1
|
Laplante P, Rosa R, Nebot-Bral L, Goulas J, Pouvelle C, Nikolaev S, Silvin A, Kannouche PL. Effect of MisMatch repair deficiency on metastasis occurrence in a syngeneic mouse model. Neoplasia 2025; 62:101145. [PMID: 39985912 PMCID: PMC11905862 DOI: 10.1016/j.neo.2025.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Mismatch repair deficiency leads to high mutation rates and microsatellite instability (MSI-H), associated with immune infiltration and responsiveness to immunotherapies. In early stages, MSI-H tumors generally have a better prognosis and lower metastatic potential than microsatellite-stable (MSS) tumors, especially in colorectal cancer. However, in advanced stages, MSI-H tumors lose this survival advantage for reasons that remain unclear. We developed a syngeneic mouse model of MSI cancer by knocking out the MMR gene Msh2 in the metastatic 4T1 breast cancer cell line. This model mirrored genomic features of MSI-H cancers and showed reduction in metastatic incidence compared to their MSS counterparts. In MSI-H tumors, we observed an enrichment of immune gene-signatures that negatively correlated with metastasis incidence. A hybrid epithelial-mesenchymal signature, related to aggressiveness was detected only in metastatic MSI-H tumors. Interestingly, we identified immature myeloid cells at primary and metastatic sites in MSI-H tumor-bearing mice, suggesting that MMR deficiency elicits specific immune responses beyond T-cell activation.
Collapse
Affiliation(s)
- Pierre Laplante
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Reginaldo Rosa
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Laetitia Nebot-Bral
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Jordane Goulas
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Caroline Pouvelle
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Sergey Nikolaev
- Paris-Saclay Université, Inserm-U981, Gustave Roussy, Villejuif, France
| | - Aymeric Silvin
- Paris-Saclay Université, Inserm-U1015, Gustave Roussy, Villejuif, France
| | - Patricia L Kannouche
- Paris-Saclay Université, CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France.
| |
Collapse
|
2
|
Norton J, Stiff P. CAR-T therapy toxicities: the importance of macrophages in their development and possible targets for their management. Discov Oncol 2025; 16:49. [PMID: 39812904 PMCID: PMC11735762 DOI: 10.1007/s12672-025-01776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
CAR-T cell therapies have risen to prominence over the last decade, and their indications are increasing with several products approved as early as second line in Large B Cell non-Hodgkin Lymphomas. Their major toxicities are the cytokine release syndrome (CRS) and the Immune-effector Cell Associated Neurotoxicity Syndrome (ICANS). These entities involve a hyperinflammatory cascade which is amplified through the mononuclear phagocytic system (MPS). Herein, we review the immune mediated adverse events related to CAR therapy, including their pathophysiologies, and current therapies. In particular, we discuss the emerging role of the MPS in both the toxicity and efficacy of CAR-T therapy, and possible avenues for the modulation of the MPS to optimize efficacy while minimizing toxicity.
Collapse
Affiliation(s)
- Joseph Norton
- Internal Medicine Department, Division of Hematology, Oncology, and Transplant, University of Minnesota, 516 Delaware Street SE, PWB 14-100, Minneapolis, MN, 55455, USA.
| | - Patrick Stiff
- Internal Medicine Department, Division of Hematology-Oncology, Loyola University Medical Center, 2160 S 1St Ave, Maywood, IL, 60153, USA
| |
Collapse
|
3
|
McKendrick JG, Emmerson E. The role of salivary gland macrophages in infection, disease and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:1-34. [PMID: 35636925 DOI: 10.1016/bs.ircmb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration. The major salivary glands are glandular tissues that are exposed to pathogens through their close connection with the oral cavity. Moreover, there are a number of diseases that preferentially destroy the salivary glands, causing irreversible injury, highlighting the need for a regenerative strategy. However, characterization of macrophages in the mouse and human salivary glands is sparse and has been mostly determined from studies in infection or autoimmune pathologies. In this review, we describe the current literature around salivary gland macrophages, and speculate about the niches they inhabit and how their role in development, regeneration and cancer may inform future therapeutic advances.
Collapse
Affiliation(s)
- John G McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
4
|
The influence of M-CSF on fracture healing in a mouse model. Sci Rep 2021; 11:22326. [PMID: 34785696 PMCID: PMC8595369 DOI: 10.1038/s41598-021-01673-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Macrophage colony-stimulating factor 1 (M-CSF) is known to play a critical role during fracture repair e.g. by recruiting stem cells to the fracture site and impacting hard callus formation by stimulating osteoclastogenesis. The aim of this experiment was to study the impact of systemic M-CSF application and its effect on bony healing in a mouse model of femoral osteotomy. Doing so, we studied 61 wild type (wt) mice (18-week-old female C57BL/6) which were divided into three groups: (1) femoral osteotomy, (2) femoral osteotomy + stabilization with external fixator and (3) femoral osteotomy + stabilization with external fixator + systemic M-CSF application. Further, 12 op/op mice underwent femoral osteotomy and served as proof of concept. After being sacrificed at 28 days bony bridging was evaluated ex vivo with µCT, histological and biomechanical testing. Systemic M-CSF application impacted osteoclasts numbers, which were almost as low as found in op/op mice. Regarding callus size, the application of M-CSF in wt mice resulted in significantly larger calluses compared to wt mice without systemic M-CSF treatment. We further observed an anabolic effect of M-CSF application resulting in increased trabecular thickness compared to wt animals without additional M-CSF application. Systemic M-CSF application did not alter biomechanical properties in WT mice. The impact of M-CSF application in a mouse model of femoral osteotomy was oppositional to what we were expecting. While M-CSF application had a distinct anabolic effect on callus size as well as trabecular thickness, this on bottom line did not improve biomechanical properties. We hypothesize that in addition to the well-recognized negative effects of M-CSF on osteoclast numbers this seems to further downstream cause a lack of feedback on osteoblasts. Ultimately, continuous M-CSF application in the absence of co-stimulatory signals (e.g. RANKL) might overstimulate the hematopoietic linage in favor of tissue macrophages instead of osteoclasts.
