1
|
Vincken R, Armendáriz-Martínez U, Ruiz-Sáenz A. ADCC: the rock band led by therapeutic antibodies, tumor and immune cells. Front Immunol 2025; 16:1548292. [PMID: 40308580 PMCID: PMC12040827 DOI: 10.3389/fimmu.2025.1548292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is a critical mechanism by which therapeutic antibodies leverage the immune system to target and eliminate cancer cells. The key agents of ADCC are natural killer (NK) cells, specifically targeting antibody-covered cancer cells through the CD16 receptor. While other immune cells and Fc receptors can contribute and enhance ADCC, NK cells and the CD16 receptor are crucial for the efficacy of cancer therapies such as trastuzumab, cetuximab and rituximab. Co-culture assays are essential for understanding the mechanisms of these therapies, overcoming resistance and optimizing novel therapeutic antibodies. This review highlights the importance of measuring ADCC to assess the efficacy of therapeutic antibodies. Here we also present the various in vitro models and assay methodologies available for studying ADCC, comparing the strengths and limitations of approaches like using PBMCs to better reflect real-life conditions or NK cell lines for standardization. It also covers different readouts for ADCC, either focusing on effector cells activation, including reporter and degranulation assays or in the target cell killing, including different molecule release assays, flow cytometry and immunofluorescence techniques. Selecting the best model for studying ADCC is crucial for the translational significance of therapeutic antibody research.
Collapse
Affiliation(s)
- Roos Vincken
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, CN, Rotterdam, Netherlands
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Uxue Armendáriz-Martínez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ana Ruiz-Sáenz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Luo X, Wang N, Xing Y, Gao X, Yu Y, Liu T, Jiang S, Dong M. Pharmacokinetics of trastuzumab and its efficacy and safety in HER2-positive cancer patients. Cancer Chemother Pharmacol 2024; 94:721-732. [PMID: 39177768 DOI: 10.1007/s00280-024-04707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Trastuzumab is a potent targeted therapy drug for HER2-positive cancer patients. A comprehensive understanding of trastuzumab's mechanism of action, pharmacokinetic (PK) parameters, and steady-state exposure in different treatment regimens and administration routes is essential for a thorough evaluation of the drug's safety and effectiveness. Due to the distinctive pharmacokinetics, indications, and administration methods of trastuzumab, this understanding becomes crucial. Drug exposure can be assessed by measuring trastuzumab's peak concentration, trough concentration, or area under the curve through assays like enzyme-linked immunosorbent assay (ELISA) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dose-response (D-R) and exposure-response (E-R) relationships establish the correlation between drug dosage/exposure and the therapeutic effect and safety. Additionally, various covariates such as body weight, aspartate transaminase, and albumin levels can influence drug exposure. This review provides a comprehensive overview of trastuzumab's mechanism of action, data on steady-state concentration and PK parameters under multiple administration routes and indications, discussions on factors influencing PK parameters, and evaluations of the effectiveness and safety of E-R and D-R in diverse HER2-positive cancer patients.
Collapse
Affiliation(s)
- Xinyu Luo
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Nan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Xing
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xinyue Gao
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tong Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Nami B, Wang Z. A Non-Canonical p75HER2 Signaling Pathway Underlying Trastuzumab Action and Resistance in Breast Cancer. Cells 2024; 13:1452. [PMID: 39273024 PMCID: PMC11394428 DOI: 10.3390/cells13171452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Overexpression of HER2 occurs in 25% of breast cancer. Targeting HER2 has proven to be an effective therapeutic strategy for HER2-positive breast cancer. While trastuzumab is the most commonly used HER2 targeting agent, which has significantly improved outcomes, the overall response rate is low. To develop novel therapies to boost trastuzumab efficacy, it is critical to identify the mechanisms underlying trastuzumab action and resistance. We recently showed that the inhibition of breast cancer cell growth by trastuzumab is not through the inhibition of HER2 canonical signaling. Here we report the identification of a novel non-canonical HER2 signaling pathway and its interference by trastuzumab. We showed that HER2 signaled through a non-canonical pathway, regulated intramembrane proteolysis (RIP). In this pathway, HER2 is first cleaved by metalloprotease ADAM10 to produce an extracellular domain (ECD) that is released and the p95HER2 that contains the transmembrane domain (TM) and intracellular domain (ICD). p95HER2, if further cleaved by an intramembrane protease, γ-secretase, produced a soluble ICD p75HER2 with nuclear localization signal (NLS). p75HER2 is phosphorylated and translocated to the nucleus. Nuclear p75HER2 promotes cell proliferation. Trastuzumab targets this non-canonical HER2 pathway via inhibition of the proteolytic cleavage of HER2 by both ADAM10 and γ-secretase. However, p75HER2 pathway also confers resistance to trastuzumab once aberrantly activated. Combination of trastuzumab with ADAM10 and γ-secretase inhibitors completely blocks p75HER2 production in both BT474 and SKBR3 cells. We concluded that HER2 signals through the RIP signaling pathway that promotes cell proliferation and is targeted by trastuzumab. The aberrant HER2 RIP signaling confers resistance to trastuzumab that could be overcome by the application of inhibitors to ADAM10 and γ-secretase.
Collapse
Affiliation(s)
| | - Zhixiang Wang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
4
|
Peng H, Endo Y, Wu WJ. Define Critical Parameters of Trastuzumab-Mediated ADCC Assays via Assay Optimization Processes, Focusing on the Impact of Cryopreserved Effector Cells on Assay Performance. Cancers (Basel) 2024; 16:2367. [PMID: 39001429 PMCID: PMC11240353 DOI: 10.3390/cancers16132367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The mechanisms of mAb-induced ADCC have been well established. However, the ADCC bioassays used to quantify mAb-induced ADCC require continued development/refinement to properly assess and compare the potency of newly developed therapeutic mAbs and biosimilars to meet regulatory requirements. We used trastuzumab and a lactate dehydrogenase (LDH)-based ADCC bioassay as a model to define critical parameters of the ADCC bioassay, describing how several bioassay parameters, including preparation of effector cells, E/T ratio, target cell selection, bioassay media components, and treatment time can influence the data quality of the ADCC activity. We confirm that a 4 to 24 h recovery cultivation is required to restore peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cell activity toward ADCC when using cryopreserved PBMCs. Furthermore, we delineated the cellular mechanisms underlying the restored ADCC activity following the recovery cultivation. We observed that CD69, an early marker of NK cell activation, was upregulated and a new subset CD56dim/CD16dim population was dramatically increased in the recovered NK cells, which led to an increase in expression and secretion of perforin, granzyme B, and cytokine production. This study provides comprehensive technical insights into ADCC bioassay optimization to inform trastuzumab biosimilar development. The knowledge gained from this study can also be leveraged to guide bioassay development for therapeutic mAbs with ADCC as the primary mechanism of action.
Collapse
Affiliation(s)
- Hanjing Peng
- Division of Pharmaceutical Quality Research III (OPQR III), Office of Pharmaceutical Quality Research (OPQR), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Yukinori Endo
- Division of Pharmaceutical Quality Research III (OPQR III), Office of Pharmaceutical Quality Research (OPQR), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Wen Jin Wu
- Division of Pharmaceutical Quality Research III (OPQR III), Office of Pharmaceutical Quality Research (OPQR), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
5
|
Ujlaky-Nagy L, Szöllősi J, Vereb G. Disrupting EGFR-HER2 Transactivation by Pertuzumab in HER2-Positive Cancer: Quantitative Analysis Reveals EGFR Signal Input as Potential Predictor of Therapeutic Outcome. Int J Mol Sci 2024; 25:5978. [PMID: 38892166 PMCID: PMC11173106 DOI: 10.3390/ijms25115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.
Collapse
Affiliation(s)
- László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Gaynor N, Blanco A, Madden SF, Moran B, Fletcher JM, Kaukonen D, Ramírez JS, Eustace AJ, McDermott MSJ, Canonici A, Toomey S, Teiserskiene A, Hennessy BT, O'Donovan N, Crown J, Collins DM. Alterations in immune cell phenotype and cytotoxic capacity in HER2+ breast cancer patients receiving HER2-targeted neo-adjuvant therapy. Br J Cancer 2023; 129:1022-1031. [PMID: 37507543 PMCID: PMC10491671 DOI: 10.1038/s41416-023-02375-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The phase II neo-adjuvant clinical trial ICORG10-05 (NCT01485926) compared chemotherapy in combination with trastuzumab, lapatinib or both in patients with HER2+ breast cancer. We studied circulating immune cells looking for alterations in phenotype, genotype and cytotoxic capacity (direct and antibody-dependent cell-mediated cytotoxicity (ADCC)) in the context of treatment response. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from pre- (n = 41) and post- (n = 25) neo-adjuvant treatment blood samples. Direct/trastuzumab-ADCC cytotoxicity of patient-derived PBMCs against K562/SKBR3 cell lines was determined ex vivo. Pembrolizumab was interrogated in 21 pre-treatment PBMC ADCC assays. Thirty-nine pre-treatment and 21 post-treatment PBMC samples were immunophenotyped. Fc receptor genotype, tumour infiltrating lymphocyte (TIL) levels and oestrogen receptor (ER) status were quantified. RESULTS Treatment attenuated the cytotoxicity/ADCC of PBMCs. CD3+/CD4+/CD8+ T cells increased following therapy, while CD56+ NK cells/CD14+ monocytes/CD19+ B cells decreased with significant post-treatment immune cell changes confined to patients with residual disease. Pembrolizumab-augmented ex vivo PBMC ADCC activity was associated with residual disease, but not pathological complete response. Pembrolizumab-responsive PBMCs were associated with lower baseline TIL levels and ER+ tumours. CONCLUSIONS PBMCs display altered phenotype and function following completion of neo-adjuvant treatment. Anti-PD-1-responsive PBMCs in ex vivo ADCC assays may be a biomarker of treatment response.
Collapse
Affiliation(s)
- Nicola Gaynor
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alfonso Blanco
- Flow Cytometry Core Technology, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, School of Population Heath Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Damien Kaukonen
- Data Science Centre, School of Population Heath Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Javier Sánchez Ramírez
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alex J Eustace
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Martina S J McDermott
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexandra Canonici
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ausra Teiserskiene
- Cancer Trials Ireland, RCSI House, 121 St. Stephen's Green, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Cancer Trials Ireland, RCSI House, 121 St. Stephen's Green, Dublin, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Denis M Collins
- Cancer Biotherapeutics Research Group, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
7
|
Cavallaro PA, De Santo M, Belsito EL, Longobucco C, Curcio M, Morelli C, Pasqua L, Leggio A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2476. [PMID: 37686984 PMCID: PMC10490457 DOI: 10.3390/nano13172476] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Breast cancer represents the most common cancer type and one of the major leading causes of death in the female worldwide population. Overexpression of HER2, a transmembrane glycoprotein related to the epidermal growth factor receptor, results in a biologically and clinically aggressive breast cancer subtype. It is also the primary driver for tumor detection and progression and, in addition to being an important prognostic factor in women diagnosed with breast cancer, HER2 is a widely known therapeutic target for drug development. The aim of this review is to provide an updated overview of the main approaches for the diagnosis and treatment of HER2-positive breast cancer proposed in the literature over the past decade. We focused on the different targeting strategies involving antibodies and peptides that have been explored with their relative outcomes and current limitations that need to be improved. The review also encompasses a discussion on targeted peptides acting as probes for molecular imaging. By using different types of HER2-targeting strategies, nanotechnology promises to overcome some of the current clinical challenges by developing novel HER2-guided nanosystems suitable as powerful tools in breast cancer imaging, targeting, and therapy.
