytokine profiles, anticircumsporozoite protein antibody levels and parasitic loads was evaluated in individuals naturally infected with P. vivax in an endemic area of the Brazilian Amazon. METHODS Molecular diagnosis of P. vivax and variants was performed using the PCR-RFLP method and IL1B -511C>T, IL2 -330T>G and IL2+114T>G polymorphisms were identified using PCR-RFLP and allele-specific PCR. IL-1β and IL-2 cytokine levels were detected by flow cytometry and circumsporozoite protein (CSP) antibodies were measured by ELISA. RESULTS Three variants of P. vivax CSP were identified and VK247 was found to be the most frequent. However, the prevalence and magnitude of IgG antibodies were higher for the VK210 variant. Furthermore, the antibody response to the CSP variants was not associated with the presence of the variant in the infection. Significant differences were observed between the single nucleotide polymorphism (SNP) -511T>C in the IL1B gene and levels of antibodies to the VK247 and P. vivax-like variants, but there were no associations between SNPs in IL1 and IL2 genes and their plasma products. CONCLUSIONS Individuals with the rs16944 CC genotype in the IL1β gene have higher antibody levels to the CSP of P. vivax of VK247 and P. vivax-like variants.
Collapse
Affiliation(s)
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Tropical Medicine and Hygiene Institut, Lisboa University, Portugal
| | | | - Tamirys Simão Pimenta
- Laboratory of Malaria Immunogenetics, Evandro Chagas Institute/Health Ministry, Pará, Brazil
| | - Ana Paula Drummond Rodrigues
- Electron Microscopy Laboratory, Evandro Chagas Institute/Health Ministry, University Federal do Pará, Belém, Brazil
| | - José Eduardo Gomes Arruda
- Center of Microorganisms Investigation, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro Pinto
- Center of Microorganisms Investigation, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | | | | | | | - Ricardo Luiz Dantas Machado
- Graduate Program in Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.,Center of Microorganisms Investigation, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Mittal P, Mishra S, Kar S, Pande V, Sinha A, Sharma A. Global distribution of single amino acid polymorphisms in Plasmodium vivax Duffy-binding-like domain and implications for vaccine development efforts. Open Biol 2020; 10:200180. [PMID: 32993415 PMCID: PMC7536081 DOI: 10.1098/rsob.200180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax (Pv) malaria continues to be geographically widespread with approximately 15 million worldwide cases annually. Along with other proteins, Duffy-binding proteins (DBPs) are used by plasmodium for RBC invasion and the parasite-encoded receptor binding regions lie in their Duffy-binding-like (DBL) domains-thus making it a prime vaccine candidate. This study explores the sequence diversity in PvDBL globally, with an emphasis on India as it remains a major contributor to the global Pv malaria burden. Based on 1358 PvDBL protein sequences available in NCBI, we identified 140 polymorphic sites within 315 residues of PvDBL. Alarmingly, country-wise mapping of SAAPs from field isolates revealed varied and distinct polymorphic profiles for different nations. We report here 31 polymorphic residue positions in the global SAAP profile, most of which map to the PvDBL subdomain 2 (α1-α6). A distinct clustering of SAAPs distal to the DARC-binding sites is indicative of immune evasive strategies by the parasite. Analyses of PvDBL-neutralizing antibody complexes revealed that between 24% and 54% of interface residues are polymorphic. This work provides a framework to recce and expand the polymorphic space coverage in PvDBLs as this has direct implications for vaccine development studies. It also emphasizes the significance of surveying global SAAP distributions before or alongside the identification of vaccine candidates.
Collapse
Affiliation(s)
- Payal Mittal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Siddhartha Mishra
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Sonalika Kar
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Abhinav Sinha
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| |
Collapse
|
10
|
Protective efficacy of peptides from Plasmodium vivax circumsporozoite protein. Vaccine 2020; 38:4346-4354. [PMID: 32402755 PMCID: PMC7408485 DOI: 10.1016/j.vaccine.2020.03.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Short repeat-region peptides from PvCSP on a VLP protect against malaria. The AGDR tetramer from PvCSP VK210 can, on a VLP, also protect against malaria. Full-length PvCSP is much less protective as a vaccine than truncated PvCSP. Region I and II peptides confer no protection against malaria presented on a VLP.
