1
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
2
|
Du W, Adkisson C, Ye X, Duran CL, Chellakkan Selvanesan B, Gravekamp C, Oktay MH, McAuliffe JC, Condeelis JS, Panarelli NC, Norgard RJ, Sela Y, Stanger BZ, Entenberg D. SWIP-a stabilized window for intravital imaging of the murine pancreas. Open Biol 2022; 12:210273. [PMID: 35702996 PMCID: PMC9198798 DOI: 10.1098/rsob.210273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are grave illnesses with high levels of morbidity and mortality. Intravital imaging (IVI) is a powerful technique for visualizing physiological processes in both health and disease. However, the application of IVI to the murine pancreas presents significant challenges, as it is a deep, compliant, visceral organ that is difficult to access, easily damaged and susceptible to motion artefacts. Existing imaging windows for stabilizing the pancreas during IVI have unfortunately shown poor stability for time-lapsed imaging on the minutes to hours scale, or are unable to accommodate both the healthy and tumour-bearing pancreata. To address these issues, we developed an improved stabilized window for intravital imaging of the pancreas (SWIP), which can be applied to not only the healthy pancreas but also to solid tumours like PDAC. Here, we validate the SWIP and use it to visualize a variety of processes for the first time, including (1) single-cell dynamics within the healthy pancreas, (2) transformation from healthy pancreas to acute pancreatitis induced by cerulein, and (3) the physiology of PDAC in both autochthonous and orthotopically injected models. SWIP can not only improve the imaging stability but also expand the application of IVI in both benign and malignant pancreas diseases.
Collapse
Affiliation(s)
- Wei Du
- Breast Center, Peking University People's Hospital, Beijing, People's Republic of China
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Christian Adkisson
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L. Duran
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Benson Chellakkan Selvanesan
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maja H. Oktay
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - John C. McAuliffe
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Nicole C. Panarelli
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Robert J. Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogev Sela
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Entenberg
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
3
|
Assessment of Microvessel Permeability in Murine Atherosclerotic Vein Grafts Using Two-Photon Intravital Microscopy. Int J Mol Sci 2020; 21:ijms21239244. [PMID: 33287463 PMCID: PMC7730593 DOI: 10.3390/ijms21239244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 01/25/2023] Open
Abstract
Plaque angiogenesis and plaque hemorrhage are major players in the destabilization and rupture of atherosclerotic lesions. As these are dynamic processes, imaging of plaque angiogenesis, especially the integrity or leakiness of angiogenic vessels, can be an extremely useful tool in the studies on atherosclerosis pathophysiology. Visualizing plaque microvessels in 3D would enable us to study the architecture and permeability of adventitial and intimal plaque microvessels in advanced atherosclerotic lesions. We hypothesized that a comparison of the vascular permeability between healthy continuous and fenestrated as well as diseased leaky microvessels, would allow us to evaluate plaque microvessel leakiness. We developed and validated a two photon intravital microscopy (2P-IVM) method to assess the leakiness of plaque microvessels in murine atherosclerosis-prone ApoE3*Leiden vein grafts based on the quantification of fluorescent-dextrans extravasation in real-time. We describe a novel 2P-IVM set up to study vessels in the neck region of living mice. We show that microvessels in vein graft lesions are in their pathological state more permeable in comparison with healthy continuous and fenestrated microvessels. This 2P-IVM method is a promising approach to assess plaque angiogenesis and leakiness. Moreover, this method is an important advancement to validate therapeutic angiogenic interventions in preclinical atherosclerosis models.