Collapse
Affiliation(s)
- Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Emilia Lucia Belsito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Camilla Longobucco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| |
Collapse
|
8
|
Shrivastva S, Bala SC, Chennamaneni R, Konatam ML, Pydi VR, Prasad KS, Gundeti S. Trastuzumab-Related Cardiotoxicity in Adjuvant Setting: A Real-World Scenario. South Asian J Cancer 2023; 12:233-237. [PMID: 38047057 PMCID: PMC10691911 DOI: 10.1055/s-0043-1768039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Rachana Chennamaneni Trastuzumab, a humanized monoclonal antibody, significantly improves outcomes in HER 2-neu positive breast cancer. The incidence of cardiotoxicity with trastuzumab is approximately 8 to 10%. This study was designed to analyze the incidence and risk factors associated with trastuzumab-related cardiotoxicity in real-world settings. This was a single institutional retrospective analysis of the incidence of trastuzumab-related cardiotoxicity in nonmetastatic HER 2-positive, invasive breast cancer from January 2013 to December 2018. Trastuzumab-related cardiotoxicity was defined as symptomatic heart failure or asymptomatic decline in left ventricular ejection fraction (LVEF) by more than or equal to 10% or LVEF less than 50%. Risk factors analyzed were higher body mass index (≥30 kg/m 2 ), history of diabetes, hypertension, cardiac disease, left-sided radiotherapy (RT), and prior exposure to anthracyclines. Out of the 246 patients diagnosed with early stage HER 2-positive breast cancer, 117 (47.5%) received trastuzumab and constituted the study population. Trastuzumab-related cardiotoxicity was seen in a total of 16 (13.6%) patients. Eleven (9.4%) patients had an asymptomatic decline, while symptomatic LV dysfunction was seen in five (4.2%) patients. The median baseline ejection fraction was 65% (range, 56-72). The median time to development of cardiotoxicity was 18.5 weeks (range, 3-52) and the median trastuzumab cycle for cardiotoxicity was 6 (range, 2-16). Ten (62.5%) patients were rechallenged with trastuzumab following which one patient developed an asymptomatic decline in ejection fraction and one patient developed symptomatic heart failure. Cardiac-related mortality was seen in one (0.85%) patient. Left-sided RT to chest ( p = 0.012) and presence of more than or equal to two risk factors ( p = 0.01) had significant impact on incidence of cardiotoxicity. Approximately 14% developed trastuzumab-related cardiotoxicity that was slightly higher compared with that seen in clinical trials. Left-sided RT to chest and presence of two or more risk factors had significant impact on development of cardiotoxicity.
Collapse
Affiliation(s)
- Sarita Shrivastva
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Stalin Chowdary Bala
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Rachana Chennamaneni
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Meher Lakshmi Konatam
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Venkateswara Rao Pydi
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Kuruva Siva Prasad
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| | - Sadashivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023; 13:1097983. [PMID: 37007133 PMCID: PMC10061112 DOI: 10.3389/fonc.2023.1097983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy is a developing treatment for advanced breast cancer. Immunotherapy has clinical significance for the treatment of triple-negative breast cancers and human epidermal growth factor receptor-2 positive (HER2+) breast cancers. As a proved effective passive immunotherapy, clinical application of the monoclonal antibodies trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine) has significantly improved the survival of patients with HER2+ breast cancers. Immune checkpoint inhibitors that block programmed death receptor-1 and its ligand (PD-1/PD-L1) have also shown benefits for breast cancer in various clinical trials. Adoptive T-cell immunotherapies and tumor vaccines are emerging as novel approaches to treating breast cancer, but require further study. This article reviews recent advances in immunotherapy for HER2+ breast cancers.
Collapse
|
10
|
Futamura M, Ishihara K, Nagao Y, Ogiso A, Niwa Y, Nakada T, Kawaguchi Y, Ikawa A, Kumazawa I, Mori R, Kitazawa M, Hosono Y, Kuno M, Kawajiri M, Nakakami A, Takeuchi M, Morikawa A, Tokumaru Y, Katagiri Y, Asano Y, Mushika Y, Shimokawa T, Matsuhasih N. Neoadjuvant chemotherapy using nanoparticle albumin-bound paclitaxel plus trastuzumab and pertuzumab followed by epirubicin and cyclophosphamide for operable HER2-positive primary breast cancer: a multicenter phase II clinical trial (PerSeUS-BC04). Breast Cancer 2023; 30:293-301. [PMID: 36609911 PMCID: PMC9950177 DOI: 10.1007/s12282-022-01425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nanoparticle albumin-bound paclitaxel (nab-PTX) is a promising antibody partner for anti-human epidermal growth factor receptor 2 (HER2). We performed neoadjuvant chemotherapy (NAC) for HER2-positive breast cancer (BC) using nab-PTX plus trastuzumab (T-mab) and pertuzumab (P-mab), followed by epirubicin and cyclophosphamide (EC). METHODS In this multicenter phase II clinical trial (January 2019-July 2020), patients with stage I (T1c)-IIIB HER2-positive primary BC were treated with four cycles of nab-PTX plus T-mab and P-mab, followed by four cycles of EC. The primary endpoint was the pathological complete response (pCR) rate. Secondary endpoints were clinical response rate (RR), adverse events (AE), and tumor-infiltrating lymphocytes (TILs) in biopsy samples. RESULTS In total, 43 patients were enrolled (mean age, 54 years). Twenty-two patients had HER2, and 21 patients had luminal/HER2-subtypes. The overall pCR rate was 53.5% (23/43, 95% CI: 42.6-64.1%, p = 0.184), whilst the pCR for HER2 was 68.2% (15/22, 95% CI: 45.1-86.1) and 38.1% for luminal/HER2 (8/21, 95% CI: 18.1-61.6%). The RR was 100% [clinical (c) CR:25, partial response (PR): 18]. AEs (≥ G3) included neutropenia (23.3%), leukopenia (7.0%), liver dysfunction (7.0%), and peripheral neuropathy (4.7%) when nab-PTX was administered. EC administration resulted in leukopenia (34.2%), neutropenia (31.6%), and febrile neutropenia (15.8%). The TILs in preoperative biopsy samples were significantly higher in pCR compared to non-pCR samples. CONCLUSION Nab-PTX plus T-mab and P-mab induced a high pCR rate in HER2-positive BC, particularly in the HER2-subtype. Given that AEs are acceptable, this regimen is safe and acceptable as NAC for HER2-positive BC.
Collapse
Affiliation(s)
- Manabu Futamura
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | | | - Yasuko Nagao
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Atsuko Ogiso
- Department of Surgery, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Yoshimi Niwa
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 Japan
| | - Takumi Nakada
- Department of Breast Surgery, Gifu Municipal Hospital, Gifu, 500-8513 Japan
| | - Yoshihiro Kawaguchi
- Department of Breast Surgery, Asahi University Hospital, Gifu, 500-8523 Japan
| | - Ai Ikawa
- Department of Surgery, Takayama Red Cross Hospital, Takayama, 506-8550 Japan
| | - Iwao Kumazawa
- Department of Surgery, Gifu-Seino Medical Center, Ibi Hospital, Ibi, 501-0696 Japan
| | - Ryutaro Mori
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 Japan
| | - Mai Kitazawa
- Department of Breast Surgery, Asahi University Hospital, Gifu, 500-8523 Japan
| | - Yoshiki Hosono
- Department of Breast Surgery, Gifu Municipal Hospital, Gifu, 500-8513 Japan
| | - Masashi Kuno
- Department of Surgery, Gihoku Kosei Hospital, Gifu, 501-2105 Japan
| | - Mana Kawajiri
- Department of Surgery, Gihoku Kosei Hospital, Gifu, 501-2105 Japan
| | - Akira Nakakami
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 Japan
| | - Makoto Takeuchi
- Department of Breast Surgery, Central Japan International Medical Center, Minokamo, 505-8510 Japan
| | - Akemi Morikawa
- Department of Breast Surgery, Central Japan International Medical Center, Minokamo, 505-8510 Japan
| | - Yoshihisa Tokumaru
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 Japan
| | - Yasuo Katagiri
- Department of Pathology, Gifu University Hospital, Gifu, 501-1194 Japan
| | - Yoshimasa Asano
- Department of Surgery, Municipal Ena Hospital, Ena, 509-7201 Japan
| | - Yoshinori Mushika
- Department of Breast Surgery, Daiyukai General Hospital, Ichinomiya, 491-8551 Japan
| | - Toshio Shimokawa
- Clinical Study Support Center, Wakayama Medical University, Wakayama, 614-8509 Japan
| | - Nobuhisa Matsuhasih
- Department of Gastroenterological Surgery, Gifu University Hospital, Gifu, 501-1194 Japan
| |
Collapse
|
11
|
A Novel Mechanism Underlying the Inhibitory Effects of Trastuzumab on the Growth of HER2-Positive Breast Cancer Cells. Cells 2022; 11:cells11244093. [PMID: 36552857 PMCID: PMC9777316 DOI: 10.3390/cells11244093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
To improve the efficacy of trastuzumab, it is essential to understand its mechanism of action. One of the significant issues that makes it difficult to determine the precise mechanism of trastuzumab action is the formation of various HER receptor dimers in HER2-positive breast cancer cells. So far, studies have focused on the role of HER2-HER3 heterodimers, and little is known regarding EGFR-HER2 heterodimers. Here, we study the role of trastuzumab on the cell signaling and cell proliferation mediated by EGFR-HER2 heterodimers in BT474 and SRBR3 cells. EGF stimulates the formation of both EGFR homodimer and EGFR-HER2 heterodimer. Trastuzumab only binds to HER2, not EGFR. Therefore, any effects of trastuzumab on EGF-induced activation of EGFR, HER2, and downstream signaling proteins, as well as cell proliferation, are through its effects on EGFR-HER2 heterodimers. We show that trastuzumab inhibits EGF-induced cell proliferation and cell cycle progression in BT474 and SKBR3 cells. Interestingly trastuzumab strongly inhibits EGF-induced Akt phosphorylation and slightly inhibits EGF-induced Erk activation, in both BT474 and SKBR3 cells. These data suggest the presence of a novel mechanism that allows trastuzumab to inhibit EGR-induced Akt activation and cell proliferation, without blocking EGF-induced EGFR-HER2 heterodimerization and activation. We show that trastuzumab inhibits EGF-induced lipid raft localization of the EGFR-HER2 heterodimer. Disruption of the lipid raft with MβCD blocks HER2-mediated AKT activation in a similar way to trastuzumab. MβCD and trastuzumab synergically inhibit AKT activation. We conclude that trastuzumab inhibits EGF-induced lipid raft localization of EGFR-HER2 heterodimer, which leads to the inhibition of Akt phosphorylation and cell proliferation, without blocking the formation and phosphorylation of the EGFR-HER2 heterodimer.
