1
|
Ito K, Osakabe M, Sugimoto R, Yamada S, Sato A, Uesugi N, Yanagawa N, Suzuki H, Sugai T. Differential Expression in the Tumor Microenvironment of mRNAs Closely Associated with Colorectal Cancer Metastasis. Ann Surg Oncol 2023; 30:1255-1266. [PMID: 36222933 PMCID: PMC9807483 DOI: 10.1245/s10434-022-12574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/28/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Metastasis of colorectal cancer (CRC) is a major cause of CRC-related mortality. However, the detailed molecular mechanism of CRC metastasis remains unknown. A recent study showed that the tumor microenvironment, which includes cancer cells and the surrounding stromal cells, plays a major role in tumor invasion and metastasis. Identification of altered messenger RNA (mRNA) expression in the tumor microenvironment is essential to elucidation of the mechanisms responsible for tumor progression. This study investigated the mRNA expression of genes closely associated with metastatic CRC compared with non-metastatic CRC. METHODS The samples examined were divided into cancer tissue and isolated cancer stromal tissue. The study examined altered mRNA expression in the cancer tissues using The Cancer Genome Atlas (TCGA) (377cases) and in 17 stromal tissues obtained from our laboratory via stromal isolation using an array-based analysis. In addition, 259 patients with CRC were enrolled to identify the association of the candidate markers identified with the prognosis of patients with stage 2 or 3 CRC. The study examined the enriched pathways identified by gene set enrichment analysis (GSEA) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) module in both the TCGA dataset and isolated stromal tissue. RESULTS As a result, whereas tenascin-C, secreted phosphoprotein 1 and laminin were expressed in metastatic CRC cells, olfactory receptors (ORs) 11H1 and OR11H4 were expressed in stromal tissue cells isolated from metastatic CRC cases. Finally, upregulated expression of tenascin-C and OR11H4 was correlated with the outcome for CRC patients. CONCLUSION The authors suggest that upregulated expression levels of tenascin-C and OR11H1 play an important role in CRC progression.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Shun Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Ayaka Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun’yahabachou, Japan
| |
Collapse
|
2
|
Rajayi H, Tavasolian P, Rezalotfi A, Ebrahimi M. Cancer Stem Cells Targeting; the Lessons from the Interaction of the Immune System, the Cancer Stem Cells and the Tumor Niche. Int Rev Immunol 2019; 38:267-283. [DOI: 10.1080/08830185.2019.1669593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/15/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hajar Rajayi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parsova Tavasolian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alaleh Rezalotfi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L. Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer's source. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:119-188. [PMID: 31383404 DOI: 10.1016/bs.pmbts.2019.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent advances in diagnosis and therapy having improved cancer outcome, many patients still do not respond to treatments, resulting in the progression or relapse of the disease, eventually impairing survival expectations. The limited efficacy of therapy is often attributable to its inability to affect cancer stem cells (CSCs), a small population of cells resistant to current radio- and chemo-therapies. CSCs are characterized by self-renewal and tumor-initiating capabilities, and function as a reservoir for the local and distant recurrence of the disease. Therefore, new therapeutic approaches able to effectively target and deplete CSCs are urgently needed. Immunotherapy is facing a renewed interest for its potential in cancer treatment, and the possibility of harnessing the immune system to target CSCs is being addressed by a new exciting research field. In this chapter, we discuss the cancer stem cell model and illustrate CSC biological and molecular properties, critically addressing theoretical and practical issues linked with their definition and study. We then review the existing literature regarding the immunological properties of CSCs and the complex interplay occurring between CSCs and immune cells. Finally, we present up-to-date studies on CSC immunotargeting and its potential future perspective. In conclusion, understanding the interplay between CSC biology and tumor immunology will provide a deeper understanding of the mechanisms that regulate CSC immunological properties. This will contribute to the design of new CSC-directed immunotherapeutic strategies with the potential of strongly improving cancer outcomes.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
4
|
Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett 2019; 208:19-29. [DOI: 10.1016/j.imlet.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
|
5
|
Hart GR, Ferguson AL. Computational design of hepatitis C virus immunogens from host-pathogen dynamics over empirical viral fitness landscapes. Phys Biol 2018; 16:016004. [PMID: 30484433 DOI: 10.1088/1478-3975/aaeec0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) afflicts 170 million people and kills 700 000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic, but despite 25 years of research, no vaccine is available. A major obstacle is HCV's extreme genetic variability and rapid mutational escape from immune pressure. Coupling maximum entropy inference with population dynamics simulations, we have employed a computational approach to translate HCV sequence databases into empirical landscapes of viral fitness and simulate the intrahost evolution of the viral quasispecies over these landscapes. We explicitly model the coupled host-pathogen dynamics by combining agent-based models of viral mutation with stochastically-integrated coupled ordinary differential equations for the host immune response. We validate our model in predicting the mutational evolution of the HCV RNA-dependent RNA polymerase (protein NS5B) within seven individuals for whom longitudinal sequencing data is available. We then use our approach to perform exhaustive in silico evaluation of putative immunogen candidates to rationally design tailored vaccines to simultaneously cripple viral fitness and block mutational escape within two selected individuals. By systematically identifying a small number of promising vaccine candidates, our empirical fitness landscapes and host-pathogen dynamics simulator can guide and accelerate experimental vaccine design efforts.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, United States of America. Present address: Department of Therapeutic Radiology, Yale University, 202 LLCI, 15 York Street, New Haven, CT 96510, United States of America