Vivax malaria is a major cause of morbidity and mortality worldwide, with several million clinical cases per year and 2.5 billion at risk of infection. A vaccine is urgently needed but the most advanced malaria vaccine, VMP001, confers only very low levels of protection against vivax malaria challenge in humans. VMP001 is based on the circumsporozoite protein (CSP) of Plasmodium vivax. Here a virus-like particle, Qβ, is used as a platform to generate very high levels of antibody against peptides from PvCSP in mice, in order to answer questions important to further development of P. vivax CSP (PvCSP) vaccines. Minimal peptides from the VK210 and VK247 allelic variants of PvCSP are found to be highly protective as Qβ-peptide vaccines, using transgenic P. berghei parasites expressing the homologous PvCSP allelic variant. A target of neutralising antibodies within the nonamer unit repeat of VK210, AGDR, is found, as a Qβ-peptide vaccine, to provide partial protection against malaria challenge, and enhances protective efficacy when combined with full-length PvCSP vaccination. A truncated form of PvCSP, missing the N-terminal domain, is found to confer much higher levels of protective efficacy than full-length PvCSP. Peptides derived from highly conserved areas of PvCSP, RI and RII, are found not to confer protective efficacy as Qβ-peptide vaccines.
Collapse
|
11
|
Patarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines 2020; 19:195-207. [PMID: 32077349 DOI: 10.1080/14760584.2020.1733421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Numerous challenges have hampered developing an anti-malarial vaccine against the most widespread malarial parasite worldwide: Plasmodium vivax. Despite the progress achieved in studying proteins in short-term in vitro culture or in experimental models, there is still no clear method for defining which antigens or their regions should be prioritized for including them in a vaccine.Areas covered: The methods used by research groups so far which have focused on the functional analysis of P. vivax blood stage antigens have been reviewed here. A logical strategy orientated toward resolving two of the most commonly occurring problems in designing vaccines against this species has thus been proposed (i.e. the search for candidates and evaluating/ascertaining their functional role in the invasion of such molecules).Expert commentary: Advances in knowledge regarding P. vivax biology have been extremely slow. Only two key receptor-ligand interactions concerning merozoite entry to reticulocytes have been reported during the last 20 years: PvDBP1-DARC and PvRBP2b-CD71. Despite increasing knowledge about the parasite's intimate preference for its host cells, it has yet to be determined which regions of the merozoite molecules characterized to date meet the requirement of inducing protective immune responses effectively blocking heterologous parasite entry to human cells.
Collapse
Affiliation(s)
- Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Gabriela Arévalo-Pinzón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas Y Ambientales (U.D.C.A), Bogotá DC, Colombia
| |
Collapse
|
12
|
Lee SK, Han JH, Park JH, Ha KS, Park WS, Hong SH, Na S, Cheng Y, Han ET. Evaluation of antibody responses to the early transcribed membrane protein family in Plasmodium vivax. Parasit Vectors 2019; 12:594. [PMID: 31856917 PMCID: PMC6921578 DOI: 10.1186/s13071-019-3846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria parasites form intracellular membranes that separate the parasite from the internal space of erythrocytes, and membrane proteins from the parasites are exported to the host via the membrane. In our previous study, Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2, an intracellular membrane protein that is highly expressed in blood-stage parasites, was characterized as a highly immunogenic protein in P. vivax malaria patients. However, the other PvETRAMP family proteins have not yet been investigated. In this study, PvETRAMPs were expressed and evaluated to determine their immunological profiles. Methods The protein structure and amino acid alignment were carried out using bioinformatics analysis software. A total of six PvETRAMP family proteins were successfully expressed and purified using a wheat germ cell free protein expression system and the purified proteins were used for