1
|
Escors D, Chocarro L, Echaide M, Rodriguez-Neira C, Vilaplana B, Kochan G. Programmed Death-1 Ligand 1 Domain Organization, Signaling Motifs, and Interactors in Cancer Immunotherapy. Cancers (Basel) 2025; 17:1635. [PMID: 40427133 PMCID: PMC12110588 DOI: 10.3390/cancers17101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Immunotherapies targeting the programmed cell death-1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1) pathway sparked a revolution in cancer treatment. These breakthrough therapies work by disrupting the interaction between PD-1-expressed on T cells-and its ligand PD-L1, commonly found on the surface of cancer cells. By using monoclonal antibodies to block this binding, the immune system is unleashed to fight cancer more effectively. However, PD-L1's role extends far beyond immune evasion. When situated on cancer cells, PD-L1 transmits inhibitory signals through PD-1, silencing the effector functions of T cells. However, PD-L1 also engages in reverse signaling, also called intrinsic signaling, delivering intracellular instructions that contribute to cancer cell survival, even in the absence of PD-1 binding. This signaling cascade shields cancer cells from apoptosis, drives proliferation, regulates DNA damage responses, and even functions as a co-transcriptional transactivator, amplifying cancer's ability to thrive. The intricate mechanisms behind PD-L1's intrinsic signaling are under intense investigation. In this review, we provide a historical perspective on the discoveries leading to PD-L1's structure, signaling motifs, and interacting partners, shedding light on its multifaceted roles and the promising therapeutic possibilities ahead.
Collapse
Affiliation(s)
- David Escors
- OncoImmunology Unit, Navarrabiomed-Fundacion Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdISNA), Universidad Publica de Navarra (UPNA), 31008 Pamplona, Spain (M.E.); (C.R.-N.); (B.V.)
| | | | | | | | | | - Grazyna Kochan
- OncoImmunology Unit, Navarrabiomed-Fundacion Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdISNA), Universidad Publica de Navarra (UPNA), 31008 Pamplona, Spain (M.E.); (C.R.-N.); (B.V.)
| |
Collapse
|
2
|
Iglesias-Escudero M, Segundo DS, Merino-Fernandez D, Mora-Cuesta VM, Lamadrid P, Alonso-Peña M, Raso S, Iturbe D, Fernandez-Rozas S, Cifrian J, López-Hoyos M. Myeloid-Derived Suppressor Cells Are Increased in Lung Transplant Recipients and Regulated by Immunosuppressive Therapy. Front Immunol 2022; 12:788851. [PMID: 35185863 PMCID: PMC8848105 DOI: 10.3389/fimmu.2021.788851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
Abstract
Lung transplantation remains as a primary treatment for end-stage lung diseases. Although remarkable improvement has been achieved due to the immunosuppressive protocols, long-term survival for lung transplant recipients (LTR) is still limited. In the last few decades, an increasing interest has grown in the study of dysregulation of immune mechanisms underlying allograft failure. In this regard, myeloid-derived suppressor cells (MDSCs) could play an important role in the promotion of graft tolerance due to their immune regulatory function. Here, we describe for the first time circulating subsets MDSCs from LTR at several time points and we evaluate the relationship of MDSCs with sort-term lung transplant outcomes. Although no effect of MDSCs subsets on short-term clinical events was observed, our results determine that Mo-MDSCs frequencies are increased after acute cellular rejection (ACR), suggesting a possible role for Mo-MDSCs in the development of chronic lung allograft dysfunction (CLAD). Therefore, whether MDSCs subsets play a role as biomarkers of chronic rejection remains unknown and requires further investigations. Also, the effects of the different immunosuppressive treatments on these subpopulations remain under research and further studies are needed to establish to what extend MDSCs immune modulation could be responsible for allograft acceptance.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain.,Immunology Department, Universitary Hospital Germans Trias i Pujol, Badalona, Spain
| | - David San Segundo
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain.,Immunology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | | | - Victor M Mora-Cuesta
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Patricia Lamadrid
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain
| | - Marta Alonso-Peña
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain
| | - Sandra Raso
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain
| | - David Iturbe
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Sonia Fernandez-Rozas
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Jose Cifrian
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Marcos López-Hoyos
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain.,Immunology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain.,Molecular Biology Department, Universidad Cantabria, Santander, Spain
| |
Collapse
|
3
|
Hu C, Pang B, Lin G, Zhen Y, Yi H. Energy metabolism manipulates the fate and function of tumour myeloid-derived suppressor cells. Br J Cancer 2020; 122:23-29. [PMID: 31819182 PMCID: PMC6964679 DOI: 10.1038/s41416-019-0644-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, a large number of studies have been carried out in the field of immune metabolism, highlighting the role of metabolic energy reprogramming in altering the function of immune cells. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells generated during a large array of pathological conditions, such as cancer, inflammation, and infection, and show remarkable ability to suppress T-cell responses. These cells can also change their metabolic pathways in response to various pathogen-derived or inflammatory signals. In this review, we focus on the roles of glucose, fatty acid (FA), and amino acid (AA) metabolism in the differentiation and function of MDSCs in the tumour microenvironment, highlighting their potential as targets to inhibit tumour growth and enhance tumour immune surveillance by the host. We further highlight the remaining gaps in knowledge concerning the mechanisms determining the plasticity of MDSCs in different environments and their specific responses in the tumour environment. Therefore, this review should motivate further research in the field of metabolomics to identify the metabolic pathways driving the enhancement of MDSCs in order to effectively target their ability to promote tumour development and progression.