Collapse
|
12
|
Bergado-Báez G, Gonzalez Suarez N, García LC, Pérez-Martínez D, Hernández-Fernández DR, Fundora-Barrios T, Rodríguez-Álvarez A, Díaz-Ordaz GD, Lindzen M, Yarden Y, Sánchez-Ramírez B. Polyclonal antibody-induced downregulation of HER1/EGFR and HER2 surpasses the effect of combinations of specific registered antibodies. Front Oncol 2022; 12:951267. [PMID: 36408164 PMCID: PMC9667895 DOI: 10.3389/fonc.2022.951267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Antitumor therapies targeting HER1/EGFR and HER2, such as monoclonal antibodies (MAbs) and tyrosine-kinase inhibitors (TKIs), have demonstrated a significant clinical benefit, but the emergence of resistance limits long-term efficacy. While secondary HER1 mutations confer tolerance to TKI, compensatory upregulation of HER2 drives resistance to anti-HER1 MAbs, which identifies MAb combinations targeting both receptors as an attractive therapeutic strategy. Nevertheless, toxicity hampers the clinical validation of this approach. Alternatively, cancer vaccines may induce antibodies directed against several antigens with less concern about induced toxicity. Methods Polyclonal antibodies (PAbs) targeting HER1 and HER2 were induced in mice or rabbits through immunization. Recognition of different epitopes on targets by PAbs was validated by phage-display technology. Receptor downregulation was evaluated by flow cytometry, immunofluorescence, and Western blot. MTT assays assessed cytotoxicity, while the antitumor effect of PAbs was assayed in nude mice. Results PAbs promoted degradation of HER1 and HER2 regarding clinical MAbs or their combinations. As a result, inhibition of cytotoxicity on tumor cell lines was improved, even in the presence of oncogenic mutations in HER1, as well as in cetuximab-insensitive cells. Accordingly, the antitumor effect of vaccination-induced PAbs was observed in lung tumor lines representative of sensitivity or resistance to HER1 targeting therapies. Conclusions Immunization against HER1 and HER2 receptors offers an alternative to passive administration of combinations of MAbs, since vaccination-induced PAbs promote the downregulation of both receptors and they have a higher impact on the survival of tumor cells.
Collapse
Affiliation(s)
- Gretchen Bergado-Báez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Narjara Gonzalez Suarez
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à, Montréal, QC, Canada
| | - Lisset Chao García
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Dayana Pérez-Martínez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Talia Fundora-Barrios
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Belinda Sánchez-Ramírez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
- *Correspondence: Belinda Sánchez-Ramírez,
| |
Collapse
|
13
|
Saoudi Gonzalez N, López D, Gómez D, Ros J, Baraibar I, Salva F, Tabernero J, Élez E. Pharmacokinetics and pharmacodynamics of approved monoclonal antibody therapy for colorectal cancer. Expert Opin Drug Metab Toxicol 2022; 18:755-767. [PMID: 36582117 DOI: 10.1080/17425255.2022.2160316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The introduction of monoclonal antibodies to the chemotherapy backbone treatment has challenged the paradigm of metastatic colorectal cancer (mCRC) treatment. Their mechanism of action and pharmacokinetics are complex but important to understand in order to improve patient selection and treatment outcomes for mCRC population. AREAS COVERED This review examines the scientific data, pharmacodynamics, and pharmacokinetics of approved monoclonal antibodies used to treat mCRC patients, including agents targeting signaling via VEGFR (bevacizumab and ramucirumab), EGFR (cetuximab and panitumumab), HER2/3 target therapy, and immunotherapy agents such as pembrolizumab or nivolumab. Efficacy and mechanism of action of bispecific antibodies are also covered. EXPERT OPINION mCRC is a heterogeneous disease and the optimal selection and sequence of treatments is challenging. Monoclonal antibodies have complex pharmacokinetics and pharmacodynamics, with important interactions between them. The arrival of bioequivalent molecules to the market increases the need for the characterization of pharmacokinetics and pharmacodynamics of classic monoclonal antibodies to reach bioequivalent novel molecules.
Collapse
Affiliation(s)
- Nadia Saoudi Gonzalez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Daniel López
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Diego Gómez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Francesc Salva
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| |
Collapse
|
14
|
Dash R, Singh SK, Chirmule N, Rathore AS. Assessment of Functional Characterization and Comparability of Biotherapeutics: a Review. AAPS J 2021; 24:15. [PMID: 34931298 DOI: 10.1208/s12248-021-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The development of monoclonal antibody (mAb) biosimilars is a complex process. The key to their successful development and commercialization is an in-depth understanding of the key product attributes that impact safety and efficacy and the strategies to control them. Functional assessment of mAb is a crucial part of the comparability of biopharmaceutical drugs. The development of a relevant and robust functional assay requires an interdisciplinary approach and sufficient flexibility to balance regulatory concerns as well as dynamics and variability during the manufacturing process. Although many advanced tools are available to study and compare the potency and bioactivity of the protein, most of these techniques suffer from major shortcomings that limit their routine use. These include the complexity of the task, establishment of the relevance of the chosen method with the mechanism of action (MOA) of the biosimilar, cost and extended time of analysis, and often the ambiguity in interpretation of the resulting data. To overcome or to address these challenges, the use of multiple orthogonal state-of-the-art techniques is a necessary prerequisite.
Collapse
Affiliation(s)
- Rozaleen Dash
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sumit Kumar Singh
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,School of Biochemical Engineering, IIT-BHU, Varanasi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
15
|
Maadi H, Soheilifar MH, Choi WS, Moshtaghian A, Wang Z. Trastuzumab Mechanism of Action; 20 Years of Research to Unravel a Dilemma. Cancers (Basel) 2021; 13:cancers13143540. [PMID: 34298754 PMCID: PMC8303665 DOI: 10.3390/cancers13143540] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab as a first HER2-targeted therapy for the treatment of HER2-positive breast cancer patients was introduced in 1998. Although trastuzumab has opened a new avenue to treat patients with HER2-positive breast cancer and other types of cancer, some patients are not responsive or become resistant to this treatment. So far, several mechanisms have been suggested for the mode of action of trastuzumab; however, the findings regarding these mechanisms are controversial. In this review, we aimed to provide a detailed insight into the various mechanisms of action of trastuzumab.
Collapse
Affiliation(s)
- Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (H.M.); (W.-S.C.)
| | - Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran 1315795613, Iran;
| | - Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (H.M.); (W.-S.C.)
| | - Abdolvahab Moshtaghian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741695447, Iran;
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Zhixiang Wang
- Department of Medical Genetics and Signal, Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence:
| |
Collapse
|
16
|
Kwiatkowski A, Co C, Kameoka S, Zhang A, Coughlin J, Cameron T, Chiao E, Bergelson S, Schmid Mason C. Assessment of the role of afucosylated glycoforms on the in vitro antibody-dependent phagocytosis activity of an antibody to Aβ aggregates. MAbs 2021; 12:1803645. [PMID: 32812835 PMCID: PMC7531570 DOI: 10.1080/19420862.2020.1803645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The terminal sugars of Fc glycans can influence the Fc-dependent biological activities of monoclonal antibody therapeutics. Afucosylated N-glycans have been shown to significantly alter binding to FcγRIIIa and affect antibody-dependent cell-mediated cytotoxicity (ADCC). Therefore, in order to maintain and ensure safety and efficacy for antibodies whose predominant mechanism of action (MOA) is ADCC, afucosylation is routinely monitored and controlled within appropriate limits. However, it is unclear how the composition and levels of afucosylated N-glycans can modulate the biological activities for a recombinant antibody whose target is not a cell surface receptor, as is the case with ADCC. The impact of different types and varying levels of enriched afucosylated N-glycan species on the in vitro bioactivities is assessed for an antibody whose target is aggregated amyloid beta (Aβ). While either the presence of complex biantennary or high mannose afucosylated glycoforms significantly increased FcγRIIIa binding activity compared to fucosylated glycoforms, they did not similarly increase aggregated Aβ uptake activity mediated by different effector cells. These experiments suggest that afucosylated N-glycans are not critical for the in vitro phagocytic activity of a recombinant antibody whose target is aggregated Aβ and uses Fc effector function as part of its MOA.
Collapse
Affiliation(s)
| | - Carl Co
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Sei Kameoka
- Research and Development, Biogen , Cambridge, MA, USA
| | - An Zhang
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - John Coughlin
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Tom Cameron
- Research and Development, Biogen , Cambridge, MA, USA
| | - Eric Chiao
- Research and Development, Biogen , Cambridge, MA, USA
| | | | | |
Collapse
|
17
|
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2021; 3:e27048. [PMID: 24605265 PMCID: PMC3937194 DOI: 10.4161/onci.27048] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023] Open
Abstract
In 1997, for the first time in history, a monoclonal antibody (mAb), i.e., the chimeric anti-CD20 molecule rituximab, was approved by the US Food and Drug Administration for use in cancer patients. Since then, the panel of mAbs that are approved by international regulatory agencies for the treatment of hematopoietic and solid malignancies has not stopped to expand, nowadays encompassing a stunning amount of 15 distinct molecules. This therapeutic armamentarium includes mAbs that target tumor-associated antigens, as well as molecules that interfere with tumor-stroma interactions or exert direct immunostimulatory effects. These three classes of mAbs exert antineoplastic activity via distinct mechanisms, which may or may not involve immune effectors other than the mAbs themselves. In previous issues of OncoImmunology, we provided a brief scientific background to the use of mAbs, all types confounded, in cancer therapy, and discussed the results of recent clinical trials investigating the safety and efficacy of this approach. Here, we focus on mAbs that primarily target malignant cells or their interactions with stromal components, as opposed to mAbs that mediate antineoplastic effects by activating the immune system. In particular, we discuss relevant clinical findings that have been published during the last 13 months as well as clinical trials that have been launched in the same period to investigate the therapeutic profile of hitherto investigational tumor-targeting mAbs.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
18
|
Collins DM, Madden SF, Gaynor N, AlSultan D, Le Gal M, Eustace AJ, Gately KA, Hughes C, Davies AM, Mahgoub T, Ballot J, Toomey S, O'Connor DP, Gallagher WM, Holmes FA, Espina V, Liotta L, Hennessy BT, O'Byrne KJ, Hasmann M, Bossenmaier B, O'Donovan N, Crown J. Effects of HER Family-targeting Tyrosine Kinase Inhibitors on Antibody-dependent Cell-mediated Cytotoxicity in HER2-expressing Breast Cancer. Clin Cancer Res 2020; 27:807-818. [PMID: 33122343 DOI: 10.1158/1078-0432.ccr-20-2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Antibody-dependent cell-mediated cytotoxicity (ADCC) is one mechanism of action of the monoclonal antibody (mAb) therapies trastuzumab and pertuzumab. Tyrosine kinase inhibitors (TKIs), like lapatinib, may have added therapeutic value in combination with mAbs through enhanced ADCC activity. Using clinical data, we examined the impact of lapatinib on HER2/EGFR expression levels and natural killer (NK) cell gene signatures. We investigated the ability of three TKIs (lapatinib, afatinib, and neratinib) to alter HER2/immune-related protein levels in preclinical models of HER2-positive (HER2+) and HER2-low breast cancer, and the subsequent effects on trastuzumab/pertuzumab-mediated ADCC. EXPERIMENTAL DESIGN Preclinical studies (proliferation assays, Western blotting, high content analysis, and flow cytometry) employed HER2+ (SKBR3 and HCC1954) and HER2-low (MCF-7, T47D, CAMA-1, and CAL-51) breast cancer cell lines. NCT00524303 provided reverse phase protein array-determined protein levels of HER2/pHER2/EGFR/pEGFR. RNA-based NK cell gene signatures (CIBERSORT/MCP-counter) post-neoadjuvant anti-HER2 therapy were assessed (NCT00769470/NCT01485926). ADCC assays utilized flow cytometry-based protocols. RESULTS Lapatinib significantly increased membrane HER2 levels, while afatinib and neratinib significantly decreased levels in all preclinical models. Single-agent lapatinib increased HER2 or EGFR levels in 10 of 11 (91%) tumor samples. NK cell signatures increased posttherapy (P = 0.03) and associated with trastuzumab response (P = 0.01). TKI treatment altered mAb-induced NK cell-mediated ADCC in vitro, but it did not consistently correlate with HER2 expression in HER2+ or HER2-low models. The ADCC response to trastuzumab and pertuzumab combined did not exceed either mAb alone. CONCLUSIONS TKIs differentially alter tumor cell phenotype which can impact NK cell-mediated response to coadministered antibody therapies. mAb-induced ADCC response is relevant when rationalizing combinations for clinical investigation.