| | | |
Collapse
|
6
|
Zheng F, Dang J, Zhang H, Xu F, Ba D, Zhang B, Cheng F, Chang AE, Wicha MS, Li Q. Cancer Stem Cell Vaccination With PD-L1 and CTLA-4 Blockades Enhances the Eradication of Melanoma Stem Cells in a Mouse Tumor Model. J Immunother 2018; 41:361-368. [PMID: 30063587 PMCID: PMC6128768 DOI: 10.1097/cji.0000000000000242] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors and monoclonal antibodies reinvigorate cancer immunotherapy. However, these immunotherapies only benefit a subset of patients. We previously reported that ALDH tumor cells were highly enriched for cancer stem cells (CSCs), and ALDH CSC lysate-pulsed dendritic cell (CSC-DC) vaccine was shown to induce CSC-specific cytotoxic T lymphocytes. In this study, we investigated the CSC targeting effect of the CSC-DC vaccine combined with a dual blockade of programmed death-ligand 1 and cytotoxic T-lymphocyte-associated protein (CTLA-4) in B16-F10 murine melanoma tumor model. Our data showed that animals treated with the dual blockade of programmed death-ligand 1 and CTLA-4 and CSC-DC vaccine conferred significantly more tumor regression than the CSC-DC vaccine alone. Importantly, the triple combination treatment dramatically eliminated ALDH CSCs in vivo. We observed that CSC-DC vaccine in combination with anti-PD-L1 and anti-CTLA-4 administration resulted in ∼1.7-fold fewer PD-1CD8 T cells and ∼2.5-fold fewer CTLA-4CD8 T cells than the populations observed following the CSC-DC vaccination alone. Moreover, significant antitumor effects and dramatically eliminated ALDH CSCs following the triple combination treatment were accompanied by significantly enhanced T-cell expansion, suppressed transforming growth factor β secretion, enhanced IFN-γ secretion, and significantly enhanced host specific CD8 T-cell response against CSCs. Collectively, these data showed that administration of a-PD-L1 and a-CTLA-4 combined with CSC-DC vaccine may represent an effective immunotherapeutic strategy for cancer patients in clinical.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Jianzhong Dang
- Department of geriatrics, Renmin Hospitial of Wuhan University, Wuhan,430020
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen,518036
| | - Fangzhou Xu
- The Clinical Trial Institute, 14th Floor of the Physicians Building, Peking University Shenzhen Hospital, Shenzhen,518036
| | - Diandian Ba
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Bingyu Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Alfred E. Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Max S. Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| |
Collapse
|
7
|
Lin J, Long J, Wan X, Chen J, Bai Y, Wang A, Yang X, Wu Y, Robson SC, Sang X, Zhao H. Classification of gallbladder cancer by assessment of CD8 + TIL and PD-L1 expression. BMC Cancer 2018; 18:766. [PMID: 30055582 PMCID: PMC6064069 DOI: 10.1186/s12885-018-4651-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/29/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Programmed death ligand 1/2 (PD-L1/PD-L2) expression has been established as a prognostic factor for various solid tumors and as a predictive factor for PD-1 blockade therapy, but scant data on its role in gallbladder cancer (GBC). The aims of this study were to assess the expression of PD-L1/PD-L2 and the density of CD8+ tumor-infiltrating lymphocytes (TIL) from GBC samples and to quantify the association between survival prognosis and these factors. METHODS CD8+ TILs density and the expression of PD-1, PD-L1, PD-L2 and CD133 were assessed using immunohistochemistry in tumor specimens from 66 patients with gallbladder adenocarcinoma. These indexes were correlated with the clinicopathological features. RESULTS The rate of PD-L1-positive (PD-L1+) was 54%, which included 18% positivity in tumor cells, and 36% in peritumoral immune stroma. High CD8+ TIL density (CD8high) was observed in PD-L1+ GBC, and PD-L1+ was positively associated with PD-L2+ expression. Regarding prognostic factors, PD-L1+ expression was related to worse overall survival (OS), and CD8high indicated better OS and progression-free survival (PFS). The combination of CD8high with PD-L1+ serves as a prognostic factor for improved OS (P < 0.001) and PFS (P = 0.014). CONCLUSION Analysis of the tumor immune microenvironment based on CD8+ TIL and PD-L1 expression is a promising independent predictor for the clinical outcome of GBC patients.
Collapse
Affiliation(s)
- Jianzhen Lin
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, #1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Junyu Long
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, #1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xueshuai Wan
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, #1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Jingci Chen
- School of Medicine, Tsinghua University, Beijing, China
| | - Yi Bai
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, #1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Anqiang Wang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, #1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yan Wu
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xinting Sang
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, #1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| | - Haitao Zhao
- Department of Liver Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Peking Union Medical College Hospital, #1 Shuaifuyuan, Wangfujing, Beijing, 100730, China. .,Center of Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
8
|
Shen Y, Bu L, Li R, Chen Z, Tian F, Lu N, Ge Q, Bai Y, Lu Z. Screening effective differential expression genes for hepatic carcinoma with metastasis in the peripheral blood mononuclear cells by RNA-seq. Oncotarget 2018; 8:27976-27989. [PMID: 28427195 PMCID: PMC5438623 DOI: 10.18632/oncotarget.15855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a multistep process involving a number of genetic alterations so that the genetic diagnosis is got increasingly attentions today. The aim of this study was to use RNA-seq to screen the effective differential expression genes in the peripheral blood mononuclear cells for the hepatic carcinoma with metastasis. The results showed that hepatic carcinoma samples gathered according to different metastasis. CCL3, CCL3L1, JUN, IL8, and IL1B were identified in inflammation mediated by chemokine and cytokine signaling pathway (P00031) in the hepatic carcinoma samples with metastasis, and subsequently confirmed by quantitative real-time polymerase chain reaction. In conclusions, CCL3, CCL3L1, JUN, IL8, and IL1B have the potential to be considered as candidates for future molecular diagnosis of the hepatic carcinoma with metastasis. This work may provide us with new visions into the metastasis process and potential efficient clinical diagnosis in the future.