Collapse
Affiliation(s)
- Cong Hu
- Central Laboratory, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, 130021, Changchun, Jilin, China
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, 130021, Changchun, Jilin, China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
- Department of Cardiology, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
| | - Guangzhu Lin
- Department of Cardiology, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, 130021, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, 130031, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, 130021, Changchun, Jilin, China.
| |
Collapse
|
4
|
Luo L, Xu F, Peng H, Luo Y, Tian X, Battaglia G, Zhang H, Gong Q, Gu Z, Luo K. Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. J Control Release 2019; 318:124-135. [PMID: 31838206 DOI: 10.1016/j.jconrel.2019.12.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Functionalized drug delivery systems against malignant lung metastasis of breast cancer have been extensively studied, while metastasis remains a challenging issue. We propose a new strategy to achieve eradication of primary breast cancer cells and inhibition of pulmonary metastasis. A cathepsin B/pH dual-sensitive block copolymer with a molecular weight of 92 kDa was synthesized to conjugate with doxorubicin (DOX). The copolymer-DOX was further loaded with nifuroxazide (NFX) to self-assemble co-prodrug-loaded micelles (CLM). CLM displayed a drug release pattern in response to pH/enzyme dual stimuli and was enzymatically biodegradable. CLM was demonstrated to reduce viability and inhibit migration and invasion of 4T1 murine breast cancer cells in vitro. After i.v. injection of CLM, its nanoscale size and stimuli-responsiveness facilitated delivery of drugs to the tumor site in mice. Enhanced anti-tumor efficacy and great anti-metastatic effects were found in both orthotropic and lung metastasis 4T1 breast cancer mice models. Meanwhile, histological immunofluorescence and immunohistochemical analyses revealed a high level of apoptosis, suppressed expression of matrix metalloproteinases and reduction in MDSCs infiltration, and all these contributed to inhibit pulmonary metastasis. CLM may be explored as a potential nanomedicine against breast cancer metastasis.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Fanshu Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Huilan Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yonghuang Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaohe Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Giuseppe Battaglia
- Department of Chemistry, Department of Chemical Engineering, University College London, UK
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Perforin and Granzyme B Expressed by Murine Myeloid-Derived Suppressor Cells: A Study on Their Role in Outgrowth of Cancer Cells. Cancers (Basel) 2019; 11:cancers11060808. [PMID: 31212684 PMCID: PMC6627828 DOI: 10.3390/cancers11060808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
A wide-range of myeloid-derived suppressor cell (MDSC)-mediated immune suppressive functions has previously been described. Nevertheless, potential novel mechanisms by which MDSCs aid tumor progression are, in all likelihood, still unrecognized. Next to its well-known expression in natural killer cells and cytotoxic T lymphocytes (CTLs), granzyme B (GzmB) expression has been found in different cell types. In an MDSC culture model, we demonstrated perforin and GzmB expression. Furthermore, similar observations were made in MDSCs isolated from tumor-bearing mice. Even in MDSCs from humans, GzmB expression was demonstrated. Of note, B16F10 melanoma cells co-cultured with perforin/GzmB knock out mice (KO) MDSCs displayed a remarkable decrease in invasive potential. B16F10 melanoma cells co-injected with KO MDSCs, displayed a significant slower growth curve compared to tumor cells co-injected with wild type (WT) MDSCs. In vivo absence of perforin/GzmB in MDSCs resulted in a higher number of CD8+ T-cells. Despite this change in favor of CD8+ T-cell infiltration, we observed low interferon-γ (IFN-γ) and high programmed death-ligand 1 (PD-L1) expression, suggesting that other immunosuppressive mechanisms render these CD8+ T-cells dysfunctional. Taken together, our results suggest that GzmB expression in MDSCs is another means to promote tumor growth and warrants further investigation to unravel the exact underlying mechanism.