Collapse
|
4
|
Tan WCC, Nerurkar SN, Cai HY, Ng HHM, Wu D, Wee YTF, Lim JCT, Yeong J, Lim TKH. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun (Lond) 2020; 40:135-153. [PMID: 32301585 PMCID: PMC7170662 DOI: 10.1002/cac2.12023] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Conventional immunohistochemistry (IHC) is a widely used diagnostic technique in tissue pathology. However, this technique is associated with a number of limitations, including high inter-observer variability and the capacity to label only one marker per tissue section. This review details various highly multiplexed techniques that have emerged to circumvent these constraints, allowing simultaneous detection of multiple markers on a single tissue section and the comprehensive study of cell composition, cellular functional and cell-cell interactions. Among these techniques, multiplex Immunohistochemistry/Immunofluorescence (mIHC/IF) has emerged to be particularly promising. mIHC/IF provides high-throughput multiplex staining and standardized quantitative analysis for highly reproducible, efficient and cost-effective tissue studies. This technique has immediate potential for translational research and clinical practice, particularly in the era of cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Chang Colin Tan
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | | | - Hai Yun Cai
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | - Harry Ho Man Ng
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
- Duke‐NUS Medical SchoolSingapore169856Singapore
| | - Duoduo Wu
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore169856Singapore
| | - Yu Ting Felicia Wee
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR)Singapore169856Singapore
| | - Joe Yeong
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR)Singapore169856Singapore
- Singapore Immunology NetworkAgency of Science (SIgN)Technology and Research (A*STAR)Singapore169856Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical PathologySingapore General HospitalSingapore169856Singapore
| |
Collapse
|
5
|
Sorrentino A, Eroglu E, Michel T. In vivo applications of chemogenetics in redox (patho)biology. OXIDATIVE STRESS 2020:97-112. [DOI: 10.1016/b978-0-12-818606-0.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Boulch M, Grandjean CL, Cazaux M, Bousso P. Tumor Immunosurveillance and Immunotherapies: A Fresh Look from Intravital Imaging. Trends Immunol 2019; 40:1022-1034. [DOI: 10.1016/j.it.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
|
7
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Procedures and applications of long-term intravital microscopy. Methods 2017; 128:52-64. [PMID: 28669866 DOI: 10.1016/j.ymeth.2017.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 01/05/2023] Open
Abstract
Intravital microscopy (IVM) is increasingly used in biomedical research to study dynamic processes at cellular and subcellular resolution in their natural environment. Long-term IVM especially can be applied to visualize migration and proliferation over days to months within the same animal without recurrent surgeries. Skin can be repetitively imaged without surgery. To intermittently visualize cells in other organs, such as liver, mammary gland and brain, different imaging windows including the abdominal imaging window (AIW), dermal imaging window (DIW) and cranial imaging window (CIW) have been developed. In this review, we describe the procedure of window implantation and pros and cons of each technique as well as methods to retrace a position of interest over time. In addition, different fluorescent biosensors to facilitate the tracking of cells for different purposes, such as monitoring cell migration and proliferation, are discussed. Finally, we consider new techniques and possibilities of how long-term IVM can be even further improved in the future.
Collapse
|
9
|
van Grinsven E, Prunier C, Vrisekoop N, Ritsma L. Two-Photon Intravital Microscopy Animal Preparation Protocol to Study Cellular Dynamics in Pathogenesis. Methods Mol Biol 2017; 1563:51-71. [PMID: 28324601 DOI: 10.1007/978-1-4939-6810-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two-photon intravital microscopy (2P-IVM) is an advanced imaging platform that allows the visualization of dynamic processes at subcellular resolution in vivo. Dynamic processes like cell migration, cell proliferation, cell-cell interactions, and cell signaling have an interactive character and occur in complex environments. Hence, it is of pivotal importance to study these processes in living animals, using for example 2P-IVM. 2P-IVM can be performed on a variety of tissues, from the skin of the animal to internal organs, and a variety of methods can be utilized to perform 2P-IVM on these tissues. Here, we discuss the protocols and considerations for four of those 2P-IVM methods, namely tissue explant imaging, skin imaging, surgical exposure imaging, and multi-day window imaging. We carefully compare and explain in depth how to set up each method. Lastly, in the notes section we mention some alternative solutions for the 2P-IVM methods described. In conclusion, this protocol can be used as a guide towards deciding which 2P-IVM method to use and to enable the setup of this method.
