1
|
Vulcano TJ, Abdulahad WH, van Meurs M, Jongman RM, Struys MMRF, Bosch DJ. The Impact of Different Anesthetics on the Distribution and Cytotoxic Function of NK Cell Subpopulations: An In Vitro Study. Int J Mol Sci 2024; 25:11045. [PMID: 39456827 PMCID: PMC11507532 DOI: 10.3390/ijms252011045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Only some subpopulations of natural killer (NK) cells have cytotoxic functionality, and the effects of anesthetics on these subpopulations are unknown. This study aimed to evaluate the in vitro effects of various anesthetics, both alone and in combination, on the distribution and cytotoxic function of NK cells and their subpopulations. Peripheral blood mononuclear cells (PBMCs) from eight healthy volunteers were treated for 4 h in vitro with dexmedetomidine, remifentanil, lidocaine, propofol, sevoflurane, and combinations in clinically relevant concentrations or left untreated. Flow cytometry was used to quantify the percentage of sampled NK cells and evaluate their distribution (CD56brightCD16neg, CD56brightCD16dim, CD56dimCD16neg, CD56dimCD16bright, and CD56negCD16bright) and cytotoxicity (Granzyme B (GrzB) and perforin) of NK cell subpopulations. Although the percentage of total NK cells did not change following exposure to anesthesia, the most important cytotoxic subpopulation (CD56dimCD16bright NK cells) decreased after exposure to both propofol (-3.58%, p = 0.045) and sevoflurane (-16.10%, p = 0.008) alone, and most combinations, especially in combination with lidocaine (propofol with lidocaine (-9.66%, p = 0.002) and sevoflurane with lidocaine (-21.90%, p < 0.001)). Dexmedetomidine and remifentanil had no effect on CD56dimCD16bright NK cells. Furthermore, no anesthetic regimen or combination altered the expression of GrzB and perforin in NK cells or NK cell subpopulations. In short, propofol and sevoflurane suppressed the highly cytotoxic phenotype (CD56dimCD16bright) of NK cells, with those exposed to sevoflurane combinations showing greater reductions. Immunosuppression was intensified with the inclusion of lidocaine in the anesthetic regimen.
Collapse
Affiliation(s)
- Tristan J. Vulcano
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Critical Care, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rianne M. Jongman
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Michel M. R. F. Struys
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Gent, Belgium
| | - Dirk J. Bosch
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
| |
Collapse
|
2
|
Schreiber M, Vajs V, Horák P. How tapeworms interact with cancers: a mini-review. PeerJ 2024; 12:e17196. [PMID: 38563013 PMCID: PMC10984186 DOI: 10.7717/peerj.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer is one of the leading causes of death, with an estimated 19.3 million new cases and 10 million deaths worldwide in 2020 alone. Approximately 2.2 million cancer cases are attributed to infectious diseases, according to the World Health Organization (WHO). Despite the apparent involvement of some parasitic helminths (especially trematodes) in cancer induction, there are also records of the potential suppressive effects of helminth infections on cancer. Tapeworms such as Echinococcus granulosus, Taenia crassiceps, and more seem to have the potential to suppress malignant cell development, although in a few cases the evidence might be contradictory. Our review aims to summarize known epidemiological data on the cancer-helminth co-occurrence in the human population and the interactions of tapeworms with cancers, i.e., proven or hypothetical effects of tapeworms and their products on cancer cells in vivo (i.e., in experimental animals) or in vitro. The prospect of bioactive tapeworm molecules helping reduce the growth and metastasis of cancer is within the realm of future possibility, although extensive research is yet required due to certain concerns.
Collapse
Affiliation(s)
- Manfred Schreiber
- Department of Parasitology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Vojtěch Vajs
- Department of Parasitology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Schreiber M, Macháček T, Vajs V, Šmídová B, Majer M, Hrdý J, Tolde O, Brábek J, Rösel D, Horák P. Suppression of the growth and metastasis of mouse melanoma by Taenia crassiceps and Mesocestoides corti tapeworms. Front Immunol 2024; 15:1376907. [PMID: 38571957 PMCID: PMC10987685 DOI: 10.3389/fimmu.2024.1376907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer is still one of the leading causes of death, with an estimated 19.3 million new cases every year. Our paper presents the tumor-suppressing effect of Taenia crassiceps and Mesocestoides corti on B16F10 melanoma, the intraperitoneal application of which followed the experimental infection with these tapeworms, resulting in varying degrees of effectiveness in two strains of mice. In the case of M. corti-infected ICR mice, a strong tumor growth suppression occurred, which was accompanied by a significant reduction in the formation of distant metastases in the liver and lung. Tapeworm-infected C57BL/6J mice also showed a suppression of tumor growth and, in addition, the overall survival of infected C57BL/6J mice was significantly improved. Experiments with potential cross-reaction of melanoma and tapeworm antigens with respective specific antibodies, restimulation of spleen T cells, or the direct effect of tapeworm excretory-secretory products on melanoma cells in vitro could not explain the phenomenon. However, infections with T. crassiceps and M. corti increased the number of leukocytes possibly involved in anti-tumor immunity in the peritoneal cavity of both ICR and C57BL/6J mice. This study unveils the complex interplay between tapeworm infections, immune responses, and melanoma progression, emphasizing the need for further exploration of the mechanisms driving observed tumor-suppressive effects.