Collapse
|
5
|
Kähkönen TE, Halleen JM, Bernoulli J. Osteoimmuno-Oncology: Therapeutic Opportunities for Targeting Immune Cells in Bone Metastasis. Cells 2021; 10:1529. [PMID: 34204474 PMCID: PMC8233913 DOI: 10.3390/cells10061529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies provide a potential treatment option for currently incurable bone metastases. Bone marrow is an important secondary lymphoid organ with a unique immune contexture. Even at non-disease state immune cells and bone cells interact with each other, bone cells supporting the development of immune cells and immune cells regulating bone turnover. In cancer, tumor cells interfere with this homeostatic process starting from formation of pre-metastatic niche and later supporting growth of bone metastases. In this review, we introduce a novel concept osteoimmuno-oncology (OIO), which refers to interactions between bone, immune and tumor cells in bone metastatic microenvironment. We also discuss therapeutic opportunities of targeting immune cells in bone metastases, and associated efficacy and safety concerns.
Collapse
Affiliation(s)
| | | | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| |
Collapse
|
6
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J, Wang Z. Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 2021; 11:e288. [PMID: 33463063 PMCID: PMC7805405 DOI: 10.1002/ctm2.288] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shengqi Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Xuan Wang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Yifeng Zheng
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bowen Yang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Juping Zhang
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Bo Pan
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Jianli Gao
- Academy of Traditional Chinese MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiyu Wang
- The Research Center for Integrative MedicineSchool of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- The Research Center of Integrative Cancer MedicineDiscipline of Integrated Chinese and Western MedicineThe Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangdong Provincial Hospital of Chinese MedicineGuangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
7
|
Beirão BCB, Raposo TP, Imamura LM, Ingberman M, Hupp T, Vojtěšek B, Argyle DJ. A blocking antibody against canine CSF-1R maturated by limited CDR mutagenesis. Antib Ther 2020; 3:193-204. [PMID: 33937625 PMCID: PMC7990251 DOI: 10.1093/abt/tbaa018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
CSF-1R is a receptor mostly associated with the mononuclear phagocytic system. However, its expression within tumors has been linked with poor prognosis in both humans and dogs. Accordingly, several reports have demonstrated the beneficial effects of blocking CSF-1R in model systems of cancer. In this study, we generated a monoclonal antibody that could block CSF-1R in dogs as the first step to develop an anticancer drug for this species. Initially, an antibody was raised by the hybridoma methodology against the fragment responsible for receptor dimerization. mAb3.1, one of the resulting hybridoma clones, was able to bind macrophages in fixed tissues and was shown to inhibit cells of the mononuclear phagocytic line. Nevertheless, mAb 3.1 could not bind to some glycoforms of the receptor in its native form, while also demonstrating cross-reactivity with other proteins. To enhance binding properties of the mAb, five amino acids of the complementarity-determining region 2 of the variable heavy chain of mAb3.1 were mutated by PCR, and the variant scFv clones were screened by phage display. The selected scFv clones demonstrated improved binding to the native receptor as well as increased anti-macrophage activity. The resulting scFv antibody fragment presented here has the potential for use in cancer patients and in inflammatory diseases. Furthermore, this work provides insights into the use of such restricted mutations in antibody engineering.
Collapse
Affiliation(s)
- Breno C B Beirão
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh-Easter Bush, Midlothian, EH25 9RG, UK
| | - Teresa P Raposo
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh-Easter Bush, Midlothian, EH25 9RG, UK
| | - Louise M Imamura
- Department of Research and Development, Imunova Análises Biológicas, Curitiba, PR 80215-182, Brazil
| | - Max Ingberman
- Department of Research and Development, Imunova Análises Biológicas, Curitiba, PR 80215-182, Brazil
| | - Ted Hupp
- Cancer Research UK Edinburgh Centre MRC Institute of Genetics & Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Bořivoj Vojtěšek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 656 53, Czech Republic
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh-Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
8
|
Xun Q, Wang Z, Hu X, Ding K, Lu X. Small-Molecule CSF1R Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:3944-3966. [PMID: 31215373 DOI: 10.2174/1573394715666190618121649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Persuasive evidence has been presented linking the infiltration of Tumor-Associated Macrophages (TAMs) with the driving force of tumorigenesis and in the suppression of antitumor immunity. In this context CSF1R, the cellular receptor for Colony Stimulating Factor-1 (CSF1) and Interleukin 34 (IL-34), occupies a central role in manipulating the behavior of TAMs and the dysregulation of CSF1R signaling has been implicated in cancer progression and immunosuppression in many specific cancers. Consequently, CSF1R kinase has been a target of great interest in cancer treatment and significant research efforts have focused on the development of smallmolecule CSF1R inhibitors. In this review, we highlight current progress on the development of these small molecule CSF1R inhibitors as anticancer agents. Special attention is paid to the compounds available in advanced clinical trials.
Collapse
Affiliation(s)
- Qiuju Xun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhen Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xianglong Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
9
|