Collapse
Affiliation(s)
- Yanting Shen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Lu Bu
- Department of Interventional Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, 210009, PR China
| | - Rui Li
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zhenzhu Chen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Fei Tian
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Na Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zuhong Lu
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| |
Collapse
|
9
|
Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology 2017; 153:304-314. [PMID: 29150846 DOI: 10.1111/imm.12866] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies target the bulk of the tumour, while a population of highly resistant tumour cells may be able to repopulate the tumour and metastasize to new sites. Cancer cells with such stem cell-like characteristics can be identified based on their phenotypical and/or functional features which may open up ways for their targeted elimination. In this review we discuss potential off-target effects of inhibiting cancer stem-cell self-renewal pathways on immune cells, and summarize some recent immunological studies specifically targeting cancer stem cells based on their unique antigen expression.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Toshihiko Torigo
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Asano T, Hirohashi Y, Torigoe T, Mariya T, Horibe R, Kuroda T, Tabuchi Y, Saijo H, Yasuda K, Mizuuchi M, Takahashi A, Asanuma H, Hasegawa T, Saito T, Sato N. Brother of the regulator of the imprinted site (BORIS) variant subfamily 6 is involved in cervical cancer stemness and can be a target of immunotherapy. Oncotarget 2017; 7:11223-37. [PMID: 26849232 PMCID: PMC4905468 DOI: 10.18632/oncotarget.7165] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is a major cause of cancer death in females worldwide. Cervical cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are resistant to conventional radiotherapy and chemotherapy, and CSCs/CICs are thought to be responsible for recurrence. Eradication of CSCs/CICs is thus essential to cure cervical cancer. In this study, we isolated cervical CSCs/CICs by sphere culture, and we identified a cancer testis (CT) antigen, CTCFL/BORIS, that is expressed in cervical CSCs/CICs. BORIS has 23 mRNA isoform variants classified by 6 subfamilies (sfs), and they encode 17 different BORIS peptides. BORIS sf1 and sf4 are expressed in both CSCs/CICs and non-CSCs/CICs, whereas BORIS sf6 is expressed only in CSCs/CICs. Overexpression of BORIS sf6 in cervical cancer cells increased sphere formation and tumor-initiating ability compared with those in control cells, whereas overexpression of BORIS sf1 and BORIS sf4 resulted in only slight increases. Thus, BORIS sf6 is a cervical CSC/CIC-specific subfamily and has a role in the maintenance of cervical CSCs/CICs. BORIS sf6 contains a specific c-terminal domain (C34), and we identified a human leukocyte antigen (HLA)-A2-restricted antigenic peptide, BORIS C34_24(9) encoded by BORIS sf6. A BORIS C34_24(9)-specific cytotoxic T cell (CTL) clone showed cytotoxicity for BORIS sf6-overexpressing cervical cancer cells. Furthermore, the CTL clone significantly suppressed sphere formation of CaSki cells. Taken together, the results indicate that the CT antigen BORIS sf6 is specifically expressed in cervical CSCs/CICs, that BORIS sf6 has a role in the maintenance of CSCs/CICs, and that BORIS C34_24(9) peptide is a promising candidate for cervical CSC/CIC-targeting immunotherapy.
Collapse
Affiliation(s)
- Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Obsterics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Obsterics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryota Horibe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Obsterics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Tabuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Obsterics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Saijo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Mizuuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Obsterics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akari Takahashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroko Asanuma
- Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Obsterics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Identification of antigenic peptides from novel renal cancer stem-like cell antigen, DNAJB8. Biochem Biophys Res Commun 2017; 494:693-699. [PMID: 29107688 DOI: 10.1016/j.bbrc.2017.10.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To identify antigenic peptides of cancer stem-like cells (CSCs) antigen, DNAJB8, and establish a mouse CSCs-targeting immunotherapy model. MATERIALS AND METHODS To induce DNAJB8-specific immune reaction, we stimulated human CD8+ lymphocytes with antigen-presenting cells pulsed with a cocktail of three candidate HLA-A*24:02 restricted peptides and assessed peptide specific human cytotoxic T lymphocytes (CTLs) induction. One of the antigenic peptides showed identical amino acid sequence as corresponding mouse DNAJB8. We evaluated CTL induction with the peptide immunization in mouse model. RESULTS We confirmed peptide-specific interferon-γ secretions and cytotoxic activities of induced human CTLs. In vivo immunization with the peptide to mice, peptide-specific CTL response could be observed in mouse CD8+ T cells. Furthermore, immunization with the peptide showed significant anti-tumor effects compared with negative controls. CONCLUSION DNAJB8-derived peptide is a novel candidate for CSCs-targeting immunotherapy, and mouse models can be used to evaluate CSCs-targeting immunotherapy.