Collapse
Affiliation(s)
- Manfred Schreiber
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Vojtěch Vajs
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondřej Tolde
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Jan Brábek
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Daniel Rösel
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Wang F, Zhang G, Xu T, Ma J, Wang J, Liu S, Tang Y, Jin S, Li J, Xing N. High and selective cytotoxicity of ex vivo expanded allogeneic human natural killer cells from peripheral blood against bladder cancer: implications for natural killer cell instillation after transurethral resection of bladder tumor. J Exp Clin Cancer Res 2024; 43:24. [PMID: 38245792 PMCID: PMC10799482 DOI: 10.1186/s13046-024-02955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) is treated with transurethral resection of bladder tumor (TURBT) followed by intravesical instillation of chemotherapy or Bacillus Calmette-Guérin therapy. However, these treatments have a high recurrence rate and side effects, emphasizing the need for alternative instillations. Previously, we revealed that expanded allogeneic human natural killer (NK) cells from peripheral blood are a promising cellular therapy for prostate cancer. However, whether NK cells exhibit a similar killing effect in bladder cancer (BCa) remains unknown. METHODS Expansion, activation, and cryopreservation of allogeneic human NK cells obtained from peripheral blood were performed as we previously described. In vitro cytotoxicity was evaluated using the cell counting kit-8. The levels of perforin, granzyme B, interferon-γ, tumor necrosis factor-α, and chemokines (C-C-motif ligand [CCL]1, CCL2, CCL20, CCL3L1, and CCL4; C-X-C-motif ligand [CXCL]1, CXCL16, CXCL2, CXCL3, and CXCL8; and X-motif ligand 1 and 2) were determined using enzyme-linked immunosorbent assay. The expression of CD107a, major histocompatibility complex class I (MHC-I), MHC-I polypeptide-related sequences A and B (MICA/B), cytomegalovirus UL16-binding protein-2/5/6 (ULBP-2/5/6), B7-H6, CD56, CD69, CD25, killer cell Ig-like receptors (KIR)2DL1, KIRD3DL1, NKG2D, NKp30, NKp46, and CD16 of NK cells or BCa and normal urothelial cells were detected using flow cytometry. Cytotoxicity was evaluated using lactate dehydrogenase assay in patient-derived organoid models. BCa growth was monitored in vivo using calipers in male NOD-scid IL2rg-/- mice subcutaneously injected with 5637 and NK cells. Differential gene expressions were investigated using RNA sequence analysis. The chemotaxis of T cells was evaluated using transwell migration assays. RESULTS We revealed that the NK cells possess higher cytotoxicity against BCa lines with more production of cytokines than normal urothelial cells counterparts in vitro, demonstrated by upregulation of degranulation marker CD107a and increased interferon-γ secretion, by MICA/B/NKG2D and B7H6/NKp30-mediated activation. Furthermore, NK cells demonstrated antitumor effects against BCa in patient-derived organoids and BCa xenograft mouse models. NK cells secreted chemokines, including CCL1/2/20, to induce T-cell chemotaxis when encountering BCa cells. CONCLUSIONS The expanded NK cells exhibit potent cytotoxicity against BCa cells, with few toxic side effects on normal urothelial cells. In addition, NK cells recruit T cells by secreting a panel of chemokines, which supports the translational application of NK cell intravesical instillation after TURBT from bench to bedside for NMIBC treatment.