Ma J, He P, Zhao C, Ren Q, Dong Z, Qiu J, Jing Y, Liu S, Du Y. A Designed α-GalCer Analog Promotes Considerable Th1 Cytokine Response by Activating the CD1d-iNKT Axis and CD11b-Positive Monocytes/Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000609. [PMID: 32714765 PMCID: PMC7375225 DOI: 10.1002/advs.202000609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Selective helper T cell 1 (Th1) priming agonists are a promising area of investigation for immunotherapeutic treatment of various diseases. α-galactosylceramide (α-GalCer, KRN7000), a well-studied Th1-polarizer, simultaneously induces helper T cell 2 (Th2)-type responses, which is a major drawback for its clinical applications. Based on surflex-docking computation, α-GalCer-diol, with added hydroxyl groups in the acyl chain, is designed and synthesized. Structural analyses reveal stronger affinity between α-GalCer-diol and cluster of differentiation 1d (CD1d), leading to enhanced antigen presentation by dendritic cells (DCs) and self-activation, as reflected by tight binding of the T-cell receptor (TCR)/KRN7000/CD1d ternary complex and elevated production of interleukin 12 (IL-12) and interferon-γ (IFN-γ). Consequently, invariant natural killer T cells (iNKTs) are activated and exhibit an improved Th1-type cytokine profile ex vivo and in vivo. Different from KRN7000, α-GalCer-diol markedly boosts the expansion of the CD11b+ subpopulation and enhances IFN-γ content in CD11b+ cells. These reinforced Th1-type responses collectively endow α-GalCer-diol more robust antitumor activity in a xenograft animal model using B16-F10 melanoma cells. Together, the data demonstrate a new mechanism through which α-GalCer-diol induces stronger Th1-type responses by stimulating CD11b+ leukocyte expansion and DC-conducted CD1d-restricted and TCR-mediated iNKT activation. Hence, this study may facilitate the development of novel Th1 priming agonists.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peng He
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yang Jing
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- National Engineering Research Center for Carbohydrate SynthesisJiangxi Normal UniversityNanchangJiangxi330022China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
10
|
Bonnefoy N, Olive D, Vanhove B. [Next generation of anti-immune checkpoints antibodies]. Med Sci (Paris) 2020; 35:966-974. [PMID: 31903901 DOI: 10.1051/medsci/2019193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoints balance initial antigen-driven T cell stimulation by enhancing or dampening activation, allowing co-existence of efficient immune responses and maintenance of self-tolerance. In oncology, checkpoints currently targeted by inhibitors to amplify activity of T cell, NK cells or myeloid cells responses comprise CTLA-4 (cytolytic T-lymphocyte-associated antigen 4 or CD152), PD-1 (programmed cell death 1, or CD279), PD-L1 ( programmed cell death-ligand 1, or CD274), LAG-3 (Lymphocyte-activation gene 3, or CD223), TIM3 (T-cell immunoglobulin and mucin-domain containing-3), TIGIT (T cell immunoreceptor with Ig and ITIM domains ), VISTA (V-domain Ig suppressor of T cell activation), B7/H3 (or CD276), KIR (killer-cell immunoglobulin-like receptor), NKG2A, CD39, CD73, CSF1R (colony-stimulating factor 1 receptor), CD47 or CD172a. Other "checkpoints" are being pharmacologically triggered in order to directly amplify T cell co-stimulation. Among these molecules, CD28, CD137 (also called 4-1BB), OX40 [also called tumor necrosis factor receptor superfamily, member 4 (TNFRSF4)], GITR (Glucocorticoid-induced tumor necrosis factor receptor family-related protein) or CD40 are also tested in oncology, most often in combination with an inhibitory checkpoint inhibitor. In autoimmune and inflammatory diseases, checkpoint inhibitors or activators (LAG-3, CD28, CD40L) are also being tested. In this review, we focus on some modulators of immune checkpoints for which the mechanism of action has been particularly studied. As this description cannot be exhaustive, we have grouped in Table I all monoclonal antibodies (MAbs) or recombinant proteins in clinical use (to our knowledge), modulating the action of a control point of the immune system.
Collapse
Affiliation(s)
- Nathalie Bonnefoy
- IRCM, Inserm, Université de Montpellier, ICM, Montpellier, F-34298 France
| | - Daniel Olive
- Centre de recherche en cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Aix-Marseille Université et Institut Paoli-Calmettes, Marseille, France
| | - Bernard Vanhove
- Centre de recherche en transplantation et immunologie (CRTI) UMR1064, Inserm, Université de Nantes, Nantes, 44093, France
| |
Collapse
|
11
|
Voets E, Paradé M, Lutje Hulsik D, Spijkers S, Janssen W, Rens J, Reinieren-Beeren I, van den Tillaart G, van Duijnhoven S, Driessen L, Habraken M, van Zandvoort P, Kreijtz J, Vink P, van Elsas A, van Eenennaam H. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. J Immunother Cancer 2019; 7:340. [PMID: 31801627 PMCID: PMC6894304 DOI: 10.1186/s40425-019-0772-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/05/2019] [Indexed: 11/30/2022] Open
Abstract
Background Accumulating preclinical data indicate that targeting the SIRPα/CD47 axis alone or in combination with existing targeted therapies or immune checkpoint inhibitors enhances tumor rejection. Although several CD47-targeting agents are currently in phase I clinical trials and demonstrate activity in combination therapy, high and frequent dosing was required and safety signals (acute anemia, thrombocytopenia) were recorded frequently as adverse events. Based on the restricted expression pattern of SIRPα we hypothesized that antibodies targeting SIRPα might avoid some of the concerns noted for CD47-targeting agents. Methods SIRPα-targeting antibodies were generated and characterized for binding to human SIRPα alleles and blockade of the interaction with CD47. Functional activity was established in vitro using human macrophages or neutrophils co-cultured with human Burkitt’s lymphoma cell lines. The effect of SIRPα versus CD47 targeting on human T-cell activation was studied using an allogeneic mixed lymphocyte reaction and a Staphylococcus enterotoxin B-induced T-cell proliferation assay. Potential safety concerns of the selected SIRPα-targeting antibody were addressed in vitro using a hemagglutination assay and a whole blood cytokine release assay, and in vivo in a single-dose toxicity study in cynomolgus monkeys. Results The humanized monoclonal IgG2 antibody ADU-1805 binds to all known human SIRPα alleles, showing minimal binding to SIRPβ1, while cross-reacting with SIRPγ, and potently blocking the interaction of SIRPα with CD47. Reduced FcγR binding proved critical to retaining its function towards phagocyte activation. In vitro characterization demonstrated that ADU-1805 promotes macrophage phagocytosis, with similar potency to anti-CD47 antibodies, and enhances neutrophil trogocytosis. Unlike CD47-targeting agents, ADU-1805 does not interfere with T-cell activation and is not expected to require frequent and extensive dosing due to the restricted expression of SIRPα to cells of the myeloid lineage. ADU-1805 is cross-reactive to cynomolgus monkey SIRPα and upon single-dose intravenous administration in these non-human primates (NHPs) did not show any signs of anemia, thrombocytopenia or other toxicities. Conclusions Blocking the SIRPα-CD47 interaction via SIRPα, while similarly efficacious in vitro, differentiates ADU-1805 from CD47-targeting agents with respect to safety and absence of inhibition of T-cell activation. The data presented herein support further advancement of ADU-1805 towards clinical development.
Collapse
Affiliation(s)
- Erik Voets
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | - Marc Paradé
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | | | | | | | - Joost Rens
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | | | | | | | | | | | | | | | - Paul Vink
- Aduro Biotech Europe B.V, Oss, The Netherlands
| | - Andrea van Elsas
- Aduro Biotech Europe B.V, Oss, The Netherlands. .,Aduro Biotech, Inc., Berkeley, USA.