protein microarray and immunization of mice. The localization of the protein was determined with serum against PvETRAMP4. IgG subclasses were assessed from the immunized mice. Results In silico analysis showed that P. vivax exhibits nine genes encoding the ETRAMP family. The ETRAMP family proteins are relatively small molecules with conserved structural features. A total of 6 recombinant ETRAMP proteins were successfully expressed and purified. The serum positivity of P. vivax malaria patients and healthy individuals was evaluated using a protein microarray method. Among the PvETRAMPs, ETRAMP4 showed the highest positivity rate of 62%, comparable to that of PvETRAMP11.2, which served as the positive control, and a typical export pattern of PvETRAMP4 was observed in the P. vivax parasite. The assessment of IgG subclasses in mice immunized with PvETRAMP4 showed high levels of IgG1 and IgG2b. PvETRAMP family proteins were identified and characterized as serological markers. Conclusions The relatively high antibody responses to PvETRAMP4 as well as the specific IgG subclasses observed in immunized mice suggest that the ETRAMP family is immunogenic in pathogens and can be used as a protein marker and for vaccine development.![]()
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
13
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Tailoring a Plasmodium vivax Vaccine To Enhance Efficacy through a Combination of a CSP Virus-Like Particle and TRAP Viral Vectors. Infect Immun 2018; 86:IAI.00114-18. [PMID: 29986894 PMCID: PMC6105880 DOI: 10.1128/iai.00114-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Here, two leading P. vivax preerythrocytic vaccine candidate antigens, the P. vivax circumsporozoite protein (PvCSP) and the thrombospondin-related adhesion protein (PvTRAP) were delivered as a combined vaccine. This strategy provided a dose-sparing effect, with 100% sterile protection in mice using doses that individually conferred low or no protection, as with the unadjuvanted antigens PvTRAP (0%) and PvCSP (50%), and reached protection similar to that of adjuvanted components. Efficacy against malaria infection was assessed using a new mouse challenge model consisting of a double-transgenic Plasmodium berghei parasite simultaneously expressing PvCSP and PvTRAP used in mice immunized with the virus-like particle (VLP) Rv21 previously reported to induce high efficacy in mice using Matrix-M adjuvant, while PvTRAP was concomitantly administered in chimpanzee adenovirus and modified vaccinia virus Ankara (MVA) vectors (viral-vectored TRAP, or vvTRAP) to support effective induction of T cells. We examined immunity elicited by these vaccines in the context of two adjuvants approved for human use (AddaVax and Matrix-M). Matrix-M supported the highest anti-PvCSP antibody titers when combined with Rv21, and, interestingly, mixing PvCSP Rv21 and PvTRAP viral vectors enhanced immunity to malaria over levels provided by single vaccines.
Collapse
|
15
|
Lim C, Dankwa S, Paul AS, Duraisingh MT. Host Cell Tropism and Adaptation of Blood-Stage Malaria Parasites: Challenges for Malaria Elimination. Cold Spring Harb Perspect Med 2017; 7:a025494. [PMID: 28213436 PMCID: PMC5666624 DOI: 10.1101/cshperspect.a025494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for most of the mortality and morbidity associated with malaria in humans. Research and control efforts have focused on infections caused by P. falciparum and P. vivax, but have neglected other malaria parasite species that infect humans. Additionally, many related malaria parasite species infect nonhuman primates (NHPs), and have the potential for transmission to humans. For malaria elimination, the varied and specific challenges of all of these Plasmodium species will need to be considered. Recent advances in molecular genetics and genomics have increased our knowledge of the prevalence and existing diversity of the human and NHP Plasmodium species. We are beginning to identify the extent of the reservoirs of each parasite species in humans and NHPs, revealing their origins as well as potential for adaptation in humans. Here, we focus on the red blood cell stage of human infection and the host cell tropism of each human Plasmodium species. Determinants of tropism are unique among malaria parasite species, presenting a complex challenge for malaria elimination.