Collapse
Affiliation(s)
- Fangming Wang
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Gang Zhang
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Tianli Xu
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Jianlin Ma
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Jing Wang
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Shuai Liu
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Yuzhe Tang
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Song Jin
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Jianxing Li
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China.
| | - Nianzeng Xing
- Department of Urology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
6
|
Jarroudi OA, Bairi KE, Curigliano G, Afqir S. Immune-Checkpoint Inhibitors: A New Line of Attack in Triple-Negative Breast Cancer. Cancer Treat Res 2023; 188:29-62. [PMID: 38175341 DOI: 10.1007/978-3-031-33602-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Poor prognosis is a distinctive feature of triple-negative breast cancer (TNBC). Chemotherapy has long represented the main and unique treatment for patients with TNBC. Recently, immune checkpoint inhibitors (ICIs) were investigated in several clinical trials and were approved for clinical use in TNBC patients that express programmed cell death protein-1 (PD-1) in combination with chemotherapy in the first-line setting. ICIs are also being investigated in the neoadjuvant and adjuvant settings for TNBC. This chapter aims to discuss different ICIs used to treat all TNBC stages to date.
Collapse
Affiliation(s)
- Ouissam Al Jarroudi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | - Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
7
|
Spagnolo CC, Giuffrida G, Cannavò S, Franchina T, Silvestris N, Ruggeri RM, Santarpia M. Management of Endocrine and Metabolic Toxicities of Immune-Checkpoint Inhibitors: From Clinical Studies to a Real-Life Scenario. Cancers (Basel) 2022; 15:cancers15010246. [PMID: 36612243 PMCID: PMC9818218 DOI: 10.3390/cancers15010246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of solid tumors. However, although ICIs are better tolerated than conventional chemotherapy, their use is associated with a peculiar toxicity profile, related to the enhancement of the immune response, affecting several organs. Among immune-related adverse events (irAEs), up to 10% involve the endocrine system. Most of them are represented by thyroid disorders (hypothyroidism and hyperthyroidism), mainly correlated to the use of anti-PD-1 and/or anti-PD-L1 agents. Less common endocrine irAEs include hypophysitis, adrenalitis, and metabolic irAEs. A deeper understanding of endocrine toxicities is a critical goal for both oncologists and endocrinologists. A strict collaboration between these specialists is mandatory for early recognition and proper treatment of these patients. In this review we will provide a comprehensive overview of endocrine and metabolic adverse events of ICIs, with particular interest in the pathogenesis, predisposing factors and clinical presentation of these irAEs, and their impact on clinical outcomes of patients. Furthermore, we will summarize the most recent studies and recommendations on the clinical approach to immune-related endocrinopathies with the purpose to optimize the diagnostic algorithm, and to help both oncologists and endocrinologists to improve the therapeutic management of these unique types of irAEs, in a real-life scenario.
Collapse
Affiliation(s)
- Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrida
- Endocrinology Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125 Messina, Italy
| | - Salvatore Cannavò
- Endocrinology Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125 Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy
| | - Rosaria Maddalena Ruggeri
- Endocrinology Unit, Department of Human Pathology of Adulthood and Childhood DETEV, University of Messina, 98125 Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| |
Collapse
|
8
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
9
|
Kumar A, Watkins R, Vilgelm AE. Cell Therapy With TILs: Training and Taming T Cells to Fight Cancer. Front Immunol 2021; 12:690499. [PMID: 34140957 PMCID: PMC8204054 DOI: 10.3389/fimmu.2021.690499] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 01/16/2023] Open
Abstract
The rationale behind cancer immunotherapy is based on the unequivocal demonstration that the immune system plays an important role in limiting cancer initiation and progression. Adoptive cell therapy (ACT) is a form of cancer immunotherapy that utilizes a patient’s own immune cells to find and eliminate tumor cells, however, donor immune cells can also be employed in some cases. Here, we focus on T lymphocyte (T cell)-based cancer immunotherapies that have gained significant attention after initial discoveries that graft-versus-tumor responses were mediated by T cells. Accumulating knowledge of T cell development and function coupled with advancements in genetics and data science has enabled the use of a patient’s own (autologous) T cells for ACT (TIL ACTs). In TIL ACT, tumor-infiltrating lymphocytes (TILs) are collected from resected tumor material, enhanced and expanded ex-vivo, and delivered back to the patient as therapeutic agents. ACT with TILs has been shown to cause objective tumor regression in several types of cancers including melanoma, cervical squamous cell carcinoma, and cholangiocarcinoma. In this review, we provide a brief history of TIL ACT and discuss the current state of TIL ACT clinical development in solid tumors. We also discuss the niche of TIL ACT in the current cancer therapy landscape and potential strategies for patient selection.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Pathology, The Ohio State University, Columbus, OH, United States.,The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Reese Watkins