Collapse
Affiliation(s)
- Erinke van Grinsven
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chloé Prunier
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laila Ritsma
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Vinegoni C, Lee S, Aguirre AD, Weissleder R. New techniques for motion-artifact-free in vivo cardiac microscopy. Front Physiol 2015; 6:147. [PMID: 26029116 PMCID: PMC4428079 DOI: 10.3389/fphys.2015.00147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/25/2015] [Indexed: 11/27/2022] Open
Abstract
Intravital imaging microscopy (i.e., imaging in live animals at microscopic resolution) has become an indispensable tool for studying the cellular micro-dynamics in cancer, immunology and neurobiology. High spatial and temporal resolution, combined with large penetration depth and multi-reporter visualization capability make fluorescence intravital microscopy compelling for heart imaging. However, tissue motion caused by cardiac contraction and respiration critically limits its use. As a result, in vitro cell preparations or non-contracting explanted heart models are more commonly employed. Unfortunately, these approaches fall short of understanding the more complex host physiology that may be dynamic and occur over longer periods of time. In this review, we report on novel technologies, which have been recently developed by our group and others, aimed at overcoming motion-induced artifacts and capable of providing in vivo subcellular resolution imaging in the beating mouse heart. The methods are based on mechanical stabilization, image processing algorithms, gated/triggered acquisition schemes or a combination of both. We expect that in the immediate future all these methodologies will have considerable applications in expanding our understanding of the cardiac biology, elucidating cardiomyocyte function and interactions within the organism in vivo, and ultimately improving the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Sungon Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA ; School of Electrical Engineering, Hanyang University Ansan, South Korea
| | - Aaron D Aguirre
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| |
Collapse
|
11
|
Sramkova M, Parente L, Wigand T, Aye MP, Shitara A, Weigert R. Polyethylenimine-mediated expression of transgenes in the acinar cells of rats salivary glands in vivo. Front Cell Dev Biol 2015; 2:74. [PMID: 25621283 PMCID: PMC4288386 DOI: 10.3389/fcell.2014.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/17/2014] [Indexed: 01/04/2023] Open
Abstract
Non viral-mediated transfection of plasmid DNA provides a fast and reliable way to express various transgenes in selected cell populations in live animals. Here, we show an improvement of a previously published method that is based on injecting plasmid DNA into the ductal system of the salivary glands in live rats. Specifically, using complexes between plasmid DNA and polyethyleneimine (PEI) we show that the expression of the transgenes is directed selectively to the salivary acinar cells. PEI does not affect the ability of cells to undergo regulated exocytosis, which was one of the main drawbacks of the previous methods. Moreover PEI does not affect the proper localization and targeting of transfected proteins, as shown for the apical plasma membrane water channel aquaporin 5 (AQP5). Overall, this approach, coupled with the use of intravital microscopy, permits to conduct localization and functional studies under physiological conditions, in a rapid, reliable, and affordable fashion.
Collapse
Affiliation(s)
- Monika Sramkova
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Laura Parente
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Timothy Wigand
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Myo-Pale' Aye
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Akiko Shitara
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
12
|
Alieva M, Ritsma L, Giedt RJ, Weissleder R, van Rheenen J. Imaging windows for long-term intravital imaging: General overview and technical insights. INTRAVITAL 2014; 3:e29917. [PMID: 28243510 PMCID: PMC5312719 DOI: 10.4161/intv.29917] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/11/2023]
Abstract
Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure.
Collapse
Affiliation(s)
- Maria Alieva
- Cancer Genomics Netherlands; Hubrecht Institute-KNAW and University Medical Centre Utrecht; CT Utrecht, The Netherlands
| | - Laila Ritsma
- Center for Cancer Research and Center for Regenerative Medicine; Massachusetts General Hospital; Richard B. Simches Research Center; Harvard Medical School; Boston, MA USA; Broad Institute of Harvard and Massachusetts Institute for Technology; Cambridge, MA USA
| | - Randy J Giedt
- Center for Systems Biology; Massachusetts General Hospital; Richard B. Simches Research Center; Harvard Medical School; Boston, MA USA
| | - Ralph Weissleder
- Center for Systems Biology; Massachusetts General Hospital; Richard B. Simches Research Center; Harvard Medical School; Boston, MA USA; Department of Systems Biology; Harvard Medical School; Boston, MA USA
| | - Jacco van Rheenen
- Cancer Genomics Netherlands; Hubrecht Institute-KNAW and University Medical Centre Utrecht; CT Utrecht, The Netherlands
| |
Collapse
|
13
|
Lee S, Vinegoni C, Sebas M, Weissleder R. Automated motion artifact removal for intravital microscopy, without a priori information. Sci Rep 2014; 4:4507. [PMID: 24676021 PMCID: PMC3968488 DOI: 10.1038/srep04507] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/11/2014] [Indexed: 11/30/2022] Open
Abstract
Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe limitations on the effective imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology capable of automatically removing motion artifacts during intravital microscopy imaging of organs and orthotopic tumors. The method is universally applicable to different laser scanning modalities including confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the physiological motion source and imaged organ. The methodology, which is based on raw data acquisition followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation in mice heart, kidney, liver, pancreas and dorsal window chamber.