Collapse
|
6
|
Heigl T, Singh A, Saez-Gimenez B, Kaes J, Van Herck A, Sacreas A, Beeckmans H, Vanstapel A, Verleden SE, Van Raemdonck DE, Verleden G, Vanaudenaerde BM, Hartl D, Vos R. Myeloid-Derived Suppressor Cells in Lung Transplantation. Front Immunol 2019; 10:900. [PMID: 31080450 PMCID: PMC6497753 DOI: 10.3389/fimmu.2019.00900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immune cells from the myeloid lineage. MDSCs expand in pathological situations, such as chronic infection, cancer, autoimmunity, and allograft rejection. As chronic lung allograft dysfunction (CLAD) limits long-term survival after lung transplantation (LTx), MDSCs may play a role in its pathophysiology. We assessed phenotype and frequency of MDSCs in peripheral blood from lung transplant recipients and its relationship to post-transplant complications and immunosuppression. Granulocytic (G)-MDSC were identified and quantified by flow cytometry of blood from 4 control subjects and 20 lung transplant patients (stable n = 6, infection n = 5; CLAD n = 9). G-MDSC functionality was assessed in vitro by their capability to block CD4 and CD8 T cell proliferation. More G-MDSC could be assessed using EDTA tubes compared to heparin tubes (p = 0.004). G-MDSC were increased in stable lung transplant recipients vs. non-transplant controls (52.1% vs. 9.4%; p = 0.0095). The infection or CLAD groups had lower G-MDSCs vs. stable recipients (28.2%p = 0.041 and 33.0%; p = 0.088, respectively), but were not different among CLAD phenotypes. G-MDSC tended to correlate with cyclosporine A and tacrolimus levels (r2 = 0.18; r2 = 0.17). CD4 and CD8 cells proliferation decreased by 50 and 80% if co-cultured with MDSCs (1:6 and 1:2 MDSC:T-cell ratio, respectively). In conclusion, circulating MDSCs are measurable, functional and have a G-MDSC phenotype in lung transplant patients. Their frequency is increased in stable patients, decreased during post-transplant complications, and related to level of immunosuppression. This study may pave the way for further investigations of MDSC in the context of lung transplantation.
Collapse
Affiliation(s)
- Tobias Heigl
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Anurag Singh
- Universitätsklinik für Kinder-und Jugendmedizin, Tübingen, Germany
| | - Berta Saez-Gimenez
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Anke Van Herck
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Stijn E Verleden
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Geert Verleden
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dominik Hartl
- Universitätsklinik für Kinder-und Jugendmedizin, Tübingen, Germany
| | - Robin Vos
- Lung Transplant Unit, Lab of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Ma Q, Long W, Xing C, Chu J, Luo M, Wang HY, Liu Q, Wang RF. Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Front Immunol 2018; 9:2924. [PMID: 30619286 PMCID: PMC6308128 DOI: 10.3389/fimmu.2018.02924] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system and is characterized by extensive infiltrative growth, neovascularization, and resistance to various combined therapies. In addition to heterogenous populations of tumor cells, the glioma stem cells (GSCs) and other nontumor cells present in the glioma microenvironment serve as critical regulators of tumor progression and recurrence. In this review, we discuss the role of several resident or peripheral factors with distinct tumor-promoting features and their dynamic interactions in the development of glioma. Localized antitumor factors could be silenced or even converted to suppressive phenotypes, due to stemness-related cell reprogramming and immunosuppressive mediators in glioma-derived microenvironment. Furthermore, we summarize the latest knowledge on GSCs and key microenvironment components, and discuss the emerging immunotherapeutic strategies to cure this disease.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Junjun Chu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Mei Luo
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States.,Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, United States.,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
8
|