| | | |
Collapse
|
12
|
Zaiss MM, Hall C, McGowan NWA, Babb R, Devlia V, Lucas S, Meghji S, Henderson B, Bozec A, Schett G, David JP, Panayi GS, Grigoriadis AE, Corrigall VM. Binding Immunoglobulin Protein (BIP) Inhibits TNF-α-Induced Osteoclast Differentiation and Systemic Bone Loss in an Erosive Arthritis Model. ACR Open Rheumatol 2019; 1:382-393. [PMID: 31777818 PMCID: PMC6857990 DOI: 10.1002/acr2.11060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective The association between inflammation and dysregulated bone remodeling is apparent in rheumatoid arthritis and is recapitulated in the human tumor necrosis factor transgenic (hTNFtg) mouse model. We investigated whether extracellular binding immunoglobulin protein (BiP) would protect the hTNFtg mouse from both inflammatory arthritis as well as extensive systemic bone loss and whether BiP had direct antiosteoclast properties in vitro. Methods hTNFtg mice received a single intraperitoneal administration of BiP at onset of arthritis. Clinical disease parameters were measured weekly. Bone analysis was performed by microcomputed tomography and histomorphometry. Mouse bone marrow macrophage and human peripheral blood monocyte precursors were used to study the direct effect of BiP on osteoclast differentiation and function in vitro. Monocyte and osteoclast signaling was analyzed by Western blotting, flow cytometry, and imaging flow cytometry. Results BiP-treated mice showed reduced inflammation and cartilage destruction, and histomorphometric analysis revealed a decrease in osteoclast number with protection from systemic bone loss. Abrogation of osteoclast function was also observed in an ex vivo murine calvarial model. BiP inhibited differentiation of osteoclast precursors and prevented bone resorption by mature osteoclasts in vitro. BiP also induced downregulation of CD115/c-Fms and Receptor Activator of NF-κB (RANK) messenger RNA and protein, causing reduced phosphorylation of the p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1/2 and p38, with suppression of essential osteoclast transcription factors, c-Fos and NFATc1. BiP directly inhibited TNF-α- or Receptor Activator of NF-κB Ligand (RANKL)-induced NF-κB nuclear translocation in THP-1 monocytic cells and preosteoclasts by the canonical and noncanonical pathways. Conclusion BiP combines an anti-inflammatory function with antiosteoclast activity, which establishes it as a potential novel therapeutic for inflammatory disorders associated with bone loss.
Collapse
Affiliation(s)
- Mario M Zaiss
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | | | | | | | | | - Sébastien Lucas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Sajeda Meghji
- UCL-Eastman Dental Institute University College London London UK
| | - Brian Henderson
- UCL-Eastman Dental Institute University College London London UK
| | - Aline Bozec
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Georg Schett
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Jean-Pierre David
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany, and Institute of Osteology and Biomechanics (IOBM) University Medical Center Hamburg-Eppendorf Hamburg Germany
| | | | | | | |
Collapse
|
13
|
Jones JD, Sinder BP, Paige D, Soki FN, Koh AJ, Thiele S, Shiozawa Y, Hofbauer LC, Daignault S, Roca H, McCauley LK. Trabectedin Reduces Skeletal Prostate Cancer Tumor Size in Association with Effects on M2 Macrophages and Efferocytosis. Neoplasia 2018; 21:172-184. [PMID: 30591422 PMCID: PMC6314218 DOI: 10.1016/j.neo.2018.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Macrophages play a dual role in regulating tumor progression. They can either reduce tumor growth by secreting antitumorigenic factors or promote tumor progression by secreting a variety of soluble factors. The purpose of this study was to define the monocyte/macrophage population prevalent in skeletal tumors, explore a mechanism employed in supporting prostate cancer (PCa) skeletal metastasis, and examine a novel therapeutic target. Phagocytic CD68+ cells were found to correlate with Gleason score in human PCa samples, and M2-like macrophages (F4/80+CD206+) were identified in PCa bone resident tumors in mice. Induced M2-like macrophages in vitro were more proficient at phagocytosis (efferocytosis) of apoptotic tumor cells than M1-like macrophages. Moreover, soluble factors released from efferocytic versus nonefferocytic macrophages increased PC-3 prostate cancer cell numbers in vitro. Trabectedin exposure reduced M2-like (F4/80+CD206+) macrophages in vivo. Trabectedin administration after PC-3 cell intracardiac inoculation reduced skeletal metastatic tumor growth. Preventative pretreatment with trabectedin 7 days prior to PC-3 cell injection resulted in reduced M2-like macrophages in the marrow and reduced skeletal tumor size. Together, these findings suggest that M2-like monocytes and macrophages promote PCa skeletal metastasis and that trabectedin represents a candidate therapeutic target.
Collapse
Affiliation(s)
- J D Jones
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - B P Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - D Paige
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - F N Soki
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - A J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - S Thiele
- Department of Endocrinology, Diabetes, and Bone Disease, Technische Universität Dresden Medical Center, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Y Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC
| | - L C Hofbauer
- Department of Endocrinology, Diabetes, and Bone Disease, Technische Universität Dresden Medical Center, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Daignault
- Department of Biostatistics, Center for Cancer Biostatistics, University of Michigan, Ann Arbor, MI
| | - H Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - L K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI.
| |
Collapse
|
14
|
Circulating CD14 +CD163 +CD206 + M2 Monocytes Are Increased in Patients with Early Stage of Idiopathic Membranous Nephropathy. Mediators Inflamm 2018; 2018:5270657. [PMID: 30034290 PMCID: PMC6032654 DOI: 10.1155/2018/5270657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022] Open
Abstract
Aim To analyze changes in peripheral blood monocytes and their clinical significance in patients with early stage of idiopathic membranous nephropathy (IMN). Methods A total of 27 patients with early stage of IMN and 16 age- and sex-matched healthy controls (HCs) were recruited for the study. The monocyte subset counts in circulation were measured by flow cytometry, and serum interleukin- (IL-) 10 and IL-12 concentrations were tested by enzyme-linked immunosorbent assay. The potential association between clinical signs and monocyte subset counts was analyzed statistically. Results Compared with the HCs, the patients with early stage of IMN had higher counts of CD14+CD163+, CD14+CD163+CD206+, and CD14+CD163+CD206+CD115+ M2-like monocytes. The CD14+CD163+CD206+ M2-like cell counts and intracellular IL-10 concentrations in the monocytes were positively correlated with progression in proteinuria. The levels of serum IL-10 were significantly higher in early IMN patients than in the HCs. Furthermore, CD14+CD163+CD206+ M2-like cell counts in the patients with incipient IMN were also positively related with 24 h urinary albumin levels and the values of serum M-type phospholipase A2 receptor (PLA2R). Conclusion CD14+CD163+CD206+ M2-like monocytes may contribute to the pathologic process in early-stage IMN and could serve as potential markers for evaluating the disease severity.