Collapse
Affiliation(s)
- Sungon Lee
- 1] Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA [2] Interaction and Robotics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, Korea [3]
| | - Claudio Vinegoni
- 1] Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA [2]
| | - Matthew Sebas
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Ralph Weissleder
- 1] Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA [2] Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
14
|
Vinegoni C, Lee S, Feruglio PF, Weissleder R. Advanced Motion Compensation Methods for Intravital Optical Microscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2014; 20:10.1109/JSTQE.2013.2279314. [PMID: 24273405 PMCID: PMC3832946 DOI: 10.1109/jstqe.2013.2279314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Sungon Lee
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA. He is now with Interaction and Robotics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul 136-791 Korea
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA and with the Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| |
Collapse
|
15
|
Frevert U, Nacer A, Cabrera M, Movila A, Leberl M. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int 2013; 63:171-86. [PMID: 24076429 DOI: 10.1016/j.parint.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 01/10/2023]
Abstract
Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as the brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25 Street, New York, NY 10010, USA.
| | | | | | | | | |
Collapse
|
16
|
Weigert R, Porat-Shliom N, Amornphimoltham P. Imaging cell biology in live animals: ready for prime time. ACTA ACUST UNITED AC 2013; 201:969-79. [PMID: 23798727 PMCID: PMC3691462 DOI: 10.1083/jcb.201212130] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobiology, immunology, and cancer biology.
Collapse
Affiliation(s)
- Roberto Weigert
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
17
|
Ritsma L, Vrisekoop N, van Rheenen J. In vivo imaging and histochemistry are combined in the cryosection labelling and intravital microscopy technique. Nat Commun 2013; 4:2366. [DOI: 10.1038/ncomms3366] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
|
18
|
Janssen A, Beerling E, Medema R, van Rheenen J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS One 2013; 8:e64029. [PMID: 23691140 PMCID: PMC3654962 DOI: 10.1371/journal.pone.0064029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Taxanes, such as docetaxel, are microtubule-targeting chemotherapeutics that have been successfully used in the treatment of cancer. Based on data obtained from cell cultures, it is believed that taxanes induce tumor cell death by specifically perturbing mitotic progression. Here, we report on data that suggest that this generally accepted view may be too simplified. We describe a high-resolution intravital imaging method to simultaneously visualize mitotic progression and the onset of apoptosis. To directly compare in vitro and in vivo data, we have visualized the effect of docetaxel on mitotic progression in mouse and human colorectal tumor cell lines both in vitro and in isogenic tumors in mice. We show that docetaxel-induced apoptosis in vitro occurs via mitotic cell death, whereas the vast majority of tumor cells in their natural environment die independent of mitotic defects. This demonstrates that docetaxel exerts its anti-tumor effects in vivo through means other than mitotic perturbation. The differences between in vitro and in vivo mechanisms of action of chemotherapeutics may explain the limited response to many of the anti-mitotic agents that are currently validated in clinical trials. Our data illustrate the requirement and power of our intravital imaging technique to study and validate the mode of action of chemotherapeutic agents in vivo, which will be essential to understand and improve their clinical efficacy.
Collapse
Affiliation(s)
- Aniek Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evelyne Beerling
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - René Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| | - Jacco van Rheenen
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| |
Collapse
|
19
|
Abstract
High-resolution intravital microscopy through imaging windows has become an indispensable technique for the long-term visualization of dynamic processes in living animals. Easily accessible sites such as the skin, the breast and the skull can be imaged using various different imaging windows; however, long-term imaging studies on cellular processes in abdominal organs are more challenging. These processes include colonization of the liver by metastatic tumor cells and the development of an immune response in the spleen. We have recently developed an abdominal imaging window (AIW) that allows long-term imaging of the liver, the pancreas, the intestine, the kidney and the spleen. Here we describe the detailed protocol for the optimal surgical implantation of the AIW, which takes ∼1 h, and subsequent multiphoton imaging, which takes up to 1 month.