Zhang W, Li J, Qi G, Tu G, Yang C, Xu M. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J Transl Med 2018; 16:19. [PMID: 29378596 PMCID: PMC5789705 DOI: 10.1186/s12967-018-1395-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a series of innate cells that play a significant role in inhibiting T cell-related responses. This heterogeneous population of immature cells is involved in tumor immunity. Recently, the function and importance of MDSCs in transplantation have garnered the attention of scientists and have become an important focus of transplantation immunology research because MDSCs play a key role in establishing immune tolerance in transplantation. In this review, we summarize recent studies of MDSCs in different types of transplantation. We also focus on the influence of immunosuppressive drugs on MDSCs as well as future obstacles and research directions in this field.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Guisheng Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Guowei Tu
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
9
|
Myeloid-Derived Suppressor Cells in the Tumor Microenvironment: Current Knowledge and Future Perspectives. Arch Immunol Ther Exp (Warsz) 2017; 66:113-123. [PMID: 29032490 DOI: 10.1007/s00005-017-0492-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
The current knowledge on tumor-infiltrating myeloid-derived suppressor cells (MDSCs) is based mainly on the extensive work performed in murine models. Data obtained for human counterparts are generated on the basis of tumor analysis from patient samples. Both sources of information led to determination of the main suppressive mechanisms used by these cell subsets in tumor-bearing hosts. As a result of the identification of protein targets responsible for MDSCs suppressive activity, different therapeutics agents have been used to eliminate/reduce their adverse effect. In the present work, we review the current knowledge on suppressive mechanisms of MDSCs and therapeutic treatments that interfere with their differentiation, expansion or activity. Based on the accumulation of new evidences supporting their importance for tumor progression and metastasis, the interest in these cell types is increasing. We revise the methods of MDSC generation/differentiation ex vivo that may help in overcoming problems associated with limited numbers of cells available from animals and patients for their study.
Collapse
|
10
|
Clavijo-Salomon MA, Bergami-Santos PC, M Barbuto JA. Immunomonitoring reveals interruption of anergy after vaccination in a case of type-2-papillary renal cell carcinoma. Immunotherapy 2017; 9:319-329. [PMID: 28303767 DOI: 10.2217/imt-2016-0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With the enormous and growing interest in the clinical application of immunotherapy, we are currently facing the need to accurately monitor the immune function of cancer patients. Here, we describe changes in the immune status of a patient with metastatic type-2-papillary renal cell carcinoma, before and after surgery and subsequent immunotherapy with a dendritic cell-tumor cell hybrid vaccine. Through the accurate assessment of monocyte-derived dendritic cells (Mo-DCs) function, we show that Mo-DCs were freed from tumor-induced maturation blockage by tumor resection surgery, while Mo-DCs-tumor induced suppression and anergy were only interrupted by the vaccination treatment. Our data suggest that the evaluation of Mo-DCs' function may provide a powerful and precise tool to monitor immune restoration in cancer patients.
Collapse
Affiliation(s)
- Maria A Clavijo-Salomon
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP CEP 05508-900, Brazil
| | - Patricia C Bergami-Santos
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP CEP 05508-900, Brazil
| | - José Alexandre M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP CEP 05508-900, Brazil.,Cell & Molecular Therapy Center NUCEL-NETCEM, University of Sao Paulo, Sao Paulo, SP - Brazil
| |
Collapse
|
11
|
Gato-Cañas M, Arasanz H, Blanco-Luquin I, Glaría E, Arteta-Sanchez V, Kochan G, Escors D. Novel immunotherapies for the treatment of melanoma. Immunotherapy 2017; 8:613-32. [PMID: 27140413 DOI: 10.2217/imt-2015-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immunotherapies are achieving clinical success for the treatment of many cancers. However, it has taken a long time to exploit the potential of the immune system for the treatment of human cancers. We cannot forget that this has been the consequence of very extensive work in basic research in preclinical models and in human patients. Thus, it is rather hard to compile all of it while giving a comprehensive view on this subject. Here we have attempted to give an overall perspective in immunotherapy of melanoma. A brief overview on current therapies is provided, followed by adoptive cell therapies. Gene engineering strategies to improve these therapies are also explained, finishing with therapies based on interference with immune checkpoint pathways.