Collapse
|
12
|
Kakar SS, Parte S, Carter K, Joshua IG, Worth C, Rameshwar P, Ratajczak MZ. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget 2017; 8:74494-74505. [PMID: 29088802 PMCID: PMC5650357 DOI: 10.18632/oncotarget.20170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of deaths due to cancer among women in the United States. In 2017, 22,440 women are expected to be diagnosed with ovarian cancer and 14,080 women will die with it. Currently used chemotherapies (Cisplatin or platinum/taxane combination) targets cancer cells, but spares cancer stem cells (CSCs), which are responsible for tumor relapse leading to recurrence of cancer. Aldehyde dehydrogenase I (ALDH1) positive cancer stem cells are one of the major populations in ovarian tumor and have been related to tumor progression and metastasis. In our studies, we observed expression of ALDH1 in both ovarian surface epithelium (OSE) and cortex with high levels of expression in OSE in normal ovary and benign (BN) tumor, compared to borderline (BL) and high grade (HG) ovarian tumors. In contrast, high levels of expression of ALDH1 were observed in cortex in BL and HG tumors compared to normal ovary and BN tumor. Withaferin A (WFA) alone or in combination with cisplatin (CIS) significantly inhibited the spheroid formation (tumorigenic potential) of isolated ALDH1 CSCs in vitro and significantly reduced its expression in tumors collected from mice bearing orthotopic ovarian tumor compared to control. Treatment of animals with CIS alone significantly increased the ALDH1 CSC population in tumors, suggesting that CIS targets cancer cells but spares cancer stem cells, which undergo amplification. WFA and CIS combination suppresses the expression of securin an “oncogene”, suggesting that securin may serve as a downstream signaling gene to mediate the antitumor effects of WFA.
Collapse
Affiliation(s)
- Sham S Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Seema Parte
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kelsey Carter
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Irving G Joshua
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Christopher Worth
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
13
|
Cytotoxic T lymphocytes promote cytarabine-induced acute myeloid leukemia cell apoptosis via inhibiting Bcl-2 expression. Exp Ther Med 2017; 14:1081-1085. [PMID: 28810561 PMCID: PMC5526043 DOI: 10.3892/etm.2017.4620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) remains difficult to cure due to its drug tolerance and refractoriness. Immunotherapy is a growing area of cancer research, which has been applied for the treatment of numerous types of cancer, including leukemia. The present study generated AML cell-specific cytotoxic T lymphocytes (CTLs) in vitro and investigated the effect of combining CTL treatment with one of the most commonly used drugs for the treatment of hematological malignancies, cytarabine, on AML cell apoptosis. Firstly, it was observed that monocyte-depleted peripheral blood lymphocytes from healthy donors could be used to generate large numbers of CD3+CD8+ CTLs through immune stimulation. These CD3+CD8+ CTLs could effectively recognize and induce the apoptosis of human Kasumi-3 AML cells. In addition, cytarabine-induced AML cell apoptosis was enhanced by CTL treatment. Western blotting revealed that Bcl-2 expression was downregulated in AML cells following cytarabine and CTL treatment, indicating that the synergistic effect of this treatment on AML cell apoptosis is due to the downregulation of Bcl-2. These results highlight the potential application of CTL immunotherapy for the treatment of AML. Further studies optimizing the specificity and potency of CTLs, and identifying favorable combinations with other chemotherapeutic drug are required.
Collapse
|
14
|
Morita R, Hirohashi Y, Torigoe T, Ito-Inoda S, Takahashi A, Mariya T, Asanuma H, Tamura Y, Tsukahara T, Kanaseki T, Kubo T, Kutomi G, Mizuguchi T, Terui T, Ishitani K, Hashino S, Kondo T, Minagawa N, Takahashi N, Taketomi A, Todo S, Asaka M, Sato N. Olfactory Receptor Family 7 Subfamily C Member 1 Is a Novel Marker of Colon Cancer-Initiating Cells and Is a Potent Target of Immunotherapy. Clin Cancer Res 2016; 22:3298-3309. [PMID: 26861454 DOI: 10.1158/1078-0432.ccr-15-1709] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Cancer-initiating cells (CICs) are thought to be essential for tumor maintenance, recurrence, and distant metastasis, and they are therefore reasonable targets for cancer therapy. Cancer immunotherapy is a novel approach to target cancer. In this study, we aimed to establish novel CIC-targeting immunotherapy. EXPERIMENTAL DESIGN Colorectal cancer (CRC) CICs were isolated as side population (SP) cells. The gene expression profile of CRC CICs was analyzed by cDNA microarray and RT-PCR. Protein expression of olfactory receptor family 7 subfamily C member 1 (OR7C1) were analyzed by Western blot and immunohistochemical staining. The functions of OR7C1 were analyzed by gene overexpression and gene knockdown using siRNAs. OR7C1-positive cells were isolated by a flow cytometer and analyzed. CTLs specific for OR7C1 peptide were generated, and the antitumor effect was addressed by mice adoptive transfer model. RESULTS OR7C1 has essential roles in the maintenance of colon CICs, and the OR7C1-positive population showed higher tumorigenicity than that of the OR7C1-negative population, indicating that OR7C1 is a novel functional marker for colon CIC. Immunohistochemical staining revealed that OR7C1 high expression was correlated with poorer prognosis in CRC patients. OR7C1-derived antigenic peptide-specific CTLs showed specific cytotoxicity for CICs, and an OR7C1-specific CTL clone showed a greater antitumor effect than did a CTL clone targeting all cancer cells in a CTL adoptive transfer mouse model. CONCLUSIONS OR7C1 is a novel marker for colon CICs and can be a target of potent CIC-targeting immunotherapy. Clin Cancer Res; 22(13); 3298-309. ©2016 AACR.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Adenocarcinoma/therapy
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- HT29 Cells
- Humans
- Immunotherapy/methods
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplastic Stem Cells/immunology
- Prognosis
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, Odorant/biosynthesis
- Receptors, Odorant/genetics
- Receptors, Odorant/immunology
- Spheroids, Cellular
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan.