Collapse
Affiliation(s)
- Denis M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland.
| | - Stephen F Madden
- RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Dublin, Ireland
| | - Nicola Gaynor
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Dalal AlSultan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland.,RCSI Division of Population Health Sciences, Royal College of Surgeons in Ireland, Beaux Lane House, Dublin, Ireland
| | - Marion Le Gal
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Alex J Eustace
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Kathy A Gately
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Clare Hughes
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Anthony M Davies
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Thamir Mahgoub
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - Jo Ballot
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Sinead Toomey
- RCSI Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin, Ireland
| | - Darran P O'Connor
- Royal College of Surgeons in Ireland, School of Pharmacy & Biomolecular Science, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Frankie A Holmes
- Texas Oncology-Memorial Hermann Memorial City, US Oncology Research, Houston, -Texas
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Bryan T Hennessy
- RCSI Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin, Ireland.,Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Kenneth J O'Byrne
- Princess Alexandra Hospital, Translational Research Institute and Queensland University of Technology, Brisbane, Queensland, Australia
| | - Max Hasmann
- Roche Innovation Center Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Leinster, Ireland.,Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Yamashita K, Iwatsuki M, Yasuda-Yoshihara N, Morinaga T, Nakao Y, Harada K, Eto K, Kurashige J, Hiyoshi Y, Ishimoto T, Nagai Y, Iwagami S, Baba Y, Miyamoto Y, Yoshida N, Ajani JA, Baba H. Trastuzumab upregulates programmed death ligand-1 expression through interaction with NK cells in gastric cancer. Br J Cancer 2020; 124:595-603. [PMID: 33100329 PMCID: PMC7851117 DOI: 10.1038/s41416-020-01138-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The predictive significance of programmed death ligand 1 (PD-L1) for programmed death 1 (PD-1) inhibitors remains unclear in gastric cancer (GC) due to the dynamic alteration by treatments. We aimed to elucidate the effects of trastuzumab (Tmab) on PD-L1 expression in GC. METHODS PD-L1 expression was evaluated by multicolour flow cytometry analysis after co-culturing GG cell lines and immune cells with Tmab. IFN-γ in the co-culture experiments was quantified. Immunohistochemistry (IHC) for PD-L1 expression using clinical samples was also performed to confirm PD-L1 alteration by Tmab. RESULTS PD-L1 expression was significantly upregulated by Tmab in HER2-amplified GC cell lines co-cultured with peripheral blood mononuclear cells (PBMCs). PD-L1 upregulation by Tmab was also observed in the GC cells co-cultured with NK cells in time-dependent manner, but not with monocytes. IFN-γ concentration in conditioned media from co-cultured PBMCs and NK cells with Tmab was significantly higher and anti-IFN-γ significantly suppress the Tmab-induced PD-L1 upregulation. IHC also suggested PD-L1 upregulation after Tmab treatment. CONCLUSIONS Tmab can upregulate PD-L1 expression on GC cells through interaction with NK cells. These results suggest clinical implications in the assessment of the predictive significance of PD-L1 expression for PD-1 inhibitors.
Collapse
Affiliation(s)
- Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Morinaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohei Nagai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
20
|
Chiang ZC, Chiu YK, Lee CC, Hsu NS, Tsou YL, Chen HS, Hsu HR, Yang TJ, Yang AS, Wang AHJ. Preparation and characterization of antibody-drug conjugates acting on HER2-positive cancer cells. PLoS One 2020; 15:e0239813. [PMID: 32986768 PMCID: PMC7521679 DOI: 10.1371/journal.pone.0239813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Two systems of antibody-drug conjugates (ADCs), noncleavable H32-DM1 and cleavable H32-VCMMAE, were developed by using different linkers and drugs attached to the anti-HER2 antibody H32, which is capable of cell internalization. Activated functional groups, including an N-hydroxysuccinimidyl (NHS) ester and a maleimide, were utilized to make the ADCs. Mass spectrometry, hydrophobic interaction chromatography, polyacrylamide gel electrophoresis, and in vitro cell assays were performed to analyze and optimize the ADCs. Several H32-VCMMAE ADCs were established with higher DARs and greater synthetic yields without compromising potency. The anticancer efficacy of H32-DM1 was 2- to 8-fold greater than that of Kadcyla®. The efficacy of H32-VCMMAE was in turn better than that of H32-DM1. The anticancer efficacy of these ADCs against N87, SK-BR-3 and BT474 cells was in the following order: H32-VCMMAE series > H32-DM1 series > Kadcyla®. The optimal DAR for H32-VCMMAE was found to be 6.6, with desirable attributes including good cell penetration, a releasable payload in cancer cells, and high potency. Our results demonstrated the potential of H32-VCMMAE as a good ADC candidate.
Collapse
Affiliation(s)
- Zu-Chian Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Kai Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Nai-Shu Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Hong-Sen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Horng-Ru Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzung-Jie Yang
- Drug Metabolism & Pharmacokinetics, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Andrew H. -J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Cao L, Yao M, Sasano H, Sun PL, Gao H. YAP increases response to Trastuzumab in HER2-positive Breast Cancer by enhancing P73-induced apoptosis. J Cancer 2020; 11:6748-6759. [PMID: 33046997 PMCID: PMC7545685 DOI: 10.7150/jca.48535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The role of the Yes-associated protein (YAP) in oncogenesis and progression of breast cancer remains controversial. Meanwhile, development of therapeutic resistance to trastuzumab, a common breast cancer treatment administered after chemotherapy, is a significant challenge in the treatment of HER2-positive breast cancer. We, therefore, analyzed the role of YAP in trastuzumab resistance in HER2-positive-breast carcinoma cells in vitro and evaluated the status of YAP and related proteins in patient-derived breast carcinoma tissues by immunohistochemistry. YAP expression was observed in both BT474-TS (trastuzumab-sensitive) and BT474-TR (trastuzumab-resistant) cells. Treatment with trastuzumab increased expression of nuclear-YAP (N-YAP) in BT474-TS cells, whereas BT474-TR cells showed a decrease in N-YAP expression following trastuzumab treatment. YAP silencing significantly reduced trastuzumab-induced inhibitory effects in BT474-TS cells. YAP-silenced cells also showed decreased apoptosis and significantly lower p73 levels following trastuzumab treatment. Combined protein kinase B (AKT) inhibitor-trastuzumab treatment significantly inhibited BT474-TR cell proliferation, resulting in increased N-YAP and p73 expression, as well as apoptosis. In both paclitaxel, doxorubicin and cyclophosphamide (TAC)-treated, and docetaxel, carboplatin, and trastuzumab (TCbH)-treated groups; the pathological complete response (pCR) ratios were inversely correlated with p-AKT status in biopsy specimens, while YAP and p73 status were positively correlated with the pCR ratio in the biopsy specimens of the TCbH group. Our results show that YAP is involved in trastuzumab resistance in HER2-positive breast carcinoma cells and that YAP and AKT may be developed as prognostic markers of neoadjuvant trastuzumab therapy in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Lanqing Cao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Min Yao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine and Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
| | - Ping-Li Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hongwen Gao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
22
|
Gaynor N, Crown J, Collins DM. Immune checkpoint inhibitors: Key trials and an emerging role in breast cancer. Semin Cancer Biol 2020; 79:44-57. [PMID: 32623044 DOI: 10.1016/j.semcancer.2020.06.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/15/2022]
Abstract
This review focuses on immune checkpoint inhibitors - immunomodulatory agents that aim to relieve tumour-mediated immune-cell suppression. Immune checkpoint proteins can be expressed on the tumour-cell or immune-cell populations. Immune checkpoint proteins dampen the immune response by inactivating immune cells capable of tumour destruction. Blockade of immune checkpoints has shown impressive results in a range of solid cancers, particularly melanoma and non-small cell lung cancer. The potential benefit of this class of drugs is widespread across most cancer types and an unprecedented number of clinical studies are underway to examine the benefit of these agents. The aims of this review are to: provide an overview of the key early immune checkpoint inhibitor trials involving drugs targeting programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in multiple disease types; provide an overview of emerging therapies aimed at these targets; and provide a detailed exploration of the status of immune checkpoint inhibitors in breast cancer.
Collapse
Affiliation(s)
- Nicola Gaynor
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland; Department of Medical Oncology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - Denis M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
23
|
Velazquez EJ, Brindley TD, Shrestha G, Bitter EE, Cress JD, Townsend MH, Berges BK, Robison RA, Weber KS, O’Neill KL. Novel monoclonal antibodies against thymidine kinase 1 and their potential use for the immunotargeting of lung, breast and colon cancer cells. Cancer Cell Int 2020; 20:127. [PMID: 32317865 PMCID: PMC7160906 DOI: 10.1186/s12935-020-01198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Thymidine kinase 1 (TK1) is a pyrimidine salvage pathway enzyme that is up-regulated in malignant tissues and elevated in the serum of cancer patients. While TK1 has been well established as a tumor biomarker, little has been done to explore its potential as a tumor target. Recently, we reported the membrane expression of TK1 on malignant cells, but not on normal cells. This study explores the possible use of monoclonal antibodies for the targeting of membrane associated TK1 in lung, breast, colon and prostate cancer cells. METHODS We generated and evaluated a panel of monoclonal antibodies against six different epitopes exposed in the tetrameric form of TK1. Antibodies were developed with hybridoma technology and validated with Western blot, siRNA TK1 knockdown, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The therapeutic potential of the antibodies was evaluated in vitro in antibody-dependent cell-mediated-cytotoxicity (ADCC) experiments. RESULTS Binding of the antibodies to TK1 was confirmed by Western blot in purified recombinant protein, cancer serum, and cell lysate. After a TK1 knockdown was performed, a reduction of TK1 expression was observed with five antibodies. Using indirect ELISA, we identified 3B2E11, 9C10, 7H2, 3B4, 8G2 among the most sensitive antibodies (LOD = 10.73-66.9 pg/ml). Surface expression of TK1 on the membrane of various cancer cell lines was analyzed with flow cytometry. Antibodies 8G2, 3B4, 7HD and 5F7G11 detected TK1 on the membrane of various cancer cell lines, including lung, prostate, colon and breast. No significant binding was detected on normal lymphocytes. Increased cytolysis of lung (~ 70%. p = 0.0001), breast (~ 70%, p = 0.0461) and colon (~ 50% p = 0.0216) cancer cells by effector cells was observed when anti-TK1 antibodies were added during ADCC experiments. CONCLUSIONS The antibodies developed showed potential to be used to detect and target TK1 on the membrane of various tumor cells. The targeting of TK1 in malignant cells using monoclonal antibodies may be a feasible approach for the elimination of high TK1 expressing tumor cells.
Collapse
Affiliation(s)
- Edwin J. Velazquez
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | - Taylor D. Brindley
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | | | - Eliza E. Bitter
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | - Jordan D. Cress
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | | | - Bradford K. Berges
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | - Richard A. Robison
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | - K. Scott Weber
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | - Kim L. O’Neill
- LSB 4007, Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| |
Collapse
|
24
|
Nguyen M, De Ninno A, Mencattini A, Mermet-Meillon F, Fornabaio G, Evans SS, Cossutta M, Khira Y, Han W, Sirven P, Pelon F, Di Giuseppe D, Bertani FR, Gerardino A, Yamada A, Descroix S, Soumelis V, Mechta-Grigoriou F, Zalcman G, Camonis J, Martinelli E, Businaro L, Parrini MC. Dissecting Effects of Anti-cancer Drugs and Cancer-Associated Fibroblasts by On-Chip Reconstitution of Immunocompetent Tumor Microenvironments. Cell Rep 2019; 25:3884-3893.e3. [PMID: 30590056 DOI: 10.1016/j.celrep.2018.12.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/06/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
A major challenge in cancer research is the complexity of the tumor microenvironment, which includes the host immunological setting. Inspired by the emerging technology of organ-on-chip, we achieved 3D co-cultures in microfluidic devices (integrating four cell populations: cancer, immune, endothelial, and fibroblasts) to reconstitute ex vivo a human tumor ecosystem (HER2+ breast cancer). We visualized and quantified the complex dynamics of this tumor-on-chip, in the absence or in the presence of the drug trastuzumab (Herceptin), a targeted antibody therapy directed against the HER2 receptor. We uncovered the capacity of the drug trastuzumab to specifically promote long cancer-immune interactions (>50 min), recapitulating an anti-tumoral ADCC (antibody-dependent cell-mediated cytotoxicity) immune response. Cancer-associated fibroblasts (CAFs) antagonized the effects of trastuzumab. These observations constitute a proof of concept that tumors-on-chip are powerful platforms to study ex vivo immunocompetent tumor microenvironments, to characterize ecosystem-level drug responses, and to dissect the roles of stromal components.