Collapse
Affiliation(s)
- Caeul Lim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Selasi Dankwa
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Aditya S Paul
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
16
|
Cabral-Miranda G, Heath MD, Gomes AC, Mohsen MO, Montoya-Diaz E, Salman AM, Atcheson E, Skinner MA, Kramer MF, Reyes-Sandoval A, Bachmann MF. Microcrystalline Tyrosine (MCT ®): A Depot Adjuvant in Licensed Allergy Immunotherapy Offers New Opportunities in Malaria. Vaccines (Basel) 2017; 5:vaccines5040032. [PMID: 28953265 PMCID: PMC5748599 DOI: 10.3390/vaccines5040032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
Microcrystalline Tyrosine (MCT®) is a widely used proprietary depot excipient in specific immunotherapy for allergy. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria. To this end, we formulated the circumsporozoite protein (CSP) of P. vivax in MCT and compared the induced immune responses to CSP formulated in PBS or Alum. Both MCT and Alum strongly increased immunogenicity of CSP compared to PBS in both C57BL/6 and BALB/c mice. Challenge studies in mice using a chimeric P. bergei expressing CSP of P. vivax demonstrated clinically improved symptoms of malaria with CSP formulated in both MCT and Alum; protection was, however, more pronounced if CSP was formulated in MCT. Hence, MCT may be an attractive biodegradable adjuvant useful for the development of novel prophylactic vaccines.
Collapse
Affiliation(s)
- Gustavo Cabral-Miranda
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Matthew D Heath
- Allergy Therapeutics (UK) Ltd. Dominion Way, Worthing BN14 8SA, UK.
| | - Ariane C Gomes
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Mona O Mohsen
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Eduardo Montoya-Diaz
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Ahmed M Salman
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Erwan Atcheson
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Murray A Skinner
- Allergy Therapeutics (UK) Ltd. Dominion Way, Worthing BN14 8SA, UK.
| | | | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Martin F Bachmann
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
- Immunology, RIA, Inselspital, University of Bern, 3010 Bern ,Switzerland.
| |
Collapse
|
17
|
Nazeri S, Zakeri S, Mehrizi AA, Djadid ND. Naturally acquired immune responses to thrombospondin-related adhesion protein (TRAP) of Plasmodium vivax in patients from areas of unstable malaria transmission. Acta Trop 2017; 173:45-54. [PMID: 28549910 DOI: 10.1016/j.actatropica.2017.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
A key tool for the control, elimination, and eradication of Plasmodium vivax is the development of an effective vaccine. The thrombospondin-related adhesion protein (TRAP) is one of the major sporozoite antigens that plays an important role in the invasion of mosquito salivary glands and hepatocytes by sporozoites. The main goal of this study was to evaluate the naturally acquired antibodies to the P. vivax TRAP (PvTRAP) in patients from malaria-endemic areas of Iran (n=116), Afghanistan (n=50), and Pakistan (n=50). The PvTRAP gene was expressed in Escherichia coli Rosetta (DE3)-pET23a and used as antigen in enzyme-linked immunosorbent assay (ELISA). The profile of immunoglobulin G (IgG) isotype and the avidity of IgG, IgG1, and IgG3 to PvTRAP, as well as the association between anti-PvTRAP isotype responses and host age were evaluated. Only 42.24% of Iranian, 38% of Afghani, and 44% of Pakistani patients infected with P. vivax had positive anti-PvTRAP IgG, and the prevalence of responders in the three countries did not differ significantly (P>0.05). Moreover, the prevalence of IgG1 and IgG3 antibody responses to PvTRAP showed no significant correlation with age (P>0.05). Individuals exposed to vivax malaria in the unstable malaria transmission areas are able to produce antibodies to the TRAP antigen at all ages in response to P. vivax infections. Finally, the presence of mature IgG1 and IgG3 antibodies with high to intermediate avidity against PvTRAP antigen (>60%) provide more information to understand the interactions between the host and P. vivax parasite. In summary, the present study provides data that support the rational development of an effective pre-erythrocytic stage vaccine based on PvTRAP antigen.