Collapse
|
15
|
Expression of CD206 and CD163 on intermediate CD14 ++CD16 + monocytes are increased in hemorrhagic fever with renal syndrome and are correlated with disease severity. Virus Res 2018; 253:92-102. [PMID: 29857122 DOI: 10.1016/j.virusres.2018.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hantaan virus infection causes lethal hemorrhagic fever with renal syndrome (HFRS) in humans. Little is known about how monocytes contribute to HFRS pathogenesis. In this study, we aimed to investigate changes in various monocyte subsets in HFRS patients. METHODS A total of 41 HFRS patients and 17 age-, sex-, and ethnicity-matched healthy control subjects were included in this study. Numbers/percentages of various monocyte subsets were quantitatively determined using flow cytometry. Serum levels of interleukin (IL)-10, IL-12, and tumor necrosis factor alpha (TNF-α) were detected using a cytometric bead array (CBA). RESULTS CD14++CD16+ intermediate monocytes were significantly higher in HFRS patients compared to healthy controls (P < 0.01), especially during the acute phase. The expression of both CD163 and CD206 on CD14++CD16+ intermediate monocytes were increased during the acute phase of HFRS (P < 0.01 and P < 0.05, respectively) when comparing the convalescent phase and healthy controls. Furthermore, the numbers of CD14++CD16+ monocytes during the acute phase, and the percentages of CD14++CD16+CD163+ monocytes in patients with severe/critical HFRS were much higher compared to patients with mild/moderate HFRS. This also positively correlated with increased levels of white blood cells (WBC), blood urea nitrogen (BUN), and creatinine (Cr). However, the percentages of CD14++CD16+CD206+monocytes were higher in mild/moderate HFRS than in severe/critical HFRS, and they negatively correlated with platelets (PLT) and Cr. CONCLUSIONS Higher frequency of the CD14++CD16+ intermediate monocytes and increased expression of CD163+ and CD206+ markers on CD14++CD16+ monocytes were detected in patients with HFRS. The changes in the frequency of CD14++CD16+ monocytes and expression of CD163 and CD206 markers on CD14++CD16+ monocytes positively correlated with the severity of HFRS.
Collapse
|
16
|
Zhang M, Ding L, Wang X, Hou J, Li M, Jiang Y, He X, Cui M, Hu F, Zhang X, Yang J, Guo X, Zhao H, Gao P. Circulating CD14 +CD163 +CD115 + M2 monocytes are associated with the severity of new onset severe acute pancreatitis in Chinese patients. Int Immunopharmacol 2018. [PMID: 29518744 DOI: 10.1016/j.intimp.2018.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the role of monocytes in the pathogenesis of severe acute pancreatitis (SAP), it remains unclear how different subtypes of monocytes regulate and contribute to this pathogenesis. METHODS We examined the numbers of different subsets of monocytes by flow cytometry in 21 SAP, 15 mild acute pancreatitis (MAP) and 13 healthy controls (HC). The concentrations of plasma cytokines were assessed by cytometric bead array. Disease severity was evaluated based on the acute physiology and chronic health evaluation (APACHE) II score and plasma C-reactive proteins (CRP) levels. RESULTS Compared with the numbers in MAP patients and HC, we observed that the numbers of CD14+CD163-, CD14+CD163-MAC387+, CD14+CD163-IL-12+ M1 monocytes, and CD115+, CD204+, IL-10+ M2 monocytes were significantly increased in SAP patients. In addition, these patients showed higher plasma levels of interleukin (IL)-12 and IL-10. Furthermore, the number of CD14+CD163-, CD14+CD163-MAC387+ M1 monocytes and the plasma IL-12 concentration showed a positive association with the CRP level, while the number of CD204+, IL-10+ M2 monocytes and the plasma IL-10 concentration showed a positive correlation with the APACHE II score. Importantly, the CD115+ M2 subset displayed a positive correlation with both the CRP level and APACHE II score, and treatment of SAP significantly reduced the number of this subset. CONCLUSIONS The CD14+CD163+CD115+ M2 monocyte count appears to be important factor in determining the severity and prognosis of SAP. Both the pro- and anti-inflammatory monocytes appear to participate in the pathogenesis of SAP.
Collapse
Affiliation(s)
- Manli Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun 130021, Jilin Province, China; Department of Central Laboratory, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Lili Ding
- Intensive Care Unit, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Xinrui Wang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China; Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jie Hou
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Man Li
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Yanfang Jiang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Meizi Cui
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiuna Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Jingyuan Yang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiaohe Guo
- Department of Gastroenterology, The First Hospital, Xinxiang Medical College, Xinxiang 453100, Henan Province, China
| | - Huiying Zhao
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China.
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
17
|
El-Gamal MI, Al-Ameen SK, Al-Koumi DM, Hamad MG, Jalal NA, Oh CH. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J Med Chem 2018; 61:5450-5466. [PMID: 29293000 DOI: 10.1021/acs.jmedchem.7b00873] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| | - Shahad K Al-Ameen
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Dania M Al-Koumi
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Mawadda G Hamad
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Nouran A Jalal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Chang-Hyun Oh
- Center for Biomaterials , Korea Institute of Science and Technology , P.O. Box 131, Cheongryang , Seoul 130-650 , Republic of Korea.,Department of Biomolecular Science , University of Science and Technology , 113 Gwahangno, Yuseong-gu , Daejeon 305-333 , Republic of Korea
| |
Collapse
|
18
|
Pass HI, Lavilla C, Canino C, Goparaju C, Preiss J, Noreen S, Blandino G, Cioce M. Inhibition of the colony-stimulating-factor-1 receptor affects the resistance of lung cancer cells to cisplatin. Oncotarget 2018; 7:56408-56421. [PMID: 27486763 PMCID: PMC5302923 DOI: 10.18632/oncotarget.10895] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
In the present work we show that multiple lung cancer cell lines contain cisplatin resistant cell subpopulations expressing the Colony-Stimulating-Factor-Receptor-1 (CSF-1R) and surviving chemotherapy-induced stress. By exploiting siRNA-mediated knock down in vitro and the use of an investigational CSF-1R TKI (JNJ-40346527) in vitro and in vivo, we show that expression and function of the receptor are required for the clonogenicity and chemoresistance of the cell lines. Thus, inhibition of the kinase activity of the receptor reduced the levels of EMT-associated genes, stem cell markers and chemoresistance genes. Additionally, the number of high aldehyde dehydrogenase (ALDH) expressing cells was reduced, consequent to the lack of cisplatin-induced increase of ALDH isoforms. This affected the collective chemoresistance of the treated cultures. Treatment of tumor bearing mice with JNJ-40346527, at pharmacologically relevant doses, produced strong chemo-sensitizing effects in vivo. These anticancer effects correlated with a reduced number of CSF-1Rpos cells, in tumors excised from the treated mice. Depletion of the CD45pos cells within the treated tumors did not, apparently, play a major role in mediating the therapeutic response to the TKI. Thus, lung cancer cells express a functional CSF-1 and CSF-1R duo which mediates pro-tumorigenic effects in vivo and in vitro and can be targeted in a therapeutically relevant way. These observations complement the already known role for the CSF-1R at mediating the pro-tumorigenic properties of tumor-infiltrating immune components.