Collapse
Affiliation(s)
- Marie Nguyen
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Adele De Ninno
- Institute for Photonics and Nanotechnology, Italian National Research Council, 00156 Rome, Italy; Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fanny Mermet-Meillon
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Giulia Fornabaio
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Sophia S Evans
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Mélissande Cossutta
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Yasmine Khira
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Weijing Han
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Philémon Sirven
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; Immunity and Cancer, INSERM U932, INSERM Center of Clinical Investigations, CIC IGR Curie, 75005 Paris, France
| | - Floriane Pelon
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; Stress and Cancer Team, labelized by Ligue Nationale Contre le Cancer, INSERM U830, 75005 Paris, France
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnology, Italian National Research Council, 00156 Rome, Italy
| | - Annamaria Gerardino
- Institute for Photonics and Nanotechnology, Italian National Research Council, 00156 Rome, Italy
| | - Ayako Yamada
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; Laboratoire Physico Chimie Curie, CNRS UMR168, 75005 Paris, France; Institut Pierre-Gilles de Gennes, 75005 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; Laboratoire Physico Chimie Curie, CNRS UMR168, 75005 Paris, France; Institut Pierre-Gilles de Gennes, 75005 Paris, France
| | - Vassili Soumelis
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; Immunity and Cancer, INSERM U932, INSERM Center of Clinical Investigations, CIC IGR Curie, 75005 Paris, France
| | - Fatima Mechta-Grigoriou
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; Stress and Cancer Team, labelized by Ligue Nationale Contre le Cancer, INSERM U830, 75005 Paris, France
| | - Gérard Zalcman
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France; Centre d'Investigation Clinique (CIC) 1425, Hôpital Bichat-Claude Bernard, Université Paris-Diderot, Paris, France
| | - Jacques Camonis
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnology, Italian National Research Council, 00156 Rome, Italy
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, 75005 Paris, France; ART Group, INSERM U830, 75005 Paris, France.
| |
Collapse
|
25
|
Che YQ, Zhang Y, Wang D, Liu HY, Shen D, Luo Y. Baseline Lymphopenia: A Predictor Of Poor Outcomes In HER2 positive Metastatic Breast Cancer Treated With Trastuzumab. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3727-3734. [PMID: 31754298 PMCID: PMC6825475 DOI: 10.2147/dddt.s212610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/07/2019] [Indexed: 01/17/2023]
Abstract
Purpose Despite selection based on human epidermal growth factor receptor 2 (HER2) overexpression, not all HER2-positive patients benefit from trastuzumab therapy. Recent reports indicate that trastuzumab treatment failure may be associated with immune system dysfunction. We examined the prognostic relevance of the absolute lymphocyte count (ALC) in patients with HER2-positive metastatic breast cancer (MBC) who received trastuzumab combined with chemotherapy. Methods Baseline ALC and neutrophil-to-lymphocyte ratio (NLR) data from trastuzumab-treated patients with MBC were studied retrospectively, and associations between baseline ALC and clinical characteristics evaluated. Kaplan–Meier analysis and the Cox regression hazard model were applied to assess effects on outcomes. Results Of a total of 68 patients, 19.1% (13/68) had baseline ALCs ≤ 1 G/L. Baseline lymphopenia was correlated with increased lactate dehydrogenase (LDH) and higher NLR. In univariate analysis, higher alkaline phosphatase (ALP) was associated with inferior overall survival (OS) (P = 0.001); higher LDH was associated with inferior progression-free survival (PFS) (P = 0.045) and OS (P = 0.010). We did not observe any differences in objective response rate or disease control rate between patients with lymphopenia and those with normal ALC. Importantly, patients with baseline lymphopenia had inferior PFS (0.60 years vs 1.17 years, P = 0.000009) and OS (1.88 years vs 3.80 years, P = 0.0003). In multivariable analysis, significance of ALCs was retained for lymphopenia (PFS: P = 0.0005; OS: P = 0.016). Conclusion Our data indicate that baseline ALC value of ≤1 G/L is a predictor of poor outcomes, but not of response, in patients with MBC treated with trastuzumab.
Collapse
Affiliation(s)
- Yi-Qun Che
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yue Zhang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Di Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Hui-Ying Liu
- Department of Clinical Laboratory, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing 100122, People's Republic of China
| | - Di Shen
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| |
Collapse
|
26
|
Jarrett AM, Shah A, Bloom MJ, McKenna MT, Hormuth DA, Yankeelov TE, Sorace AG. Experimentally-driven mathematical modeling to improve combination targeted and cytotoxic therapy for HER2+ breast cancer. Sci Rep 2019; 9:12830. [PMID: 31492947 PMCID: PMC6731321 DOI: 10.1038/s41598-019-49073-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
The goal of this study is to experimentally and computationally investigate combination trastuzumab-paclitaxel therapies and identify potential synergistic effects due to sequencing of the therapies with in vitro imaging and mathematical modeling. Longitudinal alterations in cell confluence are reported for an in vitro model of BT474 HER2+ breast cancer cells following various dosages and timings of paclitaxel and trastuzumab combination regimens. Results of combination drug regimens are evaluated for drug interaction relationships based on order, timing, and quantity of dose of the drugs. Altering the order of treatments, with the same total therapeutic dose, provided significant changes in overall cell confluence (p < 0.001). Two mathematical models are introduced that are constrained by the in vitro data to simulate the tumor cell response to the individual therapies. A collective model merging the two individual drug response models was designed to investigate the potential mechanisms of synergy for paclitaxel-trastuzumab combinations. This collective model shows increased synergy for regimens where trastuzumab is administered prior to paclitaxel and suggests trastuzumab accelerates the cytotoxic effects of paclitaxel. The synergy derived from the model is found to be in agreement with the combination index, where both indicate a spectrum of additive and synergistic interactions between the two drugs dependent on their dose order. The combined in vitro results and development of a mathematical model of drug synergy has potential to evaluate and improve standard-of-care combination therapies in cancer.
Collapse
Affiliation(s)
- Angela M Jarrett
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA
| | - Alay Shah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Meghan J Bloom
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Matthew T McKenna
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37232, USA
| | - David A Hormuth
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA
| | - Thomas E Yankeelov
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA.
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA.
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, USA.
- Department of Oncology, The University of Texas at Austin, Austin, Texas, USA.
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35209, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35209, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35209, USA.
| |
Collapse
|
27
|
Monitoring kinetics reveals critical parameters of IgA-dependent granulocyte-mediated anti-tumor cell cytotoxicity. J Immunol Methods 2019; 473:112644. [PMID: 31404549 DOI: 10.1016/j.jim.2019.112644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/26/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Human IgA antibodies effectively engage myeloid cells for the FcαRI-dependent antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells. Established methods to investigate ADCC are the 51chromium and Calcein release assays. Their critical limitations are the end-point measurement, the unspecific release of the probes, the requirement of target cells in suspension and thus do not reflect physiologic conditions of adherently growing cells. Here we report the label-free real-time monitoring of granulocyte-mediated ADCC using an impedance-based method. We investigated the efficacy of an engineered epidermal growth factor receptor (EGFR)-directed IgA2 antibody to engage neutrophils for ADCC against a panel of adherently growing EGFR-expressing cancer cell lines majorly head and neck squamous cell carcinoma (HNSCC). The impedance assay allowed the documentation of the IgA-neutrophil-and FcαRI-signaling dependent ADCC of adherently growing target cells. While at a short-term it provided comparable results to release assays, in the long run real time monitoring also revealed cell-line specific kinetics and long-term efficacy. Although short-term results may depend on EGFR expression, long-term efficacy did not correlate with the surface level of EGFR nor of the myeloid checkpoint CD47 pointing to additional critical parameters to predict the treatment efficacy. Real-time monitoring of neutrophil-mediated ADCC allowed documenting effector cell activity and exhaustion. Along with excess expression of Mac-1 ligands, which may explain the target cell resistance, this eventually leads to tumor cell outgrowth at later time points. In conclusion, the impedance assay provides valuable information on the kinetics, effector cell performance, efficacy and critical parameters of IgA-dependent granulocyte-mediated cytotoxicity and is expected to become an important tool in its evaluation.
Collapse
|
28
|
Namba M, Hattori N, Hamada H, Yamaguchi K, Okamoto Y, Nakashima T, Masuda T, Sakamoto S, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Kohno N. Anti-KL-6/MUC1 monoclonal antibody reverses resistance to trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity by capping MUC1. Cancer Lett 2018; 442:31-39. [PMID: 30389434 DOI: 10.1016/j.canlet.2018.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 10/14/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
Abstract
Polymorphic epithelial mucin (MUC1) is generally overexpressed on the surface of most adenocarcinomas including breast cancer. MUC1 is associated with chemotherapeutic resistance and immune evasion of cancer cells; however, the association between MUC1 and trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) remains unclear. In this study, using six breast cancer cell lines with differing expression levels and MUC1 distribution, the present results show that cells with MUC1 overexpression and uniform surface distribution were resistant to trastuzumab-mediated ADCC. Importantly, trastuzumab resistance was reversed upon siRNA-mediated MUC1 knockdown and by using anti-KL-6/MUC1 monoclonal antibody (mAb). Additionally, we visually confirmed that anti-KL-6/MUC1 mAb induced capping of MUC1 molecules on the cell surface, resulting the in death of these cells. These results suggest that not only the quantity but also the cell-surface distribution of MUC1 affects the sensitivity of breast cancer cells to trastuzumab-mediated ADCC.
Collapse
Affiliation(s)
- Masashi Namba
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yohei Okamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuoki Kohno
- Hiroshima Cosmopolitan University, 5-13-18 Ujinanishi, Minami-ku, Hiroshima, 734-0014, Japan
| |
Collapse
|
29
|
Nami B, Maadi H, Wang Z. Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer. Cancers (Basel) 2018; 10:cancers10100342. [PMID: 30241301 PMCID: PMC6210751 DOI: 10.3390/cancers10100342] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20⁻30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.