- Department of Pathology, The Ohio State University, Columbus, OH, United States.,The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH, United States.,The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Yang Y, Islam MS, Hu Y, Chen X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther 2021; 10:103-122. [PMID: 33907692 PMCID: PMC8071081 DOI: 10.2147/itt.s255224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD-1/PD-L1 (programmed death-1/programmed death-ligand 1), represent a turning point in the cancer immunotherapy. However, only a minor fraction of patients could derive benefit from such therapy. Therefore, new strategies targeting additional immune regulatory mechanisms are urgently needed. CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in cancer immune evasion. There is compelling evidence that tumor necrosis factor (TNF) receptor type II (TNFR2) plays a decisive role in the activation and expansion of Tregs and other types of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs). Furthermore, TNFR2 is also expressed by some tumor cells. Emerging experimental evidence indicates that TNFR2 may be a therapeutic target to enhance naturally occurring or immunotherapeutic-triggered anti-tumor immune responses. In this article, we discuss recent advances in the understanding of the mechanistic basis underlying the Treg-boosting effect of TNFR2. The role of TNFR2-expressing highly suppressive Tregs in tumor immune evasion and their possible contribution to the non-responsiveness to checkpoint treatment are analyzed. Moreover, the role of TNFR2 expression on tumor cells and the impact of TNFR2 signaling on other types of cells that shape the immunological landscape in the tumor microenvironment, such as MDSCs, MSCs, ECs, EPCs, CD8+ CTLs, and NK cells, are also discussed. The reports revealing the effect of TNFR2-targeting pharmacological agents in the experimental cancer immunotherapy are summarized. We also discuss the potential opportunities and challenges for TNFR2-targeting immunotherapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| |
Collapse
|
11
|
Tubin S, Khan MK, Gupta S, Jeremic B. Biology of NSCLC: Interplay between Cancer Cells, Radiation and Tumor Immune Microenvironment. Cancers (Basel) 2021; 13:775. [PMID: 33673332 PMCID: PMC7918834 DOI: 10.3390/cancers13040775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
The overall prognosis and survival of non-small cell lung cancer (NSCLC) patients remain poor. The immune system plays an integral role in driving tumor control, tumor progression, and overall survival of NSCLC patients. While the tumor cells possess many ways to escape the immune system, conventional radiotherapy (RT) approaches, which are directly cytotoxic to tumors, can further add additional immune suppression to the tumor microenvironment by destroying many of the lymphocytes that circulate within the irradiated tumor environment. Thus, the current immunogenic balance, determined by the tumor- and radiation-inhibitory effects is significantly shifted towards immunosuppression, leading to poor clinical outcomes. However, newer emerging evidence suggests that tumor immunosuppression is an "elastic process" that can be manipulated and converted back into an immunostimulant environment that can actually improve patient outcome. In this review we will discuss the natural immunosuppressive effects of NSCLC cells and conventional RT approaches, and then shift the focus on immunomodulation through novel, emerging immuno- and RT approaches that promise to generate immunostimulatory effects to enhance tumor control and patient outcome. We further describe some of the mechanisms by which these newer approaches are thought to be working and set the stage for future trials and additional preclinical work.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria
| | - Mohammad K. Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA;
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Branislav Jeremic
- Research Institute of Clinical Medicine, 13 Tevdore Mgdveli, Tbilisi 0112, Georgia;
| |
Collapse
|
12
|
The functional potency of natural killer cells in response to IL-2/IL-15/IL-21 stimulation is limited by a concurrent upregulation of Tim-3 in bladder cancer. Exp Cell Res 2018; 372:92-98. [DOI: 10.1016/j.yexcr.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023]
|
13
|
Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, Alves V, Sousa V, Chijioke O, Münz C, Reis F, Rodrigues-Santos P, Gomes C. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med 2016; 14:163. [PMID: 27769244 PMCID: PMC5075212 DOI: 10.1186/s12916-016-0715-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. METHODS Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. RESULTS NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. CONCLUSION Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.