Collapse
Affiliation(s)
- Harvey I Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Carmencita Lavilla
- New York University Langone Medical Center, New York University, New York, USA
| | - Claudia Canino
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA.,University Campus Biomedico, Rome, Italy
| | - Chandra Goparaju
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Jordan Preiss
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Samrah Noreen
- New York University Langone Medical Center, New York University, New York, USA
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.,Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario, Canada
| | - Mario Cioce
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA.,Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Mounting evidence supporting the critical contribution of macrophages, in particular osteal macrophages, to bone regeneration is reviewed. We specifically examine the potential role of macrophages in the basic multicellular units coordinating lifelong bone regeneration via remodelling and bone regeneration in response to injury. We review and discuss the distinctions between macrophage and osteoclast contributions to bone homeostasis, particularly the dichotomous role of the colony-stimulating factor 1-colony-stimulating factor 1 receptor axis. RECENT FINDINGS The impact of inflammation associated with aging and other hallmarks of aging, including senescence, on macrophage function is addressed in the context of osteoporosis and delayed fracture repair. Resident macrophages versus recruited macrophage contributions to fracture healing are also discussed. We identify some of the remaining knowledge gaps that will need to be closed in order to maximise benefits from therapeutically modulating or mimicking the function of macrophages to improve bone health and regeneration over a lifetime.
Collapse
Affiliation(s)
- Lena Batoon
- Bones and Immunology Laboratory, Cancer Biology and Care Program, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Susan Marie Millard
- Bones and Immunology Laboratory, Cancer Biology and Care Program, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Liza Jane Raggatt
- Bones and Immunology Laboratory, Cancer Biology and Care Program, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4092, Australia
| | - Allison Robyn Pettit
- Bones and Immunology Laboratory, Cancer Biology and Care Program, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4092, Australia.
| |
Collapse
|
20
|
Abstract
Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.
Collapse
|
21
|
Age and Expression of CD163 and Colony-Stimulating Factor 1 Receptor (CD115) Are Associated With the Biological Behavior of Central Giant Cell Granuloma. J Oral Maxillofac Surg 2017; 75:1414-1424. [DOI: 10.1016/j.joms.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 12/19/2022]
|
22
|
Lapko N, Zawadka M, Polosak J, Worthen GS, Danet-Desnoyers G, Puzianowska-Kuźnicka M, Laudanski K. Long-term Monocyte Dysfunction after Sepsis in Humanized Mice Is Related to Persisted Activation of Macrophage-Colony Stimulation Factor (M-CSF) and Demethylation of PU.1, and It Can Be Reversed by Blocking M-CSF In Vitro or by Transplanting Naïve Autologous Stem Cells In Vivo. Front Immunol 2017; 8:401. [PMID: 28507543 PMCID: PMC5410640 DOI: 10.3389/fimmu.2017.00401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
The duration of post-sepsis long-term immune suppression is poorly understood. Here, we focused on the role of monocytes (MO) as the pivotal cells for long-term regulation of post-sepsis milieu. Lost ability of MO to adapt is seen in several acute conditions, but it is unclear for how long MO aberrancy post-sepsis can persist. Interestingly, the positive feedback loop sustaining secretion of macrophage-colony stimulation factor (M-CSF) can persist even after resolution of sepsis and significantly alters performance of MO. Here, we investigated the activation of M-CSF, and it as critical regulator of PU.1 in mice surviving 28 days after sepsis. Our primary readout was the ability of MO to differentiate into dendritic cells (DCs; MO→iDC) in vitro since this is one of the critical processes regulating a successful transition from innate to acquired immunity. We utilized a survival modification of the cecal ligation and puncture (CLP) model of sepsis in humanized mice. Animals were sacrificed 28 days after CLP (tCLP+28d). Untouched (CONTR) or sham-operated (SHAM) animals served as controls. Some animals received rescue from stem cells originally used for grafting 2 weeks after CLP. We found profound decrease of MO→iDC in the humanized mice 28 days after sepsis, demonstrated by depressed expression of CD1a, CD83, and CD209, diminished production of IL-12p70, and depressed ability to stimulate T cells in mice after CLP as compared to SHAM or CONTR. In vitro defect in MO→iDC was accompanied by in vivo decrease of BDCA-3+ endogenous circulating DC. Interestingly, post-CLP MO had persistent activation of M-CSF pathway, shown by exaggerated secretion of M-CSF, activation of PU.1, and demethylation of SPII. Neutralization of the M-CSF in vitro reversed the post-CLP MO→iDC aberration. Furthermore, transplantation of naïve, autologous stem cell-derived MO restored CLP-deteriorated ability of MO to become DC, measured as recovery of CD1a expression, enhanced production of IL-12p70, and ability of IL-4 and GM-CSF MO to stimulate allogeneic T cells. Our results suggest the role of epigenetic mediated M-CSF aberration in mediating post-sepsis immune system recovery.
Collapse
Affiliation(s)
- Natalia Lapko
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Zawadka
- Faculty of Medicine, Ivano-Frankivsk Medical Institute, Ivano-Frankivsk, Ukraine
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - George S Worthen
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Zhang ML, Jiang YF, Wang XR, Ding LL, Wang HJ, Meng QQ, Gao PJ. Different phenotypes of monocytes in patients with new-onset mild acute pancreatitis. World J Gastroenterol 2017; 23:1477-1488. [PMID: 28293095 PMCID: PMC5330833 DOI: 10.3748/wjg.v23.i8.1477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the numbers of different subsets of monocytes and their associations with the values of clinical measures in mild acute pancreatitis (MAP) patients.
METHODS The study included one group of 13 healthy controls and another group of 24 patients with new-onset MAP. The numbers of different subsets of monocytes were examined in these two groups of subjects by flow cytometry. The concentrations of plasma interleukin (IL)-10 and IL-12 were determined by cytometric bead array. The acute physiology and chronic health evaluation (APACHE) II scores of individual patients were evaluated, and the levels of plasma C-reactive protein (CRP) as well as the activities of amylase and lipase were measured.