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan.
| | - Satoko Ito-Inoda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Akari Takahashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Goro Kutomi
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Toru Mizuguchi
- Department of Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takeshi Terui
- Higashi-Sapporo Hospital, Shiroishi-ku, Sapporo, Japan
| | | | - Satoshi Hashino
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Kita-Ku, Sapporo, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Nozomi Minagawa
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-Ku, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-Ku, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-Ku, Sapporo, Japan
| | - Satoru Todo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-Ku, Sapporo, Japan
| | - Masahiro Asaka
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Kita-Ku, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| |
Collapse
|
15
|
Tsukahara T, Emori M, Murata K, Mizushima E, Shibayama Y, Kubo T, Kanaseki T, Hirohashi Y, Yamashita T, Sato N, Torigoe T. The future of immunotherapy for sarcoma. Expert Opin Biol Ther 2016; 16:1049-57. [PMID: 27158940 DOI: 10.1080/14712598.2016.1188075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The use of immunotherapeutic challenges for sarcoma has a long history. Despite the existence of objective responses, immunotherapy has been overshadowed by the results of chemotherapy, especially for osteosarcoma. However, the prognosis for non-responders to chemotherapy is still poor and immunotherapy is now focused on again. AREAS COVERED We reviewed the following types of clinical trials of immunotherapy for sarcoma: (i) vaccination with autologous tumor cells, (ii) vaccination with peptides derived from tumor-associated antigens, (iii) adoptive cell transfer using engineered T cells expressing T cell receptor directed at NY-ESO-1 and (iv) immune checkpoint inhibitors targeting CTLA-4 and PD1/PDL1. EXPERT OPINION The immunogenicity of sarcoma might be lower than that of melanoma. Patients with small lesions who have not received any chemotherapy are good candidates for peptide-based immunotherapy. Combining peptide vaccination and immune checkpoint inhibitors is an attractive option, and long-lived memory T cells are attracting attention. Memory T stem cells defined by CD95+ are long-lived and have the capacity for self-renewal and multidifferentiation. We also identified a novel memory T cell population, young memory T cells defined by CD73+CXCR3+. Regulation of such memory T stem cells will be useful for peptide vaccination and adoptive cell transfer.
Collapse
Affiliation(s)
- Tomohide Tsukahara
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Makoto Emori
- b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Kenji Murata
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan.,b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Emi Mizushima
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan.,b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Yuji Shibayama
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan.,b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Terufumi Kubo
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Takayuki Kanaseki
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Yoshihiko Hirohashi
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Toshihiko Yamashita
- b Department of Orthopaedic Surgery , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Noriyuki Sato
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| | - Toshihiko Torigoe
- a Department of Pathology , Sapporo Medical University School of Medicine , Sapporo , Japan
| |
Collapse
|
16
|
Codony-Servat J, Rosell R. Cancer stem cells and immunoresistance: clinical implications and solutions. Transl Lung Cancer Res 2016; 4:689-703. [PMID: 26798578 DOI: 10.3978/j.issn.2218-6751.2015.12.11] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tumor cells can be contained, but not eliminated, by traditional cancer therapies. A cell minor subpopulation is able to evade attack from therapies and may have cancer stem cell (CSC) characteristics, including self-renewal, multiple differentiation and tumor initiation (tumor initiating cells, or TICs). Thus, CSCs/TICs, aided by the microenvironment, produce more differentiated, metastatic cancer cells which the immune system detects and interacts with. There are three phases to this process: elimination, equilibrium and escape. In the elimination phase the immune system recognizes and destroys most of the tumor cells. Then the latency phase begins, consisting of equilibrium between immunological elimination and tumor cell growth. Finally, a minor attack-resistant subpopulation escapes and forms a clinically detectable tumor mass. Herein we review current knowledge of immunological characterization of CSCs/TICs. Due to the correlation between CTCs/TICs and drug resistance and metastasis, we also comment on the crucial role of key molecules involved in controlling CSCs/TICs properties; such molecules are essential to detect and destroy CSCs/TICs. Monoclonal antibodies, antibody constructs and vaccines have been designed to act against CSCs/TICs, with demonstrated efficacy in human cancer xenografts and some antitumor activity in human clinical studies. Therefore, therapeutic strategies that selectively target CSCs/TICs warrant further investigation. Better understanding of the interaction between CSCs and tumor immunology may help to identify strategies to eradicate the minor subpopulation that escapes conventional therapy attack, thus providing a solution to the problem of drug resistance and metastasis.