Collapse
Affiliation(s)
- Margarida Ferreira-Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Daniela Paiva-Oliveira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Belmiro Parada
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Vera Alves
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vitor Sousa
- Service of Anatomical Pathology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal.,Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, Coimbra, Portugal. .,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Cukic V. NEUTROPHIL/LYMPHOCYTE RATIO AND PLATELET/LYMPHOCYTE RATIO IN PATIENTS WITH NSCLC. Mater Sociomed 2016; 28:378-381. [PMID: 27999489 PMCID: PMC5149430 DOI: 10.5455/msm.2016.28.378-381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/08/2016] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE to compare neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) in patients with NSCLC (Non- Small- Cell Lung Cancer): with and without metastases at the time of diagnosis to find out if there is the importance of these cell ratios in the assessment of severity NSCLC. MATERIAL AND METHODS this is the retrospective analysis of NRL and PRL in patients with NSCLC at the time of the diagnosis of disease before any anti tumor treatment (chemotherapy, radiotherapy, surgery). 57 of patients with NSCLC treated in the first three months of 2016. year were chosen at random regardless of sex and age. We examined full blood count cells (FBC), calculated NLR and PLR in every patient and compared obtained values in patients with and patients without metastases. RESULTS In 57 patients with NSCLC there were 15 males with metastases, 28 without metastases, and 8 females with metastases, 6 without metastases. Since there was no regularity in the distribution of obtained values of NLR and PLR we made the Mann-Whitney U test. Mean values are presented with a median and interquartile percentiles. There was no significant difference in NLR between patients without and with metastases (p = 0.614; p = NS) as well as in PLR (p=0,068; p=NS). CONCLUSION There must be a link between the immune status of the organism and lung cancer development. Immune cells have become of interest in recent years and much work has been done to study their role in the genesis of cancer but it did not give satisfactory results. Further clinical studies on large number of patients and further laboratory examination of the role of immune cells in cancer development and suppression are required.
Collapse
Affiliation(s)
- Vesna Cukic
- Clinic for Pulmonary Diseases and TB "Podhrastovi", Clinical centre of Sarajevo University, Bosnia and Herzegovina
| |
Collapse
|
15
|
Granzin M, Stojanovic A, Miller M, Childs R, Huppert V, Cerwenka A. Highly efficient IL-21 and feeder cell-driven ex vivo expansion of human NK cells with therapeutic activity in a xenograft mouse model of melanoma. Oncoimmunology 2016; 5:e1219007. [PMID: 27757317 DOI: 10.1080/2162402x.2016.1219007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are promising antitumor effector cells, but the generation of sufficient NK cell numbers for adoptive immunotherapy remains challenging. Therefore, we developed a method for highly efficient ex vivo expansion of human NK cells. Ex vivo expansion of NK cells in medium containing IL-2 and irradiated clinical-grade feeder cells (EBV-LCL) induced a 22-fold NK cell expansion after one week that was significantly increased to 53-fold by IL-21. Repeated stimulation with irradiated EBV-LCL and IL-2 and addition of IL-21 at the initiation of the culture allowed sustained NK cell proliferation with 1011-fold NK cell expansion after 6 weeks. Compared to naive NK cells, expanded NK cells upregulated TRAIL, NKG2D, and DNAM-1, had superior cytotoxicity against tumor cell lines in vitro and produced more IFNγ and TNF-α upon PMA/Iono stimulation. Most importantly, adoptive transfer of NK cells expanded using feeder cells, IL-2 and IL-21 led to significant inhibition of tumor growth in a melanoma xenograft mouse model, which was greater than with NK cells activated with IL-2 alone. Intriguingly, adoptively transferred NK cells maintained their enhanced production of IFNγ and TNF-α upon ex vivo restimulation, although they rapidly lost their capacity to degranulate and mediate tumor cytotoxicity after the in vivo transfer. In conclusion, we developed a protocol for ex vivo NK cell expansion that results in outstanding cell yields. The expanded NK cells possess potent antitumor activity in vitro and in vivo and could be utilized at high numbers for adoptive immunotherapy in the clinic.
Collapse
Affiliation(s)
- Markus Granzin
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany; Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Ana Stojanovic
- Innate Immunity Group, German Cancer Research Center , Heidelberg, Germany
| | - Matthias Miller
- Innate Immunity Group, German Cancer Research Center , Heidelberg, Germany
| | - Richard Childs
- Section of Transplantation Immunotherapy, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, MD, USA
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center , Heidelberg, Germany
| |
Collapse
|
16
|
Chandrasekaran S, Chan MF, Li J, King MR. Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials 2015; 77:66-76. [PMID: 26584347 DOI: 10.1016/j.biomaterials.2015.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 11/27/2022]
Abstract
Tumor draining lymph nodes are the first site of metastasis in most types of cancer. The extent of metastasis in the lymph nodes is often used in staging cancer progression. We previously showed that nanoscale TRAIL liposomes conjugated to human natural killer cells enhance their endogenous therapeutic potential in killing cancer cells cultured in engineered lymph node microenvironments. In this work, it is shown that liposomes decorated with apoptosis-inducing ligand TRAIL and an antibody against a mouse natural killer cell marker are carried to the tumor draining inguinal lymph nodes and prevent the lymphatic spread of a subcutaneous tumor in mice. It is shown that targeting natural killer cells with TRAIL liposomes enhances their retention time within the tumor draining lymph nodes to induce apoptosis in cancer cells. It is concluded that this approach can be used to kill cancer cells within the tumor draining lymph nodes to prevent the lymphatic spread of cancer.