Collapse
|
18
|
Virus-Like Particle (VLP) Plus Microcrystalline Tyrosine (MCT) Adjuvants Enhance Vaccine Efficacy Improving T and B Cell Immunogenicity and Protection against Plasmodium berghei/vivax. Vaccines (Basel) 2017; 5:vaccines5020010. [PMID: 28468322 PMCID: PMC5492007 DOI: 10.3390/vaccines5020010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 02/01/2023] Open
Abstract
Vaccination is the most effective prophylactic tool against infectious diseases. Despite continued efforts to control malaria, the disease still generally represents a significant unmet medical need. Microcrystalline tyrosine (MCT) is a well described depot used in licensed allergy immunotherapy products and in clinical development. However, its proof of concept in prophylactic vaccines has only recently been explored. MCT has never been used in combination with virus-like particles (VLPs), which are considered to be one of the most potent inducers of cellular and humoral immune responses in mice and humans. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria either alone or combined with VLP using Plasmodium vivax thrombospondin-related adhesive protein (TRAP) as a target antigen. We chemically coupled PvTRAP to VLPs derived from the cucumber mosaic virus fused to a universal T-cell epitope of the tetanus toxin (CMVtt), formulated with MCT and compared the induced immune responses to PvTRAP formulated in PBS or Alum. The protective capacity of the various formulations was assessed using Plasmodium berghei expressing PvTRAP. All vaccine formulations using adjuvants and/or VLP increased humoral immunogenicity for PvTRAP compared to the antigen alone. The most proficient responder was the group of mice immunized with the vaccine formulated with PvTRAP-VLP + MCT. The VLP-based vaccine formulated in MCT also induced the strongest T cell response and conferred best protection against challenge with recombinant Plasmodium berghei. Thus, the combination of VLP with MCT may take advantage of the properties of each component and appears to be an alternative biodegradable depot adjuvant for development of novel prophylactic vaccines.
Collapse
|
19
|
Salman AM, Montoya-Díaz E, West H, Lall A, Atcheson E, Lopez-Camacho C, Ramesar J, Bauza K, Collins KA, Brod F, Reis F, Pappas L, González-Cerón L, Janse CJ, Hill AVS, Khan SM, Reyes-Sandoval A. Rational development of a protective P. vivax vaccine evaluated with transgenic rodent parasite challenge models. Sci Rep 2017; 7:46482. [PMID: 28417968 PMCID: PMC5394459 DOI: 10.1038/srep46482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
Development of a protective and broadly-acting vaccine against the most widely distributed human malaria parasite, Plasmodium vivax, will be a major step towards malaria elimination. However, a P. vivax vaccine has remained elusive by the scarcity of pre-clinical models to test protective efficacy and support further clinical trials. In this study, we report the development of a highly protective CSP-based P. vivax vaccine, a virus-like particle (VLP) known as Rv21, able to provide 100% sterile protection against a stringent sporozoite challenge in rodent models to malaria, where IgG2a antibodies were associated with protection in absence of detectable PvCSP-specific T cell responses. Additionally, we generated two novel transgenic rodent P. berghei parasite lines, where the P. berghei csp gene coding sequence has been replaced with either full-length P. vivax VK210 or the allelic VK247 csp that additionally express GFP-Luciferase. Efficacy of Rv21 surpassed viral-vectored vaccination using ChAd63 and MVA. We show for the first time that a chimeric VK210/247 antigen can elicit high level cross-protection against parasites expressing either CSP allele, which provide accessible and affordable models suitable to support the development of P. vivax vaccines candidates. Rv21 is progressing to GMP production and has entered a path towards clinical evaluation.