Collapse
Affiliation(s)
- Jordi Codony-Servat
- 1 Pangaea Biotech S.L., Quirón-Dexeus University Hospital, Barcelona, Spain ; 2 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 3 Instituto Oncológico Dr Rosell, Quirón-Dexeus University Hospital, Barcelona, Spain ; 4 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Rafael Rosell
- 1 Pangaea Biotech S.L., Quirón-Dexeus University Hospital, Barcelona, Spain ; 2 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 3 Instituto Oncológico Dr Rosell, Quirón-Dexeus University Hospital, Barcelona, Spain ; 4 Fundación Molecular Oncology Research, Barcelona, Spain
| |
Collapse
|
17
|
Hirohashi Y, Torigoe T, Tsukahara T, Kanaseki T, Kochin V, Sato N. Immune responses to human cancer stem-like cells/cancer-initiating cells. Cancer Sci 2015; 107:12-7. [PMID: 26440127 PMCID: PMC4724814 DOI: 10.1111/cas.12830] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer stem‐like cells (CSC)/cancer‐initiating cells (CIC) are defined as minor subpopulations of cancer cells that are endowed with properties of higher tumor‐initiating ability, self‐renewal ability and differentiation ability. Accumulating results of recent studies have revealed that CSC/CIC are resistant to standard cancer therapies, including chemotherapy, radiotherapy and molecular targeting therapy, and eradiation of CSC/CIC is, thus, critical to cure cancer. Cancer immunotherapy is expected to become the “fourth” cancer therapy. Cytotoxic T lymphocytes (CTL) play an essential role in immune responses to cancers, and CTL can recognize CSC/CIC in an antigen‐specific manner. CSC/CIC express several tumor‐associated antigens (TAA), and cancer testis (CT) antigens are reasonable sources for CSC/CIC‐targeting immunotherapy. In this review article, we discuss CSC/CIC recognition by CTL, regulation of immune systems by CSC/CIC, TAA expression in CSC/CIC, and the advantages of CSC/CIC‐targeting immunotherapy.
Collapse
Affiliation(s)
- Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| |
Collapse
|
18
|
Jeong KY, Lee EJ, Yang SH, Seong J. Combination of macrophage inflammatory protein 1 alpha with existing therapies to enhance the antitumor effects on murine hepatoma. JOURNAL OF RADIATION RESEARCH 2015; 56:37-45. [PMID: 25225286 PMCID: PMC4572594 DOI: 10.1093/jrr/rru077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/23/2014] [Accepted: 08/16/2014] [Indexed: 06/03/2023]
Abstract
Existing therapies such as irradiation or sorafenib have limited success in the treatment of hepatocellular carcinoma (HCC) due to tumor recurrence and metastasis. Therefore, combination with other therapeutics is often considered. Macrophage inflammatory protein-1 alpha (MIP-1α) is a member of a family of chemoattractant cytokines that can induce the migration of monocytes, which in turn can play a role in fighting tumors. This study investigated whether intravenous injection of MIP-1α in conjunction with irradiation or sorafenib could enhance the antitumor effects on murine hepatoma. An HCa-I tumor was grown on the right thigh of each C3H/HeN mouse. Mice were then treated with 10 Gy of irradiation, sorafenib, or a combination of MIP-1α with either irradiation or sorafenib, and antitumor and antimetastatic effects were then investigated. To understand the mechanisms, changes in the level of immunological markers were also evaluated. Combination treatment of MIP-1α with irradiation or sorafenib resulted in a significant enhancement of antitumor effects, prevention of lung metastasis and increase in host survival. This was achieved by significantly increasing the levels of the immunological markers: Cluster Differentiation (CD) 8, CD107A and CD11C. We conclude that a combination treatment of MIP-1α with irradiation or sorafenib would be a useful strategy for management of hepatoma.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Department of Radiation Oncology, Yonsei University Medical College, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Eun-Jung Lee
- Department of Radiation Oncology, Yonsei University Medical College, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Seung-Hyun Yang
- Department of Radiation Oncology, Yonsei University Medical College, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei University Medical College, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| |
Collapse
|
19
|
Resistance of Cancer Stem Cells to Cell-Mediated Immune Responses. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-17807-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Vasaturo A, Verdoes M, de Vries J, Torensma R, Figdor CG. Restoring immunosurveillance by dendritic cell vaccines and manipulation of the tumor microenvironment. Immunobiology 2014; 220:243-8. [PMID: 25466585 DOI: 10.1016/j.imbio.2014.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve from normal cells throughout life and are usually recognized by our immune system and destroyed, a process called immunosurveillance. Unfortunately, in some instances cancer cells paralyze our immune system, resulting in outgrowth and spreading of the tumor. Understanding the complexity of immunomodulation by tumors is important for the development of therapeutical strategies. Nowadays, various approaches have been developed to enhance anti-tumor immune responses and abrogate the immune dampening effect of the tumor and its surrounding environment, including dendritic cell-based vaccines, therapies to counteract myeloid derived suppressor cell function within the tumor and antagonists of inhibitory signaling pathways to overcome 'immune checkpoints'. The challenge is now to find the right combination of immune based therapies to fully restore immune function and provide a more efficacious and enduring anti-tumor response.