RESULTS In comparison with that in the controls, significantly increased numbers of CD14+CD163-, CD14+CD163-MAC387+ M1 monocytes, but significantly reduced numbers of CD14+CD163+IL-10+ M2 monocytes were detected in the MAP patients (P < 0.01 or P < 0.05). Furthermore, significantly higher levels of plasma IL-10 and IL-12 were observed in the MAP patients (P < 0.01 for all). More importantly, the levels of plasma CRP were positively correlated with the numbers of CD14+CD163- (R = 0.5009, P = 0.0127) and CD14+CD163-MAC387+ (R = 0.5079, P = 0.0113) M1 monocytes and CD14+CD163+CD115+ M2 monocytes (R = 0.4565, P = 0.0249) in the patients. The APACHE II scores correlated with the numbers of CD14+CD163+CD115+ (R = 0.4581, P = 0.0244) monocytes and the levels of plasma IL-10 (R = 0.4178, P = 0.0422) in the MAP patients. However, there was no significant association among other measures tested in this population.
CONCLUSION Increased numbers of CD14+CD163- and CD14+ CD163-MAC387+ monocytes may contribute to the pathogenesis of MAP, and increased numbers of CD14+CD163+CD115+ monocytes may be a biomarker for evaluating the severity of MAP.
Collapse
|
24
|
Polk A, Lu Y, Wang T, Seymour E, Bailey NG, Singer JW, Boonstra PS, Lim MS, Malek S, Wilcox RA. Colony-Stimulating Factor-1 Receptor Is Required for Nurse-like Cell Survival in Chronic Lymphocytic Leukemia. Clin Cancer Res 2016; 22:6118-6128. [PMID: 27334834 DOI: 10.1158/1078-0432.ccr-15-3099] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Monocytes and their progeny are abundant constituents of the tumor microenvironment in lymphoproliferative disorders, including chronic lymphocytic leukemia (CLL). Monocyte-derived cells, including nurse-like cells (NLC) in CLL, promote lymphocyte proliferation and survival, confer resistance to chemotherapy, and are associated with more rapid disease progression. Colony-stimulating factor-1 receptor (CSF-1R) regulates the homeostatic survival of tissue-resident macrophages. Therefore, we sought to determine whether CSF-1R is similarly required for NLC survival. EXPERIMENTAL DESIGN CSF-1R expression by NLC was examined by flow cytometry and IHC. CSF-1R blocking studies were performed using an antagonistic mAb to examine its role in NLC generation and in CLL survival. A rational search strategy was performed to identify a novel tyrosine kinase inhibitor (TKI) targeting CSF-1R. The influence of TKI-mediated CSF-1R inhibition on NLC and CLL viability was examined. RESULTS We demonstrated that the generation and survival of NLC in CLL is dependent upon CSF-1R signaling. CSF-1R blockade is associated with significant depletion of NLC and consequently inhibits CLL B-cell survival. We found that the JAK2/FLT3 inhibitor pacritinib suppresses CSF-1R signaling, thereby preventing the generation and survival of NLC and impairs CLL B-cell viability. CONCLUSIONS CSF-1R is a novel therapeutic target that may be exploited in lymphoproliferative disorders, like CLL, that are dependent upon lymphoma-associated macrophages. Clin Cancer Res; 22(24); 6118-28. ©2016 AACR.
Collapse
Affiliation(s)
- Avery Polk
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ye Lu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Tianjiao Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Erlene Seymour
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Philip S Boonstra
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Megan S Lim
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Sami Malek
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
25
|
Loyau J, Malinge P, Daubeuf B, Shang L, Elson G, Kosco-Vilbois M, Fischer N, Rousseau F. Maximizing the potency of an anti-TLR4 monoclonal antibody by exploiting proximity to Fcγ receptors. MAbs 2015; 6:1621-30. [PMID: 25484053 PMCID: PMC4622919 DOI: 10.4161/19420862.2014.975098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In order to treat Toll like receptor 4 (TLR4)-mediated diseases, we generated a potent antagonistic antibody directed against human TLR4, Hu 15C1. This antibody's potency can be modulated by engaging not only TLR4 but also Fcγ receptors (FcγR), a mechanism that is driven by avidity and not cell signaling. Here, using various formats of the antibody, we further dissect the relative contributions of the Fv and Fc portions of Hu 15C1, discovering that the relationship to potency of the different antibody arms is not linear. First, as could be anticipated, we observed that Hu 15C1 co-engages up to 3 receptors on the same plasma membrane, i.e., 2 TLR4 molecules (via its variable regions) and either FcγRI or FcγRIIA (via the Fc). The Kd of these interactions are in the nM range (3 nM of the Fv for TLR4 and 47 nM of the Fc for FcγRI). However, unexpectedly, neutralization experiments revealed that, due to the low level of cell surface TLR4 expression, the avidity afforded by engagement through 2 Fv arms was significantly limited. In contrast, the antibody's neutralization capacity increases by 3 logs when able to exploit Fc-FcγR interactions. Taken together, these results demonstrate an unforeseen level of contribution by FcγRs to an antibody's effectiveness when targeting a cell surface protein of relatively low abundance. These findings highlight an exploitable mechanism by which FcγR-bearing cells may be more powerfully targeted, envisioned to be broadly applicable to other reagents aimed at neutralizing cell surface targets on cells co-expressing FcγRs.