Collapse
Affiliation(s)
| | - Maxine F Chan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jiahe Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael R King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4. Int J Mol Sci 2015; 16:24139-58. [PMID: 26473845 PMCID: PMC4632743 DOI: 10.3390/ijms161024139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/23/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022] Open
Abstract
Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.
Collapse
|
18
|
Domagala-Kulawik J. The role of the immune system in non-small cell lung carcinoma and potential for therapeutic intervention. Transl Lung Cancer Res 2015; 4:177-90. [PMID: 25870800 DOI: 10.3978/j.issn.2218-6751.2015.01.11] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/21/2015] [Indexed: 12/27/2022]
Abstract
Over a hundred years after the first description of this disease, lung cancer represents one of the major challenges in oncology. Radical treatment cannot be introduced in more than 70% of cases and overall survival rate does not exceed 15%. The immunosurveillance of lung cancer may be effective in early oncogenesis but is inhibited in the course of developing a clinically detectable tumor. Very low and heterogonous antigenicity of lung cancer cells leads to passive escape from anti-cancer immune defense. The cytotoxic lymphocytes (CTLs) that play a main role in the anticancer response are actively suppressed in the tumor environment and following regulatory mechanisms inhibit the recognition of tumor antigens by antigen presenting cells. The population of regulatory T cells (Tregs) is augmented and the expression of transcription factor-Foxp3 is markedly increased on tumor cells and tumor infiltrating lymphocytes (TIL). It is accomplished by M2 macrophage polarization, the activity of myeloid derived suppressor cells (MDSCs) and a significantly elevated concentration of cytokines: transforming growth factor beta (TGFβ) and IL-10 in the tumor microenvironment. Very active suppression of immune protection is the predominant role of the programmed death 1 (PD-1)-PD-L1 pathway. The blockage of this pathway was found to be an effective treatment approach; therefore the monoclonal antibodies are being intensively investigated in lung cancer patients. Cytotoxic T lymphocyte antigen-4 (CTLA-4) is the molecule capable of inhibiting the activation signal. The antibody anti-CTLA-4 improves CTLs function in solid tumors and lung cancer patients may benefit from use of this agent. The second way in lung cancer immunotherapy is production of anti-cancer vaccines using recognized cancer antigens: MAGE-A3, membrane associated glycoprotein (MUC-1), and EGF. It was recently shown in ongoing clinical trials that combined therapies: immune- and chemotherapy, radiotherapy or targeted therapy seem to be effective. Immunotherapy in lung cancer has an individual character-there is a need to assess the patient's immune status prior to implementation of immunomodulating therapy.
Collapse
Affiliation(s)
- Joanna Domagala-Kulawik
- Department of Internal Diseases, Pneumonology and Allergology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Lim DP, Jang YY, Kim S, Koh SS, Lee JJ, Kim JS, Thi Phan MT, Shin DJ, Shin MG, Lee SH, Yoon M, Kim SK, Yoon JH, Park MH, Cho D. Effect of exposure to interleukin-21 at various time points on human natural killer cell culture. Cytotherapy 2014; 16:1419-30. [PMID: 24950680 DOI: 10.1016/j.jcyt.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 04/13/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AIMS Interleukin-21 (IL-21) can enhance the effector function of natural killer (NK) cells but also limits their proliferation when continuously combined with IL-2/IL-15. Paradoxically, membrane-bound (mb)-IL-21 has been shown to improve human NK cell proliferation when cultured with IL-2/mb-IL-15. To clarify the role of IL-21, we investigated the effect of the timing of IL-21 addition to NK cell culture. METHODS IL-2/IL-15-activated NK cells were additionally treated with IL-21 according to the following schedules; (i) control (without IL-21); (ii) first week (day 0 to day 7); (iii) intermittent (the first 3 days of each week for 7 weeks); (iv) after 1 week (day 8 to day 14); and (v) continuous (day 0 to day 49). The expression of NK receptors, granzyme B, perforin, CD107a, interferon-γ, telomere length and NK cell death were measured by flow cytometry. RESULTS Compared with the control (2004.2-fold; n = 10 healthy donors) and intermittent groups (2063.9-fold), a strong proliferative response of the NK cells on day 42 was identified in the "first week" group (3743.8-fold) (P < 0.05). NK cells treated with IL-21 in the "first week" group showed cytotoxicity similar to that in control cells. On day 28, there was a significant increase in cytotoxicity of "first week" NK cells that received IL-21 treatment for an additional 2 days compared with the "first week" NK cells (P < 0.05). CONCLUSIONS These data suggest that controlling temporal exposure of IL-21 during NK cell proliferation can be a critical consideration to improve the yields and cytotoxicity of NK cells.