Collapse
Affiliation(s)
- Angela Vasaturo
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Jolanda de Vries
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Ruurd Torensma
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands
| | - Carl G Figdor
- Radboud Institute for Molecular Life Sciences, Radboudumc, Department of Tumorimmunology, Geert Grooteplein 26, 6525GA Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Morita R, Nishizawa S, Torigoe T, Takahashi A, Tamura Y, Tsukahara T, Kanaseki T, Sokolovskaya A, Kochin V, Kondo T, Hashino S, Asaka M, Hara I, Hirohashi Y, Sato N. Heat shock protein DNAJB8 is a novel target for immunotherapy of colon cancer-initiating cells. Cancer Sci 2014; 105:389-95. [PMID: 24450541 PMCID: PMC4317808 DOI: 10.1111/cas.12362] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to establish cancer stem-like cell/cancer-initiating cell (CSC/CIC)-targeting immunotherapy. The CSC/CIC are thought to be essential for tumor maintenance, recurrence and distant metastasis. Therefore they are reasonable targets for cancer therapy. In the present study, we found that a heat shock protein (HSP) 40 family member, DnaJ (Hsp40) homolog, subfamily B, member 8 (DNAJB8), is preferentially expressed in CSC/CIC derived from colorectal cancer (CRC) cells rather than in non-CSC/CIC. Overexpression of DNAJB8 enhanced the expression of stem cell markers and tumorigenicity, indicating that DNAJB8 has a role in CRC CSC/CIC. A DNAJB8-specific cytotoxic T lymphocyte (CTL) response could be induced by a DNAJB8-derived antigenic peptide. A CTL clone specific for DNAJB8 peptide showed higher killing activity to CRC CSC/CIC compared with non-CSC/CIC, and CTL adoptive transfer into CRC CSC/CIC showed an antitumor effect in vivo. Taken together, the results indicate that DNAJB8 is expressed and has role in CRC CSC/CIC and that DNAJB8 is a novel target of CRC CSC/CIC-targeting immunotherapy.
Collapse
Affiliation(s)
- Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Immunology of cancer stem cells in solid tumours. A review. Eur J Cancer 2014; 50:649-55. [DOI: 10.1016/j.ejca.2013.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022]
|
23
|
Smith TT, Roth JC, Friedman GK, Gillespie GY. Oncolytic viral therapy: targeting cancer stem cells. Oncolytic Virother 2014; 2014:21-33. [PMID: 24834430 PMCID: PMC4018757 DOI: 10.2147/ov.s52749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression.
Collapse
Affiliation(s)
- Tyrel T Smith
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin C Roth
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Saijo H, Hirohashi Y, Torigoe T, Kochin V, Takahashi H, Sato N. Cytotoxic T lymphocytes: the future of cancer stem cell eradication? Immunotherapy 2014; 5:549-51. [PMID: 23725275 DOI: 10.2217/imt.13.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Yasuda K, Torigoe T, Morita R, Kuroda T, Takahashi A, Matsuzaki J, Kochin V, Asanuma H, Hasegawa T, Saito T, Hirohashi Y, Sato N. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population. PLoS One 2013; 8:e68187. [PMID: 23967051 PMCID: PMC3742724 DOI: 10.1371/journal.pone.0068187] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/28/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem-like cells (CSCs)/cancer-initiaiting cells (CICs) are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP) analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDHBr) cells from ovarian cancer cells. Both SP cells and ALDHBr cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2), than those of main population (MP) cells and ALDHLow cells, respectively. We analyzed an SP and ALDHBr overlapping population (SP/ALDHBr), and the SP/ALDHBr population exhibited higher tumor-initiating ability than that of SP cells or ALDHBr cells, enabling initiation of tumor with as few as 102 cells. Furthermore, SP/ADLHBr population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDHLow, MP/ALDHBr and MP/ALDHLow cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDHBr population was detected in several gynecological cancer cells with ratios of 0.1% for HEC—1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDHBr overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.
Collapse
Affiliation(s)
- Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takahumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Akari Takahashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Junichi Matsuzaki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| |
Collapse
|
26
|
Kuroda T, Hirohashi Y, Torigoe T, Yasuda K, Takahashi A, Asanuma H, Morita R, Mariya T, Asano T, Mizuuchi M, Saito T, Sato N. ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis. PLoS One 2013; 8:e65158. [PMID: 23762304 PMCID: PMC3675199 DOI: 10.1371/journal.pone.0065158] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023] Open
Abstract
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1(high)) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1(high) cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1(high) cells. ALDH1(high) cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/enzymology
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adult
- Aged
- Aldehyde Dehydrogenase 1 Family
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/enzymology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Female
- Gene Expression
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Middle Aged
- Neoplasm Staging
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Organ Specificity
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/enzymology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Primary Cell Culture
- Prognosis
- Retinal Dehydrogenase/genetics
- Retinal Dehydrogenase/metabolism
Collapse
Affiliation(s)
- Takafumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- * E-mail: (TT); (YH)
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Akari Takahashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Masahito Mizuuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| |
Collapse
|
27
|
Yamada R, Takahashi A, Torigoe T, Morita R, Tamura Y, Tsukahara T, Kanaseki T, Kubo T, Watarai K, Kondo T, Hirohashi Y, Sato N. Preferential expression of cancer/testis genes in cancer stem-like cells: proposal of a novel sub-category, cancer/testis/stem gene. ACTA ACUST UNITED AC 2013; 81:428-34. [PMID: 23574628 DOI: 10.1111/tan.12113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/13/2013] [Accepted: 03/12/2013] [Indexed: 12/13/2022]
Abstract
Cancer/testis (CT) antigens encoded by CT genes are immunogenic antigens, and the expression of CT gene is strictly restricted to only the testis among mature organs. Therefore, CT antigens are promising candidates for cancer immunotherapy. In a previous study, we identified a novel CT antigen, DNAJB8. DNAJB8 was found to be preferentially expressed in cancer stem-like cells (CSCs)/cancer-initiating cells (CICs), and it is thus a novel CSC antigen. In this study, we hypothesized that CT genes are preferentially expressed in CSCs/CICs rather than in non-CSCs/-CICs and we examined the expression of CT genes in CSCs/CICs. The expression of 74 CT genes was evaluated in side population (SP) cells (=CSC) and main population (MP) cells (=non-CSC) derived from LHK2 lung adenocarcinoma cells, SW480 colon adenocarcinoma cells and MCF7 breast adenocarcinoma cells by RT-PCR and real-time PCR. Eighteen genes (MAGEA2, MAGEA3, MAGEA4, MAGEA6, MAGEA12, MAGEB2, GAGE1, GAGE8, SPANXA1, SPANXB1, SPANXC, XAGE2, SPA17, BORIS, PLU-1, SGY-1, TEX15 and CT45A1) showed higher expression levels in SP cells than in MP cells, whereas 10 genes (BAGE1, BAGE2, BAGE4, BAGE5, XAGE1, LIP1, D40, HCA661, TDRD1 and TPTE) showed similar expression levels in SP cells and MP cells. Thus, considerable numbers of CT genes showed preferential expression in CSCs/CICs. We therefore propose a novel sub-category of CT genes in this report: cancer/testis/stem (CTS) genes.