Collapse
Affiliation(s)
- Maria Gato-Cañas
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Hugo Arasanz
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Estíbaliz Glaría
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Virginia Arteta-Sanchez
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Grazyna Kochan
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdisNA. Irunlarrea 3, 31008, Pamplona, Navarra, Spain.,Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| |
Collapse
|
12
|
A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget 2016; 6:27160-75. [PMID: 26320174 PMCID: PMC4694980 DOI: 10.18632/oncotarget.4746] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) differentiate from bone marrow precursors, expand in cancer-bearing hosts and accelerate tumor progression. MDSCs have become attractive therapeutic targets, as their elimination strongly enhances anti-neoplastic treatments. Here, immature myeloid dendritic cells (DCs), MDSCs modeling tumor-infiltrating subsets or modeling non-cancerous (NC)-MDSCs were compared by in-depth quantitative proteomics. We found that neoplastic MDSCs differentially expressed a core of kinases which controlled lineage-specific (PI3K-AKT and SRC kinases) and cancer-induced (ERK and PKC kinases) protein interaction networks (interactomes). These kinases contributed to some extent to myeloid differentiation. However, only AKT and ERK specifically drove MDSC differentiation from myeloid precursors. Interfering with AKT and ERK with selective small molecule inhibitors or shRNAs selectively hampered MDSC differentiation and viability. Thus, we provide compelling evidence that MDSCs constitute a distinct myeloid lineage distinguished by a “kinase signature” and well-defined interactomes. Our results define new opportunities for the development of anti-cancer treatments targeting these tumor-promoting immune cells.
Collapse
|
13
|
Dufait I, Van Valckenborgh E, Menu E, Escors D, De Ridder M, Breckpot K. Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget 2016; 7:42698-42715. [PMID: 27029037 PMCID: PMC5173167 DOI: 10.18632/oncotarget.8311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/23/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer progression is in part determined by interactions between cancer cells and stromal cells in the tumor microenvironment (TME). The identification of cytotoxic tumor-infiltrating lymphocytes has instigated research into immune stimulating cancer therapies. Although a promising direction, immunosuppressive mechanisms exerted at the TME hamper its success. Myeloid-derived suppressor cells (MDSCs) have come to the forefront as stromal cells that orchestrate the immunosuppressive TME. Consequently, this heterogeneous cell population has been the object of investigation. Studies revealed that the transcription factor signal transducer and activator of transcription 3 (STAT3) largely dictates the recruitment, activation and function of MDSCs in the TME. Therefore, this review will focus on the role of this key transcription factor during the MDSC's life cycle and on the therapeutic opportunities it offers.
Collapse
Affiliation(s)
- Inès Dufait
- Department of Radiotherapy, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
- Laboratory of Molecular and Cellular Technology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Laboratory of Hematology and Immunology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Eline Menu
- Laboratory of Hematology and Immunology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Fundaçion, Miguel Servet, IdiSNA, Navarra, Spain
| | - Mark De Ridder
- Department of Radiotherapy, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Technology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| |
Collapse
|
14
|
Han C, Wu T, Na N, Zhao Y, Li W, Zhao Y. The effect of immunosuppressive drug cyclosporine A on myeloid-derived suppressor cells in transplanted mice. Inflamm Res 2016; 65:679-88. [PMID: 27147271 DOI: 10.1007/s00011-016-0949-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) play important roles in preventing graft rejection. Immunosuppressive drug cyclosporine A (CsA) is widely used in clinics to treat patients with allografts and autoimmune diseases. However, the effect of CsA on CD11b(+)Gr1(+) MDSCs has not been studied. SUBJECTS The subjects of the study include BALB/c skin-grafted C57BL/6 mice and the in vitro MDSCs induction system. TREATMENT Skin-grafted mice were treated with CsA (30 mg/kg, i.p.) or control buffer daily. 0.01 μg/ml CsA was added during MDSC induction. METHODS Flow cytometry was used to check cell phenotypes and proliferation. Real-time PCR was used for gene expressions. Inducible nitric oxide synthase iNOS-knockout mice were used for the role of iNOS in the immunosuppression of MDSCs. RESULTS CsA in MDSC-induction system significantly increased the number of CD11b(+)Gr1(+)MDSCs without detectable effects on the expressions of CD31, CD115 and CD274. However, GM-CSF + CsA-induced MDSCs express higher iNOS than control MDSCs. Blocking iNOS activity by inhibitor or gene deletion significantly reversed the inhibitory effects of GM-CSF + CsA-induced MDSCs on T cell proliferation. Importantly, CsA treatment significantly increased the number and the immunosuppressive ability of CD11b(+)Gr1(+)MDSCs in allogeneic skin-grafted mice. CONCLUSIONS CsA promotes MDSC induction and immunosuppressive function, which might be of clinical importance in treating graft rejection and autoimmune diseases.