Collapse
Key Words
- DAMP, damage-associated molecular pattern
- Fc gamma receptors
- Fc, fragment crystallizable
- FcγR, Fc gamma receptor
- Fv, fragment variable
- IL, interleukin
- IVIg, intravenous immunoglobulin
- Ig, immunoglobulin
- LPS, lipopolysaccharide
- PAMP, pathogen-associated molecular pattern
- TLR, Toll-like receptor
- TLR4
- affinity maturation
- antibody
- avidity
- mAb, monoclonal antibody
Collapse
|
26
|
Omatsu M, Kunimura T, Mikogami T, Shiokawa A, Nagai T, Masunaga A, Kitami A, Suzuki T, Kadokura M. Difference in distribution profiles between CD163+ tumor-associated macrophages and S100+ dendritic cells in thymic epithelial tumors. Diagn Pathol 2014; 9:215. [PMID: 25499804 PMCID: PMC4302590 DOI: 10.1186/s13000-014-0215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/26/2014] [Indexed: 12/23/2022] Open
Abstract
Background In a number of human malignancies, tumor-associated macrophages (TAMs) are closely involved in tumor progression. On the other hand, dendritic cells (DCs) that infiltrate tumor tissues are involved in tumor suppression. However, there have been very few reports on the distribution profiles of TAMs and DCs in thymic epithelial tumors. We examined the difference in the distribution profiles between TAMs and DCs in thymoma and thymic carcinoma. Methods We examined 69 samples of surgically resected thymic epithelial tumors, namely, 16 thymic carcinomas and 53 thymomas, in which we immunohistochemically evaluated the presence of TAMs using CD68 and CD163 as markers and DCs using S100 as the marker in tumor tissue samples in comparison with normal thymic tissues. Results The percentage of samples with a large number of CD68+ TAMs was not significantly different between thymic carcinoma and thymoma (7/16 versus 16/53, p = 0.904). However, the percentage of sample with a large number of CD163+ TAMs was significantly higher in thymic carcinoma than in thymoma (15/16 versus 34/53, p = 0.024). In contrast, the percentage of samples with a large number of S100+ DCs was significantly lower in thymic carcinoma than in thymoma (2/16 versus 23/53, p = 0.021). Conclusions To the best of our knowledge, we are the first to show a high percentage of CD163+ TAMs and a low percentage of S100+ DCs in thymic carcinoma samples, and our findings may provide an idea for future targeted therapeutic strategies for thymic carcinoma using antibodies that inhibit monocyte differentiation to TAMs, thereby skewing TAMs differentiation toward DCs. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_215
Collapse
Affiliation(s)
- Mutsuko Omatsu
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Toshiaki Kunimura
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Tetsuya Mikogami
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Akira Shiokawa
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Tomoko Nagai
- Department of Clinico-diagnostic Pathology, Showa University School of Medicine, Tokyo, Japan.
| | - Atsuko Masunaga
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Akihiko Kitami
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Takashi Suzuki
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Mitsutaka Kadokura
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan.
| |
Collapse
|
27
|
Toh ML, Bonnefoy JY, Accart N, Cochin S, Pohle S, Haegel H, De Meyer M, Zemmour C, Preville X, Guillen C, Thioudellet C, Ancian P, Lux A, Sehnert B, Nimmerjahn F, Voll RE, Schett G. Bone- and Cartilage-Protective Effects of a Monoclonal Antibody Against Colony-Stimulating Factor 1 Receptor in Experimental Arthritis. Arthritis Rheumatol 2014; 66:2989-3000. [DOI: 10.1002/art.38624] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Sandy Pohle
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | | | | | | | | | - Anja Lux
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | - Georg Schett
- University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
28
|
Shang L, Daubeuf B, Triantafilou M, Olden R, Dépis F, Raby AC, Herren S, Dos Santos A, Malinge P, Dunn-Siegrist I, Benmkaddem S, Geinoz A, Magistrelli G, Rousseau F, Buatois V, Salgado-Pires S, Reith W, Monteiro R, Pugin J, Leger O, Ferlin W, Kosco-Vilbois M, Triantafilou K, Elson G. Selective antibody intervention of Toll-like receptor 4 activation through Fc γ receptor tethering. J Biol Chem 2014; 289:15309-18. [PMID: 24737331 DOI: 10.1074/jbc.m113.537936] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammation is mediated mainly by leukocytes that express both Toll-like receptor 4 (TLR4) and Fc γ receptors (FcγR). Dysregulated activation of leukocytes via exogenous and endogenous ligands of TLR4 results in a large number of inflammatory disorders that underlie a variety of human diseases. Thus, differentially blocking inflammatory cells while sparing structural cells, which are FcγR-negative, represents an elegant strategy when targeting the underlying causes of human diseases. Here, we report a novel tethering mechanism of the Fv and Fc portions of anti-TLR4 blocking antibodies that achieves increased potency on inflammatory cells. In the presence of ligand (e.g. lipopolysaccharide (LPS)), TLR4 traffics into glycolipoprotein microdomains, forming concentrated protein platforms that include FcγRs. This clustering produces a microenvironment allowing anti-TLR4 antibodies to co-engage TLR4 and FcγRs, increasing their avidity and thus substantially increasing their inhibitory potency. Tethering of antibodies to both TLR4 and FcγRs proves valuable in ameliorating inflammation in vivo. This novel mechanism of action therefore has the potential to enable selective intervention of relevant cell types in TLR4-driven diseases.
Collapse
Affiliation(s)
- Limin Shang
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland,
| | - Bruno Daubeuf
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Martha Triantafilou
- the Cardiff University School of Medicine, Department of Child Health, University Hospital of Wales, Cardiff, United Kingdom
| | - Robin Olden
- the Cardiff University School of Medicine, Department of Child Health, University Hospital of Wales, Cardiff, United Kingdom
| | - Fabien Dépis
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Anne-Catherine Raby
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Suzanne Herren
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Anaelle Dos Santos
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Pauline Malinge
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | | | - Sanae Benmkaddem
- INSERM UMR 699, Faculté de Médecine Paris Diderot, Site Xavier Bichat, 16 Rue Henri Huchard, Paris 75018 Cedex 18, France, and
| | - Antoine Geinoz
- the Department of Pathology and Immunology, University of Geneva Medical School, Geneva 1211, Switzerland
| | | | - François Rousseau
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Vanessa Buatois
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | | | - Walter Reith
- the Department of Pathology and Immunology, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Renato Monteiro
- INSERM UMR 699, Faculté de Médecine Paris Diderot, Site Xavier Bichat, 16 Rue Henri Huchard, Paris 75018 Cedex 18, France, and
| | - Jérôme Pugin
- the University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Olivier Leger
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Walter Ferlin
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Marie Kosco-Vilbois
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| | - Kathy Triantafilou
- the Cardiff University School of Medicine, Department of Child Health, University Hospital of Wales, Cardiff, United Kingdom
| | - Greg Elson
- From the NovImmune SA, 14 Chemin des Aulx, 1228 Plan les Ouates, Switzerland
| |
Collapse
|
29
|
Grellier B, Le Pogam F, Vitorino M, Starck JP, Geist M, Duong V, Haegel H, Menguy T, Bonnefoy JY, Marchand JB, Ancian P. 3D modeling and characterization of the human CD115 monoclonal antibody H27K15 epitope and design of a chimeric CD115 target. MAbs 2014; 6:533-46. [PMID: 24492308 PMCID: PMC3984341 DOI: 10.4161/mabs.27736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jean-Yves Bonnefoy
- TRANSGENE S.A.; Illkirch-Graffenstade, France; ElsaLys Biotech; Illkirch-Graffenstaden, France
| | | | | |
Collapse
|