Collapse
Affiliation(s)
- Dong-Pyo Lim
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Youn-Young Jang
- Research Center for Cancer Immunotherapy, Chonnam National University, Hwasun Hospital, Jeollanam-do, Korea
| | - Seokho Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sang Seok Koh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University, Hwasun Hospital, Jeollanam-do, Korea
| | - Ju-Sun Kim
- Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Korea
| | - Minh-Trang Thi Phan
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea; Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
| | - Dong-Jun Shin
- Research Center for Cancer Immunotherapy, Chonnam National University, Hwasun Hospital, Jeollanam-do, Korea; Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Medical School, Gwangju, Korea
| | - Sang-Ki Kim
- Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Korea
| | - Jung-Han Yoon
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea.
| | - Duck Cho
- Research Center for Cancer Immunotherapy, Chonnam National University, Hwasun Hospital, Jeollanam-do, Korea; Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea; Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea.
| |
Collapse
|
20
|
Galati D, De Martino M, Trotta A, Rea G, Bruzzese D, Cicchitto G, Stanziola AA, Napolitano M, Sanduzzi A, Bocchino M. Peripheral depletion of NK cells and imbalance of the Treg/Th17 axis in idiopathic pulmonary fibrosis patients. Cytokine 2014; 66:119-26. [PMID: 24418172 DOI: 10.1016/j.cyto.2013.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/31/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
The immune response plays an unsettled role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), the contribution of inflammation being controversial as well. Emerging novel T cell sub-populations including regulatory T lymphocytes (Treg) and interleukin (IL)-17 secreting T helper cells (Th17) may exert antithetical actions in this scenario. Phenotype and frequency of circulating immune cell subsets were assessed by multi-parametric flow cytometry in 29 clinically stable IPF patients and 17 healthy controls. The interplay between Treg lymphocytes expressing transforming growth factor (TGF)-β and Th17 cells was also investigated. Proportion and absolute number of natural killer (NK) cells were significantly reduced in IPF patients in comparison with controls (p<0.001). Conversely, the proportion and absolute number of CD3(+)CD4(+)CD25(high)Foxp-3(+) cells were significantly increased in IPF patients (p=0.000). As in controls, almost the totality of cells (>90%) expressed TGF-β upon stimulation. Interestingly, the frequency of Th17 cells was significantly compromised in IPF patients (p=0.000) leading to an increased TGF-β/IL-17 ratio (4.2±2.3 vs 0.5±0.3 in controls, p=0.000). Depletion of NK and Th17 cells along with a not compromised Treg compartment delineate the existence of an "immune profile" that argue against the recent hypothesis of IPF as an autoimmune disease. Our findings along with the imbalance of the Treg/Th17 axis more closely suggest these immune perturbations to be similar to those observed in cancer. Clinical relevance, limitations and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Domenico Galati
- Dipartimento di Ematologia, IRCCS INT Fondazione Pascale, Napoli, Italy
| | - Marina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Napoli, Italy
| | - Annamaria Trotta
- UOSC Immunologia Oncologica, IRCCS INT Fondazione Pascale, Napoli, Italy
| | - Gaetano Rea
- Dipartimento dei Servizi Diagnostici e Generali, Ospedali dei Colli, Monaldi-Cotugno-CTO, Napoli, Italy
| | - Dario Bruzzese
- Dipartimento di Sanità Pubblica, Università Federico II, Napoli, Italy
| | | | | | - Maria Napolitano
- UOSC Immunologia Oncologica, IRCCS INT Fondazione Pascale, Napoli, Italy
| | - Alessandro Sanduzzi
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Napoli, Italy
| | - Marialuisa Bocchino
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, Napoli, Italy.