Collapse
|
20
|
Vinegoni C, Lee S, Feruglio PF, Marzola P, Nahrendorf M, Weissleder R. Sequential average segmented microscopy for high signal-to-noise ratio motion-artifact-free in vivo heart imaging. BIOMEDICAL OPTICS EXPRESS 2013; 4:2095-106. [PMID: 24156067 PMCID: PMC3799669 DOI: 10.1364/boe.4.002095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 05/21/2023]
Abstract
In vivo imaging is often severely compromised by cardiovascular and respiratory motion. Highly successful motion compensation techniques have been developed for clinical imaging (e.g. magnetic resonance imaging) but the use of more advanced techniques for intravital microscopy is largely unexplored. Here, we implement a sequential cardiorespiratory gating scheme (SCG) for averaged microscopy. We show that SCG is very efficient in eliminating motion artifacts, is highly practical, enables high signal-to-noise ratio (SNR) in vivo imaging, and yields large field of views. The technique is particularly useful for high-speed data acquisition or for imaging scenarios where the fluorescence signal is not significantly above noise or background levels.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
- Equal contribution
| | - Sungon Lee
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
- Interaction and Robotics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, South Korea
- Equal contribution
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Strada le Grazie 15, I-37134 Verona, Italy
| | - Matthias Nahrendorf
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston 02114, USA
| |
Collapse
|
21
|
Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals. Cells 2012; 1:1121-32. [PMID: 24710546 PMCID: PMC3901136 DOI: 10.3390/cells1041121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023] Open
Abstract
Intravital microscopy has enabled imaging of the dynamics of subcellular structures in live animals, thus opening the door to investigating membrane trafficking under physiological conditions. Here, we sought to determine whether the architecture and the environment of a fully developed tissue influences the dynamics of endocytic processes. To this aim, we imaged endocytosis in the stromal cells of rat salivary glands both in situ and after they were isolated and cultured on a solid surface. We found that the internalization of transferrin and dextran, two molecules that traffic via distinct mechanisms, is substantially altered in cultured cells, supporting the idea that the three dimensional organization of the tissue and the cues generated by the surrounding environment strongly affect membrane trafficking events.
Collapse
|
22
|
Ritsma L, Steller EJA, Beerling E, Loomans CJM, Zomer A, Gerlach C, Vrisekoop N, Seinstra D, van Gurp L, Schafer R, Raats DA, de Graaff A, Schumacher TN, de Koning EJP, Rinkes IHB, Kranenburg O, Rheenen JV. Intravital Microscopy Through an Abdominal Imaging Window Reveals a Pre-Micrometastasis Stage During Liver Metastasis. Sci Transl Med 2012; 4:158ra145. [DOI: 10.1126/scitranslmed.3004394] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Masedunskas A, Milberg O, Porat-Shliom N, Sramkova M, Wigand T, Amornphimoltham P, Weigert R. Intravital microscopy: a practical guide on imaging intracellular structures in live animals. BIOARCHITECTURE 2012; 2:143-57. [PMID: 22992750 PMCID: PMC3696059 DOI: 10.4161/bioa.21758] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/05/2012] [Accepted: 08/07/2012] [Indexed: 01/05/2023]
Abstract
Intravital microscopy is an extremely powerful tool that enables imaging several biological processes in live animals. Recently, the ability to image subcellular structures in several organs combined with the development of sophisticated genetic tools has made possible extending this approach to investigate several aspects of cell biology. Here we provide a general overview of intravital microscopy with the goal of highlighting its potential and challenges. Specifically, this review is geared toward researchers that are new to intravital microscopy and focuses on practical aspects of carrying out imaging in live animals. Here we share the know-how that comes from first-hand experience, including topics such as choosing the right imaging platform and modality, surgery and stabilization techniques, anesthesia and temperature control. Moreover, we highlight some of the approaches that facilitate subcellular imaging in live animals by providing numerous examples of imaging selected organelles and the actin cytoskeleton in multiple organs.
Collapse
Affiliation(s)
- Andrius Masedunskas
- Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Oleg Milberg
- Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA
- Department of Chemical and Biochemical Engineering; Rutgers University; Piscataway, NJ USA
- Department of Biomedical Engineering; Rutgers University; Piscataway, NJ USA
| | - Natalie Porat-Shliom
- Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA
| | - Monika Sramkova
- Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA
| | - Tim Wigand
- Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA
| | - Panomwat Amornphimoltham
- Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|