Collapse
Affiliation(s)
- Babak Nami
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
30
|
Di Tucci C, Schiavi MC, Faiano P, D'Oria O, Prata G, Sciuga V, Giannini A, Palaia I, Muzii L, Benedetti Panici P. Therapeutic vaccines and immune checkpoints inhibition options for gynecological cancers. Crit Rev Oncol Hematol 2018; 128:30-42. [PMID: 29958629 DOI: 10.1016/j.critrevonc.2018.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/21/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Treatments for gynecological cancer include surgery, chemotherapy, and radiation. However, overall survival is not improved, and novel approaches are needed. Immunotherapy has been proven efficacious in various types of cancers and multiple approaches have been recently developed. Since numerous gynecological cancers are associated to human papilloma virus (HPV) infections, therapeutic vaccines, targeting HPV epitopes, have been developed. The advancing understanding of the immune system, regulatory pathways and tumor microenvironment have produced a major interest in immune checkpoint blockade, Indeed, immune checkpoint molecules are important clinical targets in a wide variety of tumors, including gynecological. In this review, we will describe the immunotherapeutic targets and modalities available and review the most recent immunotherapeutic clinical trials in the context of gynecological cancers. The synergic results obtained from the combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, or immune checkpoint inhibitors, may underlie the potential for a novel therapeutic scenario for these tumors.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Michele Carlo Schiavi
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Pierangelo Faiano
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Ottavia D'Oria
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Giovanni Prata
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Valentina Sciuga
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy.
| | - Andrea Giannini
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Innocenza Palaia
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Ludovico Muzii
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| |
Collapse
|
31
|
Maadi H, Nami B, Tong J, Li G, Wang Z. The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2. BMC Cancer 2018; 18:238. [PMID: 29490608 PMCID: PMC5831215 DOI: 10.1186/s12885-018-4143-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeted therapy with trastuzumab has become a mainstay for HER2-positive breast cancer without a clear understanding of the mechanism of its action. While many mechanisms have been suggested for the action of trastuzumab, most of them are not substantiated by experimental data. It has been suggested that trastuzumab functions by inhibiting intracellular signaling initiated by HER2, however, the data are very controversial. A major issue is the different cellular background of various breast cancer cells lines used in these studies. Each breast cancer cell line has a unique expression profile of various HER receptors, which could significantly affect the effects of trastuzumab. METHODS To overcome this problem, in this research we adopted a cell model that allow us to specifically examine the effects of trastuzumab on a single HER receptor without the influence of other HER receptors. Three CHO cell lines stably expressing only human EGFR (CHO-EGFR), HER2 (CHO-K6), or HER3 (CHO-HER3) were used. Various methods including cytotoxicity assay, immunoblotting, indirect immunofluorescence, cross linking, and antibody-dependent cellular cytotoxicity (ADCC) were employed in this research. RESULTS We showed that trastuzumab did not bind EGFR and HER3, and thus did not affect the homodimerization and phosphorylation of EGFR and HER3. However, overexpression of HER2 in CHO cells, in the absence of other HER receptors, resulted in the homodimerization of HER2 and the phosphorylation of HER2 at all major pY residues. Trastuzumab bound to HER2 specifically and with high affinity. Trastuzumab inhibited neither the homodimerization of HER2, nor the phosphorylation of HER2 at most phosphotyrosine residues. Moreover, trastuzumab did not inhibit the phosphorylation of ERK and AKT in CHO-K6 cells, and did not inhibit the proliferation of CHO-K6 cells. However, trastuzumab induced strong ADCC in CHO-K6 cells. CONCLUSION We concluded that, in the absence of other HER receptors, trastuzumab exerts its antitumor activity through the induction of ADCC, rather than the inhibition of HER2-homodimerization and phosphorylation.
Collapse
Affiliation(s)
- Hamid Maadi
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Babak Nami
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Junfeng Tong
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Gina Li
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
32
|
Hoffman F, Gavaghan D, Osborne J, Barrett I, You T, Ghadially H, Sainson R, Wilkinson R, Byrne H. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC). J Theor Biol 2018; 436:39-50. [DOI: 10.1016/j.jtbi.2017.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
33
|
Baldassarre T, Truesdell P, Craig AW. Endophilin A2 promotes HER2 internalization and sensitivity to trastuzumab-based therapy in HER2-positive breast cancers. Breast Cancer Res 2017; 19:110. [PMID: 28974266 PMCID: PMC5627411 DOI: 10.1186/s13058-017-0900-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Background Human epidermal growth factor receptor-2 (HER2) is amplified and a clinical target in a subset of human breast cancers with high rates of metastasis. Targeted therapies involving the antibody trastuzumab and trastuzumab-emtansine (T-DM1) have greatly improved outcomes for HER2-positive (HER2+) breast cancer patients. However, resistance to these targeted therapies can develop and limit their efficacy. Here, we test the involvement of the endocytic adaptor protein endophilin A2 (Endo II) in HER2+ breast cancer models, and their responses to treatments with trastuzumab and T-DM1. Methods Endo II expression in human breast tumors and lymph node metastases were analyzed by immunohistochemistry. Stable silencing of Endo II was achieved in HER2+ cancer cell lines (SK-BR-3 and HCC1954) to test Endo II effects on HER2 levels, localization and signaling, cell motility and tumor metastasis. The effects of Endo II silencing on the responses of HER2+ cancer cells to trastuzumab or T-DM1 treatments were tested using real-time cell motility and cytotoxicity assays. Results High Endo II protein expression was detected in HER2-positive tumors, and was linked to worse overall survival in node-positive HER2+ breast cancers at the mRNA level. Stable silencing of Endo II in HER2+ cell lines led to elevated levels of HER2 on the cell surface, impaired epidermal growth factor-induced HER2 internalization, and reduced signaling to downstream effector kinases Akt and Erk. Endo II silencing also led to decreased migration and invasion of HER2+ cancer cells in vitro, and impaired lung seeding following tail vein injection in mice. In addition, Endo II silencing also impaired HER2 internalization in response to Trastuzumab, and led to reduced cytotoxicity response in HER2+ cancer cells treated with T-DM1. Conclusions Our study provides novel evidence of Endo II function in HER2+ cancer cell motility and trafficking of HER2 that relates to effective treatments with trastuzumab or T-DM1. Thus, differential expression of Endo II may relate to sensitivity or resistance to trastuzumab-based therapies for HER2+ cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0900-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomas Baldassarre
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada
| | - Andrew W Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada. .,Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Ontario, Canada.
| |
Collapse
|
34
|
Tóth G, Szöllősi J, Vereb G. Quantitating ADCC against adherent cells: Impedance-based detection is superior to release, membrane permeability, or caspase activation assays in resolving antibody dose response. Cytometry A 2017; 91:1021-1029. [DOI: 10.1002/cyto.a.23247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/13/2017] [Accepted: 09/02/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Gábor Tóth
- Department of Biophysics and Cell Biology; University of Debrecen; Debrecen Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology; University of Debrecen; Debrecen Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology; University of Debrecen; Debrecen Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine; University of Debrecen; Debrecen Hungary
- Faculty of Pharmacy; University of Debrecen; Debrecen Hungary
| |
Collapse
|
35
|
MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2017; 114:10731-10736. [PMID: 28923920 DOI: 10.1073/pnas.1708264114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Loss of miR-15/16 is the most common genetic lesion in chronic lymphocytic leukemia (CLL), promoting overexpression of BCL2, which factors in leukemia pathogenesis. Indeed, an inhibitor of Bcl2, venetoclcax, is highly active in the treatment of patients with CLL. However, single-agent venetoclcax fails to eradicate minimal residual disease in most patients. Accordingly, we were interested in other genes that may be regulated by miR-15/16, which may target other drivers in CLL. We found that miR-15/16 targets ROR1, which encodes an onco-embryonic surface protein expressed on the CLL cells of over 90% of patients, but not on virtually all normal postpartum tissues. CLL with high-level expression of ROR1 also have high-level expression of Bcl2, but low-to-negligible miR-15/16 Moreover, CLL cases with high-level ROR1 have deletion(s) at the chromosomal location of the genes encoding miR-15/16 (13q14) more frequently than cases with low-to-negligible ROR1, implying that deletion of miR-15/16 may promote overexpression of ROR1, in addition to BCL2 ROR1 is a receptor for Wnt5a, which can promote leukemia-cell proliferation and survival, and can be targeted by cirmtuzumab, a humanized anti-ROR1 mAb. We find that this mAb can enhance the in vitro cytotoxic activity of venetoclcax for CLL cells with high-level expression of ROR1, indicating that combining these agents, which target ROR1 and Bcl2, may have additive, if not synergistic, activity in patients with this disease.
Collapse
|
36
|
Hillger JM, Lieuw WL, Heitman LH, IJzerman AP. Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today 2017; 22:1808-1815. [PMID: 28778587 DOI: 10.1016/j.drudis.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Drug development requires physiologically more appropriate model systems and assays to increase understanding of drug action and pathological processes in individual humans. Specifically, patient-derived cells offer great opportunities as representative cellular model systems. Moreover, with novel label-free cellular assays, it is often possible to investigate complex biological processes in their native environment. Combining these two offers distinct opportunities for increasing physiological relevance. Here, we review impedance-based label-free technologies in the context of patient samples, focusing on commonly used cell types, including fibroblasts, blood components, and stem cells. Applications extend as far as tissue-on-a-chip models. Thus, applying label-free technologies to patient samples can produce highly biorelevant data and, with them, unique opportunities for drug development and precision medicine.
Collapse
Affiliation(s)
- Julia M Hillger
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Wai-Ling Lieuw
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands.
| |
Collapse
|
37
|
Collins DM, Gately K, Hughes C, Edwards C, Davies A, Madden SF, O'Byrne KJ, O'Donovan N, Crown J. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines. Cell Immunol 2017; 319:35-42. [PMID: 28735814 DOI: 10.1016/j.cellimm.2017.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. METHODS HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. RESULTS HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. CONCLUSIONS In the presence of effector cells with high cytotoxic capacity, TKIs have the ability to augment the passive immunotherapeutic potential of trastuzumab in SKBR3, a model of HER2+ breast cancer. ADCC levels detected by LDH release assays are extremely low in MCF-7; the flow cytometry-based CFSE/7-AAD method is more sensitive and consistent for the determination of ADCC in HER2-low models.
Collapse
Affiliation(s)
- Denis M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Kathy Gately
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Clare Hughes
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Connla Edwards
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Anthony Davies
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | - Stephen F Madden
- Data Science Center, Royal College of Surgeons in Ireland, Dublin, Dublin 2, Ireland
| | - Kenneth J O'Byrne
- Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland; Department of Medical Oncology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
38
|
Gomes SE, Simões AES, Pereira DM, Castro RE, Rodrigues CMP, Borralho PM. miR-143 or miR-145 overexpression increases cetuximab-mediated antibody-dependent cellular cytotoxicity in human colon cancer cells. Oncotarget 2017; 7:9368-87. [PMID: 26824186 PMCID: PMC4891046 DOI: 10.18632/oncotarget.7010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022] Open
Abstract
miR-143 and miR-145 are downregulated in colon cancer. Here, we tested the effect of restoring these miRNAs on sensitization to cetuximab in mutant KRAS (HCT116 and SW480) and wild-type KRAS (SW48) colon cancer cells. We evaluated cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and the modulation of signaling pathways involved in immune effector cell-mediated elimination of cancer cells. Stable miR-143 or miR-145 overexpression increased cell sensitivity to cetuximab, resulting in a significant increase of cetuximab-mediated ADCC independently of KRAS status. Importantly, HCT116 cells overexpressing these miRNAs triggered apoptosis in result of cetuximab-mediated ADCC, effected by peripheral blood mononuclear cells (p < 0.01). This was associated with increased apoptosis and caspase-3/7 activity, and reduced Bcl-2 protein expression (p < 0.01). In addition, caspase inhibition abrogated cetuximab-mediated ADCC in HCT116 cells overexpressing either miR-143 or miR-145 (p < 0.01). Furthermore, Bcl-2 silencing led to high level of cetuximab-mediated ADCC, compared to control siRNA (p < 0.05). Importantly, granzyme B inhibition, abrogated cetuximab-mediated ADCC, reducing caspase-3/7 activity (p < 0.01). Collectively, our data suggests that re-introduction of miR-143 or miR-145 may provide a new approach for development of therapeutic strategies to re-sensitize colon cancer cells to cetuximab by stimulating cetuximab-dependent ADCC to induce cell death.