Collapse
Affiliation(s)
- Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.,Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eduardo Montoya-Díaz
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Heather West
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Amar Lall
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Erwan Atcheson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Cesar Lopez-Camacho
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Karolis Bauza
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Katharine A Collins
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Florian Brod
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Fernando Reis
- Universidade Federal de Minas Gerais, Belo Horizonte - MG - Brasil
| | - Leontios Pappas
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, 4ta Avenida Norte y Calle 19 Poniente, Tapachula, Chiapas, CP 30740, Mexico
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
20
|
Generation, characterization and immunogenicity of a novel chimeric recombinant protein based on Plasmodium vivax AMA-1 and MSP1 19. Vaccine 2017; 35:2463-2472. [PMID: 28341111 DOI: 10.1016/j.vaccine.2017.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/10/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
Abstract
Plasmodium vivax is the most widely distributed malaria species and the most prevalent species of malaria in America and Asia. Vaccine development against P. vivax is considered a priority in the global program for the eradication of malaria. Earlier studies have characterized the Apical Membrane Antigen 1 (AMA-1) ectodomain and the C-terminal region (19kDa) of the Merozoite Surface Protein 1 (MSP-1) of P. vivax as immunodominant antigens. Based on this characterization, we designed a chimeric recombinant protein containing both merozoite immunodominant domains (PvAMA166-MSP119). The recombinant PvAMA166-MSP119 was successfully expressed in Pichia pastoris and used to immunize two different mouse strains (BALB/c and C57BL/6) in the presence of the Poly (I:C) as an adjuvant. Immunization with the chimeric protein induced high antibody titers against both proteins in both strains of mice as detected by ELISA. Antisera also recognized the native proteins expressed on the merozoites of mature P. vivax schizonts. Moreover, this antigen was able to induce IFN-gamma-secreting cells in C57BL/6 mice. These findings indicate that this novel yeast recombinant protein containing PvAMA166 and PvMSP119 is advantageous, because of improved antibody titers and cellular immune response. Therefore, this formulation should be further developed for pre-clinical trials in non-human primates as a potential candidate for a P. vivax vaccine.
Collapse
|
21
|
Sepúlveda N, Morais CG, Mourão LC, Freire MF, Fontes CJF, Lacerda MVG, Drakeley CJ, Braga ÉM. Allele-specific antibodies to Plasmodium vivax merozoite surface protein-1: prevalence and inverse relationship to haemoglobin levels during infection. Malar J 2016; 15:559. [PMID: 27852258 PMCID: PMC5112628 DOI: 10.1186/s12936-016-1612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Antigenic polymorphisms are considered as one of the main strategies employed by malaria parasites to escape from the host immune responses after infections. Merozoite surface protein-1 (MSP-1) of Plasmodium vivax, a promising vaccine candidate, is a highly polymorphic protein whose immune recognition is not well understood. Methods and results The IgG responses to conserved (MSP-119) and polymorphic (block 2 and block 10) epitopes of PvMSP-1 were evaluated in 141 P. vivax infected patients. Ten recombinant proteins corresponding to block 2 (variants BR07, BP29, BP39, BP30, BEL) and block 10 (BR07, BP29, BP39, BP01, BP13) often observed in Brazilian P. vivax isolates were assessed by ELISA in order to determine levels of specific antibodies and their respective seroprevalence. The magnitude and the frequency of variant-specific responses were very low, except for BR07 variant (>40%), which was the predominant haplotype as revealed by block 10 PvMSP-1 gene sequencing. By contrast, 89% of patients had IgG against the C-terminal conserved domain (PvMSP-119), confirming the high antigenicity of this protein. Using multiple linear and logistic regression models, there was evidence for a negative association between levels of haemoglobin and several IgG antibodies against block 2 variant antigens, with the strongest association being observed for BP39 allelic version. This variant was also found to increase the odds of anaemia in these patients. Conclusions These findings may have implications for vaccine development and represent an important step towards a better understanding of the polymorphic PvMSP-1 domain as potential targets of vaccine development. These data highlight the importance of extending the study of these polymorphic epitopes of PvMSP-1 to different epidemiological settings. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1612-z) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016; 59:74-110. [DOI: 10.1159/000449503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