Collapse
Affiliation(s)
- Chenlu Han
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, 100101, Beijing, China
| | - Tingting Wu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Weiguo Li
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, 100101, Beijing, China.
| | - Yong Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
15
|
Dufait I, Schwarze JK, Liechtenstein T, Leonard W, Jiang H, Escors D, De Ridder M, Breckpot K. Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer. Oncotarget 2016; 6:12369-82. [PMID: 25869209 PMCID: PMC4494944 DOI: 10.18632/oncotarget.3682] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 12/27/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of cells that accumulate in tumor-bearing subjects and which strongly inhibit anti-cancer immune responses. To study the biology of MDSC in colorectal cancer (CRC), we cultured bone marrow cells in conditioned medium from CT26 cells, which are genetically modified to secrete high levels of granulocyte-macrophage colony-stimulating factor. This resulted in the generation of high numbers of CD11b(+) Ly6G(+) granulocytic and CD11b(+) Ly6C(+) monocytic MDSC, which closely resemble those found within the tumor but not the spleen of CT26 tumor-bearing mice. Such MDSC potently inhibited T-cell responses in vitro, a process that could be reversed upon blocking of arginase-1 or inducible nitric oxide synthase (iNOS). We confirmed that inhibition of arginase-1 or iNOS in vivo resulted in the stimulation of cytotoxic T-cell responses. A delay in tumor growth was observed upon functional repression of both enzymes. These data confirm the role of MDSC as inhibitors of T-cell-mediated immune responses in CRC. Moreover, MDSC differentiated in vitro from bone marrow cells using conditioned medium of GM-CSF-secreting CT26 cells, represent a valuable platform to study/identify drugs that counteract MDSC activities.
Collapse
Affiliation(s)
- Inès Dufait
- UZ Brussel, Department of Radiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Therese Liechtenstein
- Navarrabiomed-Fundaçion Miguel Servet, Immunomodulation Group, Pamplona, Spain.,Division of Infection and Immunity, University College London, London, UK
| | - Wim Leonard
- UZ Brussel, Department of Radiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heng Jiang
- UZ Brussel, Department of Radiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Escors
- Navarrabiomed-Fundaçion Miguel Servet, Immunomodulation Group, Pamplona, Spain.,Division of Infection and Immunity, University College London, London, UK
| | - Mark De Ridder
- UZ Brussel, Department of Radiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
TNFα-induced M-MDSCs promote transplant immune tolerance via nitric oxide. J Mol Med (Berl) 2016; 94:911-20. [PMID: 26936474 DOI: 10.1007/s00109-016-1398-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Efficient induction of functional competent myeloid-derived suppressor cells (MDSCs) will be critical for the clinical application of MDSCs to treat autoimmune diseases and to induce transplantation immune tolerance. In the present study, we tried to establish the MDSC induction system with M-CSF and tumor necrosis factor α (TNFα) and investigated the immunosuppressive function of M-CSF + TNFα-induced MDSCs in transplant mouse models. Monocytic MDSCs (M-MDSCs) were induced by culture of the non-adherent mouse bone marrow cells with M-CSF or M-CSF + TNFα, respectively, for 7 days. Phenotype analysis revealed that the majority of M-CSF- and M-CSF + TNFα-induced MDSCs express F4/80. The addition of TNFα in the induction period increased Gr-1, Ly6C, CD80, and CD274 expressions on these cells. M-CSF + TNFα-induced M-MDSCs showed poor TNFα, IL-12, and IL-6 expressions after lipopolysaccharide (LPS) stimulation and decreased arginase 1 (Arg-1) and Fizz expressions after IL-4 stimulation compared with M-CSF-induced M-MDSCs. M-CSF + TNFα-induced M-MDSCs showed enhanced ability to suppress T cell proliferation and cytokine production than M-CSF-induced M-MDSCs. M-CSF + TNFα-induced M-MDSCs express high levels of inducing nitric oxide synthase (iNOS) and blocking iNOS activity by a chemical inhibitor or gene deficiency significantly reversed the inhibitory effects of M-CSF + TNFα-induced M-MDSCs on T cells. Adoptive transfer of M-CSF + TNFα-induced M-MDSCs promoted immune tolerance in a male-to-female skin-grafted mice, but M-CSF + TNFα-induced iNOS-deficient M-MDSCs failed to do so. Thus, M-CSF + TNFα-induced M-MDSCs have powerful immunosuppressive activity, which is mediated by an iNOS-dependent pathway. M-CSF + TNFα-induced M-MDSCs can promote immune tolerance to donor antigens in a transplant mouse model. KEY MESSAGE The combination of M-CSF and TNFα efficiently induces functional M-MDSCs in vitro. M-CSF + TNFα-induced M-MDSCs promote immune tolerance in a transplant mouse model. The immunosuppressive ability of M-CSF + TNFα-induced M-MDSCs is dependent on iNOS.