Collapse
Affiliation(s)
- Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
39
|
Wilkinson EL, Sidaway JE, Cross MJ. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open 2016; 5:1362-1370. [PMID: 27543060 PMCID: PMC5087671 DOI: 10.1242/bio.020362] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes. Summary: The anti-cancer drugs doxorubicin and Herceptin can disrupt tight junction formation in cardiac microvascular endothelial cells resulting in increased permeability which could potentially contribute to drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Emma L Wilkinson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE, UK
| | - James E Sidaway
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE, UK Molecular Toxicology, AstraZeneca, Alderley Park, Cheshire, SK10 4TG, UK
| | - Michael J Cross
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE, UK
| |
Collapse
|
40
|
Monitoring and functional characterization of the lymphocytic compartment in pancreatic ductal adenocarcinoma patients. Pancreatology 2016; 16:1069-1079. [PMID: 27424476 DOI: 10.1016/j.pan.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/26/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) still has a poor prognosis and current treatments including immunotherapy often fail. This might be due to the pronounced immunosuppressive milieu impairing infiltration and function of immune effector cells. This study aimed at a comprehensive analysis of immune cells in PDAC patients by determining absolute and relative peripheral blood cell numbers of immune cell subsets along with their functional capacity. METHODS Whole blood cells or isolated peripheral blood mononuclear cells were characterized by flow cytometry. PDAC tissues were analyzed by immunohistochemistry. Anti-tumor activity of immune effector cells was determined by RTCA system. RESULTS Our data demonstrate that relative CD4+ memory- and regulatory T cell numbers were enhanced, whereas determination of absolute cell numbers revealed generally lower immune cell numbers in PDAC patients compared to healthy controls. γδ T cells accumulated at higher numbers compared to αβ T cells in the malignant ductal epithelium of PDAC tissues indicating that γδ T cells infiltrate into the tumor. Cytotoxicity against tumor cells of even small numbers of T- and NK cells could be induced by a bispecific antibody targeting CD3+ T cells to human epidermal growth factor receptor (HER)2 expressing PDAC cells or Trastuzumab. Importantly, a critical number of γδ T cells was required for significant tumor cell killing by a bispecific antibody engaging the γδ T cell receptor on γδ T cells and HER2 on tumor cells. CONCLUSION Monitoring immune cells along with the determination of their functional capacity provides a comprehensive assessment as a prerequisite for a personalized immunotherapeutic PDAC treatment.
Collapse
|
41
|
Tóth G, Szöőr Á, Simon L, Yarden Y, Szöllősi J, Vereb G. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity. MAbs 2016; 8:1361-1370. [PMID: 27380003 PMCID: PMC5058622 DOI: 10.1080/19420862.2016.1204503] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although the recently concluded CLEOPATRA trial showed clinical benefits of combining trastuzumab and pertuzumab for treating HER2-positive metastatic breast cancer, trastuzumab monotherapy is still the mainstay in adjuvant settings. Since trastuzumab resistance occurs in over half of these cancers, we examined the mechanisms by which treatment of intrinsically trastuzumab-resistant and -sensitive tumors can benefit from the combination of these antibodies. F(ab′)2 of both trastuzumab and pertuzumab were generated and validated in order to separately analyze antibody-dependent cell-mediated cytotoxicity (ADCC)-based and direct biological effects of the antibodies. Compared to monotherapy, combination of the two antibodies at clinically permitted doses enhanced the recruitment of natural killer cells responsible for ADCC, and significantly delayed the outgrowth of xenografts from intrinsically trastuzumab-resistant JIMT-1 cells. Antibody dose-response curves of in vitro ADCC showed that antibody-mediated killing can be saturated, and the two antibodies exert an additive effect at sub-saturation doses. Thus, the additive effect in vivo indicates that therapeutic tissue levels likely do not saturate ADCC. Additionally, isobole studies with the in vitro trastuzumab-sensitive BT-474 cells showed that the direct biological effect of combined treatment is additive, and surpasses the maximum effect of either monotherapy. Our results suggest the combined therapy is expected to give results that are superior to monotherapy, whatever the type of HER2-positive tumor may be. The combination of both antibodies at maximum clinically approved doses should thus be administered to patients to recruit maximum ADCC and cause maximum direct biological growth inhibition.
Collapse
Affiliation(s)
- Gábor Tóth
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | - Árpád Szöőr
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | - László Simon
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| | - Yosef Yarden
- b Department of Biological Regulation , The Weizmann Institute of Science , Rehovot , Israel
| | - János Szöllősi
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary.,c MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine
| | - György Vereb
- a Department of Biophysics and Cell Biology , Faculty of Medicine, University of Debrecen , Debrecen , Hungary.,c MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine.,d Faculty of Pharmacy, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
42
|
Konstantinus IN, Gamieldien H, Mkhize NN, Kriek JM, Passmore JAS. Comparing high-throughput methods to measure NK cell-mediated antibody dependent cellular cytotoxicity during HIV-infection. J Immunol Methods 2016; 434:46-52. [PMID: 27094485 DOI: 10.1016/j.jim.2016.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
HIV-specific binding antibody responses, including those mediating antibody-dependent cellular cytotoxicity (ADCC), provided the best functional correlate of lower risk of infection in the RV144 HIV-1 vaccine clinical trial. The aim of this study was to compare two high-throughput flow cytometry based methods to measure HIV-specific ADCC responses, the GranToxilux and PanToxilux assays. Plasma from nine HIV-1 seropositive individuals was screened for binding antibody titres against HIV-1 subtype C gp120 by ELISA and western blot. Plasma from six HIV-negative individuals was included as controls. Both ADCC assays used subtype C gp120-coated CEM.NKRCCR5 cells as targets. The PanToxilux assay (which measured both granzyme B and caspase activity) measured higher levels of direct natural killer (NK) cell killing of K562 tumour cells than the GranToxilux assay (granzyme B alone; p<0.05). In ADCC assays in which NK cell killing was directed against gp120-coated CEM.NKRCCR5 cells in an antibody-dependent manner, plasma from HIV-positive individuals yielded significantly higher levels of ADCC activity than the HIV-negative controls. In contrast to direct killing, the GranToxilux assay measured similar levels of ADCC killing as the PanToxilux assay but had significantly lower background cytotoxicity against target cells coated with HIV negative serum. In conclusion, the PanToxilux assay was more sensitive for detecting direct NK cell killing of K562 cells than the GranToxilux assay, although the GranToxilux assay performed better at detecting HIV-specific ADCC activity, because of lower background cytotoxicity from HIV-negative serum. This is the first study to compare GranToxilux and PanToxilux ability to detect ADCC during HIV infection.
Collapse
Affiliation(s)
- Iyaloo N Konstantinus
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town, South Africa
| | - Hoyam Gamieldien
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases of the National Health Laboratory Services, South Africa
| | - Jean-Mari Kriek
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town, South Africa; National Health Laboratory Service, Cape Town, South Africa.
| |
Collapse
|
43
|
Muraro E, Comaro E, Talamini R, Turchet E, Miolo G, Scalone S, Militello L, Lombardi D, Spazzapan S, Perin T, Massarut S, Crivellari D, Dolcetti R, Martorelli D. Improved Natural Killer cell activity and retained anti-tumor CD8(+) T cell responses contribute to the induction of a pathological complete response in HER2-positive breast cancer patients undergoing neoadjuvant chemotherapy. J Transl Med 2015; 13:204. [PMID: 26116238 PMCID: PMC4483222 DOI: 10.1186/s12967-015-0567-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022] Open
Abstract
Background Locally advanced HER2-overexpressing breast cancer (BC) patients achieve a high rate of pathological complete responses (pCR) after neoadjuvant chemotherapy (NC). The apparently unaltered immune proficiency of these patients together with the immune-modulating activities of NC drugs suggest a potential contribution of host immunity in mediating clinical responses. We thus performed an extensive immunomonitoring in locally advanced BC patients undergoing NC to identify immunological correlates of pCR induction. Methods The immune profile of 40 HER2-positive and 38 HER2-negative BC patients was characterized at diagnosis and throughout NC (Paclitaxel and Trastuzumab, or Docetaxel and Epirubicin, respectively). The percentages of circulating immune cell subsets including T and B lymphocytes, Natural Killer (NK) cells, regulatory T cells, T helper 17 lymphocytes, were quantified by multiparametric flow cytometry. NK cells functional activity was evaluated through the analysis of NF-kB nuclear translocation by Multispectral flow cytometry, and with the in vitro monitoring of Trastuzumab-mediated antibody-dependent cell cytotoxicity (ADCC). CD8+ T cell responses against six different tumor-associated antigens (TAA) were characterized by IFN-γ ELISPOT and IFN-γ/IL-2 DualSpot assays. Results After NC, HER2-positive patients showed a significant increase in the number of NK cells and regulatory T cells irrespective of the pathological response, whereas patients undergoing a pCR disclosed higher percentages of T helper 17 cells. Notably, a significant increase in the number of activated NK cells was observed only in HER2-positive patients achieving a pCR. Characterization of anti-tumor T cell responses highlighted sustained levels of CD8+ T cells specific for survivin and mammaglobin-A throughout NC in patients undergoing a pCR in both arms. Moreover, HER2-positive patients achieving a pCR were characterized by a multi-epitopic and polyfunctional anti-tumor T cell response, markedly reduced in case of partial response. Conclusions These results indicate that maintenance of functional T cell responses against selected antigens and improvement of NK cell proficiency during NC are probably critical requirements for pCR induction, especially in HER2-positive BC patients. Trail registration: Trial registration number: NCT02307227, registered on ClinicalTrials.gov (http://www.clinicaltrials.gov, November 26, 2014). Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0567-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Muraro
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - E Comaro
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - R Talamini
- Unit of Epidemiology and Biostatistics, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - E Turchet
- Scientific Direction, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - G Miolo
- Department of Medical Oncology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - S Scalone
- Department of Medical Oncology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - L Militello
- Department of Medical Oncology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - D Lombardi
- Department of Medical Oncology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - S Spazzapan
- Department of Medical Oncology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - T Perin
- Department of Pathology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - S Massarut
- Division of Breast Surgical Oncology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - D Crivellari
- Department of Medical Oncology, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | - D Martorelli
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
44
|
Miura D, Yoneyama K, Furuhata Y, Shimizu K. Paclitaxel enhances antibody-dependent cell-mediated cytotoxicity of trastuzumab by rapid recruitment of natural killer cells in HER2-positive breast cancer. J NIPPON MED SCH 2015; 81:211-20. [PMID: 25186575 DOI: 10.1272/jnms.81.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION An important mechanism by which trastuzumab inhibits the growth of human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells is the activation of a host tumor response via antibody-dependent cell-mediated cytotoxicity (ADCC). Although paclitaxel has a synergistic effect in combination with trastuzumab, whether ADCC is enhanced by paclitaxel is not known. In the present study we examined whether adding paclitaxel to trastuzumab enhances ADCC and also investigated the kinetics of effector cells in ADCC. MATERIALS AND METHODS The subjects were 20 patients with HER2-positive breast cancer: 9 received the combination of trastuzumab (4 mg/kg as a loading dose and 2 mg/kg weekly) and paclitaxel (80 mg/m(2) weekly) and 19 received monotherapy with trastuzumab. In blood samples (mononuclear cells) obtained before and 10 minutes after administration of chemotherapy, ADCC and the number of effector cells, including natural killer (NK) cells, monocytes, and CD64+ cells, were compared in each case. The ADCC was analyzed with a (51)Cr releasing assay using the SK-BR-3 cell line, and the fractions of NK cells (both CD16+ [FcγRIII] and CD56+) and CD64+ (FcγRI) cells were analyzed with flow cytometry. RESULTS The mean ADCC level increased 20% after trastuzumab monotherapy and 126% (p<0.05) after combination therapy with trastuzumab and paclitaxel. All 9 patients receiving combination therapy had increased ADCC levels. The number of NK cells increased 51% after trastuzumab monotherapy and 112% (p<0.05) after combination therapy. No significant changes were found in monocytes (39% increase) or CD64+ cells (53% increase) after trastuzumab monotherapy, but monocytes decreased 40% (p<0.05) and CD64+ cells decreased 24% after combination therapy. CONCLUSIONS Adding paclitaxel to trastuzumab significantly enhances ADCC, with levels twice as great as with trastuzumab monotherapy, through a rapid recruitment of NK cells. This finding suggests that the combination of trastuzumab and paclitaxel has a stronger-than-expected synergistic effect in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Daishu Miura
- Department of Endocrine Surgery, Nippon Medical School Hospital
| | | | | | | |
Collapse
|
45
|
Elavazhagan S, Fatehchand K, Santhanam V, Fang H, Ren L, Gautam S, Reader B, Mo X, Cheney C, Briercheck E, Vasilakos JP, Dietsch GN, Hershberg RM, Caligiuri M, Byrd JC, Butchar JP, Tridandapani S. Granzyme B expression is enhanced in human monocytes by TLR8 agonists and contributes to antibody-dependent cellular cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2015; 194:2786-95. [PMID: 25667415 DOI: 10.4049/jimmunol.1402316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
FcγRs are critical mediators of mAb cancer therapies, because they drive cytotoxic processes upon binding of effector cells to opsonized targets. Along with NK cells, monocytes are also known to destroy Ab-coated targets via Ab-dependent cellular cytotoxicity (ADCC). However, the precise mechanisms by which monocytes carry out this function have remained elusive. In this article, we show that human monocytes produce the protease granzyme B upon both FcγR and TLR8 activation. Treatment with TLR8 agonists elicited granzyme B and also enhanced FcγR-mediated granzyme B production in an additive fashion. Furthermore, monocyte-mediated ADCC against cetuximab-coated tumor targets was enhanced by TLR8 agonist treatment, and this enhancement of ADCC required granzyme B. Hence we have identified granzyme B as an important mediator of FcγR function in human monocytes and have uncovered another mechanism by which TLR8 agonists may enhance FcγR-based therapies.