|
23
|
Mehrizi AA, Dodangeh F, Zakeri S, Djadid ND. Worldwide population genetic analysis and natural selection in the Plasmodium vivax Generative Cell Specific 1 (PvGCS1) as a transmission-blocking vaccine candidate. INFECTION GENETICS AND EVOLUTION 2016; 43:50-7. [PMID: 27180894 DOI: 10.1016/j.meegid.2016.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 11/28/2022]
Abstract
GENERATIVE CELL SPECIFIC 1 (GCS1) is one of the Transmission Blocking Vaccine (TBV) candidate antigens, which is expressed on the surface of male gametocytes and gametes of Plasmodium species. Since antigenic diversity could inhibit the successful development of a malaria vaccine, it is crucial to determine the diversity of gcs1 gene in global malaria-endemic areas. Therefore, gene diversity and selection of gcs1 gene were analyzed in Iranian Plasmodium vivax isolates (n=52) and compared with the corresponding sequences from worldwide clinical P. vivax isolates available in PlasmoDB database. Totally 12 SNPs were detected in the pvgcs1 sequences as compared to Sal-1 sequence. Five out of 12 SNPs including three synonymous (T797C, G1559A, and G1667T) and two amino acid replacements (Y133S and Q634P) were detected in Iranian pvgcs1 sequences. According to four amino acid replacements (Y133S, N575S, Q634P and D637N) observed in all world PvGCS1 sequences, totally 5 PvGCS1 haplotypes were detected in the world, that three of them observed in Iranian isolates including the PvGCS-A (133S/634Q, 92.3%), PvGCS-B (133Y/634Q, 5.8%), and PvGCS-C (133S/634P, 1.9%). The overall nucleotide diversity (π) for all 52 sequences of Iranian pvgcs1 gene was 0.00018±0.00006, and the value of dN-dS (-0.00031) were negative, however, it was not statistically significant. In comparison with global isolates, Iranian and PNG pvgcs1 sequences had the lowest nucleotide and haplotype diversity, while the highest nucleotide and haplotype diversity was observed in China population. Moreover, epitope prediction in this antigen showed that all B-cell epitopes were located in conserved regions. However, Q634P (in one Iranian isolate) and D637N (observed in Thailand, China, Vietnam and North Korea) mutations are involved in predicted IURs. The obtained results in this study could be used in development of PvGCS1 based malaria vaccine.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Fatemeh Dodangeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran; Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
24
|
Acquisition and Longevity of Antibodies to Plasmodium vivax Preerythrocytic Antigens in Western Thailand. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:117-24. [PMID: 26656115 PMCID: PMC4744911 DOI: 10.1128/cvi.00501-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022]
Abstract
Plasmodium vivax is now the dominant Plasmodium species causing malaria in Thailand, yet little is known about naturally acquired immune responses to this parasite in this low-transmission region. The preerythrocytic stage of the P. vivax life cycle is considered an excellent target for a malaria vaccine, and in this study, we assessed the stability of the seropositivity and the magnitude of IgG responses to three different preerythrocytic P. vivax proteins in two groups of adults from a region of western Thailand where malaria is endemic. These individuals were enrolled in a yearlong cohort study, which comprised one group that remained P. vivax free (by quantitative PCR [qPCR] detection, n = 31) and another that experienced two or more blood-stage P. vivax infections during the year of follow up (n = 31). Despite overall low levels of seropositivity, IgG positivity and magnitude were long-lived over the 1-year period in the absence of qPCR-detectable blood-stage P. vivax infections. In contrast, in the adults with two or more P. vivax infections during the year, IgG positivity was maintained, but the magnitude of the response to P. vivax circumsporozoite protein 210 (CSP210) decreased over time. These findings demonstrate that long-term humoral immunity can develop in low-transmission regions.