| |
Collapse
|
21
|
Liu G, Lu S, Wang X, Page ST, Higano CS, Plymate SR, Greenberg NM, Sun S, Li Z, Wu JD. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest 2013; 123:4410-22. [PMID: 24018560 DOI: 10.1172/jci69369] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/11/2013] [Indexed: 02/04/2023] Open
Abstract
The activating receptor NK cell group 2 member D (NKG2D) mediates antitumor immunity in experimental animal models. However, whether NKG2D ligands contribute to tumor suppression or progression clinically remains controversial. Here, we have described 2 novel lines of "humanized" bi-transgenic (bi-Tg) mice in which native human NKG2D ligand MHC class I polypeptide-related sequence B (MICB) or the engineered membrane-restricted MICB (MICB.A2) was expressed in the prostate of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous carcinogenesis. Bi-Tg TRAMP/MICB mice exhibited a markedly increased incidence of progressed carcinomas and metastasis, whereas TRAMP/MICB.A2 mice enjoyed long-term tumor-free survival conferred by sustained NKG2D-mediated antitumor immunity. Mechanistically, we found that cancer progression in TRAMP/MICB mice was associated with loss of the peripheral NK cell pool owing to high serum levels of tumor-derived soluble MICB (sMICB). Prostate cancer patients also displayed reduction of peripheral NK cells and high sMIC levels. Our study has not only provided direct evidence in "humanized" mouse models that soluble and membrane-restricted NKG2D ligands pose opposite impacts on cancer progression, but also uncovered a mechanism of sMIC-induced impairment of NK cell antitumor immunity. Our findings suggest that the impact of soluble NKG2D ligands should be considered in NK cell-based cancer immunotherapy and that our unique mouse models should be valuable for therapy optimization.
Collapse
|
22
|
Cellular therapy of cancer with natural killer cells-where do we stand? Cytotherapy 2013; 15:1185-94. [PMID: 23768925 DOI: 10.1016/j.jcyt.2013.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/02/2013] [Accepted: 03/13/2013] [Indexed: 02/02/2023]
Abstract
Although T-lymphocytes have received most of the attention in immunotherapy trials, new discoveries around natural killer (NK) cells suggest that they also should be suitable effector cells for cellular therapy of cancer. In addition to direct cytotoxicity, NK cells produce an array of immune-active cytokines, among them interferons and granulocyte-macrophage colony-stimulating factor, which places them at the crossroads of innate and adaptive immunity. They also augment monoclonal antibody activity through antibody-mediated cellular cytotoxicity and can be transfected with chimeric antigen receptors. One of the stumbling blocks for NK cell-based therapies has been the inability to predictably obtain and expand larger numbers from donors, but also to achieve sufficiently high transfection efficiency of target genes. The first clinical trials with NK cells suggest some benefit, but more definite evidence is needed to justify this relatively expensive treatment.
Collapse
|
23
|
Thisoda P, Ketsa-Ard K, Thongprasert S, Vongsakul M, Picha P, Karbwang J, Na-Bangchang K. Immunostimulating effect of a well-known Thai folkloric remedy in breast cancer patients. Asian Pac J Cancer Prev 2013; 14:2599-605. [PMID: 23725182 DOI: 10.7314/apjcp.2013.14.4.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The study aimed to evaluate immune-stimulating effects of a well-known Thai folkloric remedy when used for adjuvant therapy with conventional chemotherapeutics for treatment of breast cancer. Immunostimulating influence of the remedy (215 mg/kg body weight per day) on NK cell activity and TNF-α release from the monocytes/macrophages were investigated in a total of 15 healthy women and 13 female patients with breast cancer (Group 1). The effect of breast tumor surgery on NK cell activity was further investigated in 18 female patients with breast cancer (Group 2). NK cell cytotoxic activity was determined by chromium release cytotoxic assay using K562, an erythroleukemic cell line. TNF-α release from monocytes/macrophages separated from blood samples was determined through a biological assay using actinomycin D-treated L929 mouse fibroblast cells in the presence and absence of LPS. Baseline NK cell activity of the monocytes/macrophages separated from Group 2 patients expressed as %cytotoxicity was significantly lower than in the healthy subjects at E:T ratios of 100:1 and 25:1. In healthy subjects, there was no change in NK cell cytotoxic activity (%cytotoxicity or LU) following 1 and 2 weeks of treatment with the remedy compared with the baseline at various E:T ratios but the binding activity (%binding) was significantly increased after 2 weeks of treatment. The addition of one or two conventional chemotherapeutic regimens did not significantly reduce the NK cytotoxic activity but did affect release of TNF-α in both unstimulated and LPS-stimulated samples. Surgery produced a significant suppressive effect on NK cell activity. The use of the remedy as an adjunct therapy may improve therapeutic efficacy and safety profiles of conventional chemotherapeutic regimens through stimulation of the immune system in cancer patients.
Collapse
Affiliation(s)
- Piengpen Thisoda
- Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|