Collapse
Affiliation(s)
- Saranya Elavazhagan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Kavin Fatehchand
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Vikram Santhanam
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Huiqing Fang
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Li Ren
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Shalini Gautam
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Brenda Reader
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Carolyn Cheney
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Edward Briercheck
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | | | | | - Michael Caligiuri
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - John C Byrd
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Jonathan P Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| | - Susheela Tridandapani
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
46
|
Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e985940. [PMID: 25949870 DOI: 10.4161/2162402x.2014.985940] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/11/2014] [Indexed: 12/31/2022] Open
Abstract
An expanding panel of monoclonal antibodies (mAbs) that specifically target malignant cells or intercept trophic factors delivered by the tumor stroma is now available for cancer therapy. These mAbs can exert direct antiproliferative/cytotoxic effects as they inhibit pro-survival signal transduction cascades or activate lethal receptors at the plasma membrane of cancer cells, they can opsonize neoplastic cells to initiate a tumor-targeting immune response, or they can be harnessed to specifically deliver toxins or radionuclides to transformed cells. As an indication of the success of this immunotherapeutic paradigm, international regulatory agencies approve new tumor-targeting mAbs for use in cancer patients every year. Moreover, the list of indications for previously licensed molecules is frequently expanded to other neoplastic disorders as the results of large, randomized clinical trials become available. Here, we discuss recent advances in the preclinical and clinical development of tumor-targeting mAbs for oncological indications.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Holbrook Kohrt
- Department of Medicine; Division of Oncology; Stanford University ; Stanford, CA, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou ; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
47
|
Galluzzi L, Vacchelli E, Pedro JMBS, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fučíková J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jäger D, Kalinski P, Kärre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautès-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508. [PMID: 25537519 PMCID: PMC4350348 DOI: 10.18632/oncotarget.2998] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Erika Vacchelli
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - José-Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Laura Senovilla
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Elisa Elena Baracco
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Norma Bloy
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Francesca Castoldi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
- Sotio a.c., Prague, Czech Republic
| | - Jean-Pierre Abastado
- Pole d'innovation thérapeutique en oncologie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Ron N. Apte
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fernando Aranda
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maha Ayyoub
- INSERM, U1102, Saint Herblain, France
- Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Philipp Beckhove
- Translational Immunology Division, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Yves Blay
- Equipe 11, Centre Léon Bérard (CLR), Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Bracci
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anne Caignard
- INSERM, U1160, Paris, France
- Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center, Dept. of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Estaban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Aled Clayton
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
- Velindre Cancer Centre, Cardiff, UK
| | - Mario P. Colombo
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Lisa Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Madhav V. Dhodapkar
- Sect. of Hematology and Immunobiology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | | | | | - Wolf H. Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fučíková
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Dmitry I. Gabrilovich
- Dept. of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - François Ghiringhelli
- INSERM, UMR866, Dijon, France
- Centre Georges François Leclerc, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Giuseppe Giaccone
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eli Gilboa
- Dept. of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sacha Gnjatic
- Sect. of Hematology/Oncology, Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Axel Hoos
- Glaxo Smith Kline, Cancer Immunotherapy Consortium, Collegeville, PA, USA
| | - Anne Hosmalin
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Hôpital Cochin, AP-HP, Paris, France
| | - Dirk Jäger
- National Center for Tumor Diseases, University Medical Center Heidelberg, Heidelberg, Germany
| | - Pawel Kalinski
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Dept. of Immunology and Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Klas Kärre
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Oliver Kepp
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rolf Kiessling
- Dept. of Oncology, Karolinska Institute Hospital, Stockholm, Sweden
| | - John M. Kirkwood
- University of Pittsburgh Cancer Institute Laboratory, Pittsburgh, PA, USA
| | - Eva Klein
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alexander Knuth
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Claire E. Lewis
- Academic Unit of Inflammation and Tumour Targeting, Dept. of Oncology, University of Sheffield Medical School, Sheffield, UK
| | - Roland Liblau
- INSERM, UMR1043, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Laboratoire d'Immunologie, CHU Toulouse, Université Toulouse II, Toulouse, France
| | - Michael T. Lotze
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Jean-Pierre Mach
- Dept. of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Fabrizio Mattei
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
- Dept. of Medical Biotechnologies and Translational Medicine, University of Milan, Rozzano, Italy
| | - Ignacio Melero
- Dept. of Immunology, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Dept. of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Cornelis J. Melief
- ISA Therapeutics, Leiden, The Netherlands
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Elizabeth A. Mittendorf
- Research Dept. of Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Adekunke Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hideho Okada
- Dept. of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Marcus E. Peter
- Div. of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Angel Porgador
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Dept. of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Philadelphia, PA, USA
- Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Nicholas P. Restifo
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naiyer Rizvi
- Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Hans Schreiber
- Dept. of Pathology, The Cancer Research Center, The University of Chicago, Chicago, IL, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hiroshi Shiku
- Dept. of Immuno-GeneTherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Daniel E. Speiser
- Dept. of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Pramod K. Srivastava
- Dept. of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
- Carole and Ray Neag Comprehensive Cancer Center, Farmington, CT, USA
| | - James E. Talmadge
- Laboratory of Transplantation Immunology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | | | - Benoît J. Van Den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - Richard Vile
- Dept. of Molecular Medicine and Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hermann Wagner
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Jeffrey S. Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, FL, USA
| | - Theresa L. Whiteside
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jedd D. Wolchok
- Dept. of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, Villejuif, France
- Centre d'Investigation Clinique Biothérapie 507 (CICBT507), Gustave Roussy Cancer Campus, Villejuif, France
| | - Weiping Zou
- University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| |
Collapse
|
48
|
Mavilio D, Galluzzi L, Lugli E. Novel multifunctional antibody approved for the treatment of breast cancer. Oncoimmunology 2014; 2:e24567. [PMID: 23802090 PMCID: PMC3661175 DOI: 10.4161/onci.24567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 01/13/2023] Open
Affiliation(s)
- Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center; Rozzano, Italy
| | | | | |
Collapse
|
49
|
MacLean AG, Walker E, Sahu GK, Skowron G, Marx P, von Laer D, Junghans RP, Braun SE. A novel real-time CTL assay to measure designer T-cell function against HIV Env(+) cells. J Med Primatol 2014; 43:341-8. [PMID: 25138734 DOI: 10.1111/jmp.12137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND To increase the immunosurveillance in HIV infection, we used retroviral vectors expressing CD4-chimeric antigen receptors (CARs) to genetically modify autologous T cells and redirect CTL toward HIV. The CD4 extracellular domain targets envelope and the intracellular signaling domains activate T cells. The maC46 fusion inhibitor binds HIV and blocks viral replication. METHODS We stimulated rhesus PBMCs with antibodies to CD3/CD28 and cotransduced T cells with CD4-CAR and maC46 vectors. CD4-CAR-transduced T cells were added to Env(+) 293T cells at E:T of 1:1. Killing of target cells was measured as reduced impedance. RESULTS We observed gene expression in 60-70% of rhesus CD3(+) CD8(+) T cells with the individual vectors and in 35% of the cells with both vectors. CD4-CAR-transduced populations specifically killed Env(+) cells. CONCLUSIONS In these studies, we showed that designer T cells were redirected to kill Env(+) cells. Control of viremia without HAART would revolutionize treatment for HIV patients.
Collapse
|
50
|
Mata MM, Mahmood F, Sowell RT, Baum LL. Effects of cryopreservation on effector cells for antibody dependent cell-mediated cytotoxicity (ADCC) and natural killer (NK) cell activity in (51)Cr-release and CD107a assays. J Immunol Methods 2014; 406:1-9. [PMID: 24561308 PMCID: PMC4029863 DOI: 10.1016/j.jim.2014.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 12/28/2022]
Abstract
Freshly isolated PBMC are broadly used as effector cells in functional assays that evaluate antibody-dependent cell mediated cytotoxicity (ADCC) and NK activity; however, they introduce natural-individual donor-to-donor variability. Cryopreserved PBMC provide a more consistent source of effectors than fresh cells in cytotoxicity assays. Our objective was to determine the effects of cryopreservation of effector PBMC on cell frequency, and on the magnitude and specificity of ADCC and NK activity. Fresh, frozen/overnight rested and frozen/not rested PBMC were used as effector cells in (51)Cr-release and CD107a degranulation assays. Frozen/overnight rested PBMC had higher ADCC and NK activity in both assays when compared to fresh PBMC; however, when using frozen/not rested PBMC, ADCC and NK activities were significantly lower than fresh PBMC. Background CD107a degranulation in the absence of target cell stimulation was greater in PBMC that were frozen/not rested when compared to fresh PBMC or PBMC that were frozen overnight and rested. The percentages of CD16(+)CD56(dim) NK cells and CD14(+) monocytes were lower in PBMC that were frozen and rested overnight than in fresh PBMC. CD16 expression on CD56(dim) NK cells was similar for all PBMC treatments. PBMC that were frozen and rested overnight were comparable to fresh PBMC effectors. PBMC that were frozen and used immediately when evaluating ADCC or NK activity using either a (51)Cr-release assay or a CD107a degranulation assay had the lowest activity. Clinical studies of antibodies that mediate ADCC would benefit from using effector cells that have been frozen, thawed and rested overnight prior to assay.
Collapse
Affiliation(s)
- Mariana M Mata
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Fareeha Mahmood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Ryan T Sowell
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Linda L Baum
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|