Collapse
|
25
|
From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015; 270:143-55. [PMID: 26474512 DOI: 10.1016/j.mbs.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on numerous intricate interactions between parasites and hosts, and while we have learned much about these interactions, many details are still obscure. It is evident that the combined host-parasite dynamics constitutes a complex system that involves components and processes at multiple scales of time, space, and biological organization. At one end of this hierarchy we know of individual molecules that play crucial roles for the survival of a parasite or for the response and survival of its host. At the other end, one realizes that the spread of infectious diseases by far exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, can quickly reach global proportions. The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-level disease and used quite different computational approaches. This restriction to a molecular, physiological, or epidemiological level was prudent, as it has produced solid pillars of a foundation from which it might eventually be possible to launch comprehensive, multi-scale modeling efforts that make full use of the recent advances in biology and, in particular, the various high-throughput methodologies accompanying the emerging -omics revolution. This special issue contains contributions from biologists and modelers, most of whom presented and discussed their work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. These contributions highlight some of the forays into a deeper understanding of the dynamics between parasites and their hosts, and the consequences of this dynamics for the spread and treatment of infectious diseases.
Collapse
|
26
|
Gutierrez JB, Galinski MR, Cantrell S, Voit EO. WITHDRAWN: From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015:S0025-5564(15)00085-1. [PMID: 25890102 DOI: 10.1016/j.mbs.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Juan B Gutierrez
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States .
| | - Mary R Galinski
- Emory University School of Medicine, Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States .
| | - Stephen Cantrell
- Department of Mathematics, University of Miami, Coral Gables, FL 33124, United States .
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States .
| |
Collapse
|
27
|
Yadava A, Hall CE, Sullivan JS, Nace D, Williams T, Collins WE, Ockenhouse CF, Barnwell JW. Protective efficacy of a Plasmodium vivax circumsporozoite protein-based vaccine in Aotus nancymaae is associated with antibodies to the repeat region. PLoS Negl Trop Dis 2014; 8:e3268. [PMID: 25329054 PMCID: PMC4199514 DOI: 10.1371/journal.pntd.0003268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022] Open
Abstract
We have previously reported that Vivax Malaria Protein 001 (VMP001), a vaccine candidate based on the circumsporozoite protein of Plasmodium vivax, is immunogenic in mice and rhesus monkeys in the presence of various adjuvants. In the present study, we evaluated the immunogenicity and efficacy of VMP001 formulated with a TLR9 agonist in a water-in-oil emulsion. Following immunization, the vaccine efficacy was assessed by challenging Aotus nancymaae monkeys with P. vivax sporozoites. Monkeys from both the low- and high-dose vaccine groups generated strong humoral immune responses to the vaccine (peak median titers of 291,622), and its subunits (peak median titers to the N-term, central repeat and C-term regions of 22,188; 66,120 and 179,947, respectively). 66.7% of vaccinated monkeys demonstrated sterile protection following challenge. Protection was associated with antibodies directed against the central repeat region. The protected monkeys had a median anti-repeat titer of 97,841 compared to 14,822 in the non-protected monkeys. This is the first report demonstrating P. vivax CSP vaccine-induced protection of Aotus monkeys challenged with P. vivax sporozoites. Plasmodium vivax is responsible for causing malaria in large parts of the globe, including regions with temperate climates not suited for the transmission of other Plasmodium species. In addition, P. vivax has the propensity to form dormant forms, known as hypnozoites, that can remain latent for weeks to months and reactive periodically to cause recurrent infections. Prevention of P. vivax malaria, more than any other form, will require a vaccine-based intervention due to limitations in treatment options. To this end, we tested the efficacy in non-human primates, of a vaccine based on circumsporozoite protein, a preerythrocytic stage antigen, of P. vivax. Aotus monkeys were immunized with clinical-grade antigen, combined with two immunomodulators, and then challenged with P. vivax sporozoites. Following challenge 66.7% of monkeys were protected. Analysis of serum samples indicated that protection was associated with antibodies to the central repeat region of the molecule, and that protection was lost upon waning of these antibodies. This is the first report demonstrating that active immunization with a recombinant protein can lead to complete protection in monkeys following sporozoite challenge, while also demonstrating a protective associate. Our data can help serve as a benchmark for down-selection of future vaccine formulations for P. vivax.
Collapse
Affiliation(s)
- Anjali Yadava
- Malaria Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Cysha E. Hall
- Malaria Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - JoAnn S. Sullivan
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Douglas Nace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tyrone Williams
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - William E. Collins
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christian F. Ockenhouse
- Malaria Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - John W. Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|