Collapse
Affiliation(s)
- R Yamada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nishizawa S, Hirohashi Y, Torigoe T, Takahashi A, Tamura Y, Mori T, Kanaseki T, Kamiguchi K, Asanuma H, Morita R, Sokolovskaya A, Matsuzaki J, Yamada R, Fujii R, Kampinga HH, Kondo T, Hasegawa T, Hara I, Sato N. HSP DNAJB8 controls tumor-initiating ability in renal cancer stem-like cells. Cancer Res 2012; 72:2844-54. [PMID: 22552285 DOI: 10.1158/0008-5472.can-11-3062] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem-like cells (CSC) are a small population of cancer cells with superior tumor initiating, self-renewal, and differentiation properties. In this study, we show that the cancer-testis antigen and HSP40 family member DNAJB8 contributes to the CSC phenotype in renal cell carcinoma (RCC). DNAJB8 overexpression increased the percentage of side population (SP) cells representing CSCs in RCC cells, enhancing their tumor-initiating ability. Conversely, attenuation of DNAJB8 decreased SP cells and reduced tumor-initiating ability. The utility of DNAJB8 as an immunologic target was established in DNA vaccination experiments. Compared with immunization with the tumor-associated antigen survivin, which was expressed in both CSCs and non-CSCs in RCC, immunization with Dnajb8 expression plasmids yielded stronger antitumor effects. Together, our findings suggest that DNAJB8 plays a role in CSC maintenance and that it offers a candidate for CSC-targeting immunotherapy in RCC.
Collapse
Affiliation(s)
- Satoshi Nishizawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mori T, Nishizawa S, Hirohashi Y, Torigoe T, Tamura Y, Takahashi A, Kochin V, Fujii R, Kondo T, Greene MI, Hara I, Sato N. Efficiency of G2/M-related tumor-associated antigen-targeting cancer immunotherapy depends on antigen expression in the cancer stem-like population. Exp Mol Pathol 2012; 92:27-32. [PMID: 22001602 DOI: 10.1016/j.yexmp.2011.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 12/22/2022]
Abstract
The aim of this study was to establish a novel efficient cancer DNA vaccine approach. Many tumor-associated antigens (TAAs) have been reported; however, there is little information of the efficiency of each TAA. Normal cells barely undergo mitosis, whereas cancer cells divide frequently and grow well. Thus, G2/M-related antigens are cancer cell-specific and are regarded to be suitable candidates as targets of cancer immunotherapy. In this study, we compared the efficiencies of G2/M-related antigens including Birc5, Aurka, Nke2 and Plk1 by using a DNA vaccination model. Mice that had been immunized with G2/M-related antigens coding plasmid were challenged with CT26 colon cancer cells. Interestingly, Birc5- and Aurka-immunized mice showed an anti-tumor effect, whereas Nek2- and Plk1-immunized mice did not show any anti-tumor effect. We investigated the expression of G2/M-related antigens in cancer stem-like cell (CSC)/cancer-initiating cell (CIC) population to verify the difference in the anti-tumor effect. CSCs/CICs were isolated as side population (SP) cells using Hoechst 33342 dye from CT 26 cells. It was found that Birc5 and Aurka are expressed in both CSCs/CICs and non-CSCs/CICs (shared antigens), whereas Nek2 and Plk1 are expressed preferentially in non-CSCs/CICs (non-CSC antigens). Therefore, antigen expression in the CSC/CIC population might be related to the anti-tumor efficiency of cancer immunotherapy. Furthermore, we established a heat shock protein (Hsp90)-fused Birc5 plasmid to improve anti-cancer immunity. Birc5 fused to the N-terminal region of Hsp90 showed a stronger anti-tumor effect, whereas Birc5 fused to the C-terminal region of Hsp90 did not show enhancement compared with Birc5. These observations indicate that expression in the CSC/CIC population is essential to achieve tumor regression and that fusing antigens to the N-terminal region of Hsp90 enhances the anti-tumor effect.
Collapse
Affiliation(s)
- Takashi Mori
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1 West-17, Chuo-Ku, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|