Collapse
|
17
|
Heine A, Schilling J, Grünwald B, Krüger A, Gevensleben H, Held SAE, Garbi N, Kurts C, Brossart P, Knolle P, Diehl L, Höchst B. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol Immunother 2016; 65:273-82. [PMID: 26786874 PMCID: PMC11029563 DOI: 10.1007/s00262-015-1790-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 12/29/2015] [Indexed: 10/24/2022]
Abstract
Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches.
Collapse
Affiliation(s)
- Annkristin Heine
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.
- Institute of Experimental Immunology, University Bonn, Bonn, Germany.
| | - Judith Schilling
- Institute of Molecular Medicine, University Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Barbara Grünwald
- Institute for Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany
| | - Achim Krüger
- Institute for Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany
| | | | - Stefanie Andrea Erika Held
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Percy Knolle
- Institute of Molecular Medicine, University Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
- Institute for Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany
| | - Linda Diehl
- Institute of Experimental Immunology and Hepatology, University Hamburg Eppendorf, Hamburg, Germany
| | - Bastian Höchst
- Institute of Molecular Medicine, University Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.
- Institute for Molecular Immunology and Experimental Oncology, Technische Universität München, Munich, Germany.
| |
Collapse
|
18
|
Leonard W, Dufait I, Schwarze JK, Law K, Engels B, Jiang H, Van den Berge D, Gevaert T, Storme G, Verovski V, Breckpot K, De Ridder M. Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion. Radiother Oncol 2016; 119:291-9. [PMID: 26874542 DOI: 10.1016/j.radonc.2016.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE High arginase-1 (Arg) expression by myeloid-derived suppressor cells (MDSC) is known to inhibit antitumor T-cell responses through depletion of l-arginine. We have previously shown that nitric oxide (NO), an immune mediator produced from l-arginine, is a potent radiosensitizer of hypoxic tumor cells. This study therefore examines whether Arg(+) overexpressing MDSC may confer radioresistance through depleting the substrate for NO synthesis. MATERIAL AND METHODS MDSC and Arg expression were studied in preclinical mouse CT26 and 4T1 tumor models and further validated in rectal cancer patients in comparison with healthy donors. The radioprotective effect of MDSC was analyzed in hypoxic tumor cells with regard to l-arginine depletion. RESULTS In both mouse tumors and cancer patients, MDSC expansion was associated with Arg activation causing accelerated l-arginine consumption. l-Arginine depletion in turn profoundly suppressed the capacity of classically activated macrophages to synthesize NO resulting in impaired tumor cell radiosensitivity. In advanced cT3-4 rectal cancer, circulating neutrophils revealed Arg overexpression approaching that in MDSC, therefore mounting a protumor compartment wherein Arg(+) neutrophils increased from 17% to over 90%. CONCLUSIONS Protumor Arg(+) MDSC reveal a unique ability to radioprotect tumor cells through l-arginine depletion, a common mechanism behind both T-cell and macrophage inhibition.
Collapse
Affiliation(s)
- Wim Leonard
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium; Department of Immunology-Physiology, Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julia Katharina Schwarze
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kalun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benedikt Engels
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dirk Van den Berge
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Storme
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Valeri Verovski
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Department of Immunology-Physiology, Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
19
|
Gato M, Blanco-Luquin I, Zudaire M, de Morentin XM, Perez-Valderrama E, Zabaleta A, Kochan G, Escors D, Fernandez-Irigoyen J, Santamaría E. Drafting the proteome landscape of myeloid-derived suppressor cells. Proteomics 2015; 16:367-78. [PMID: 26403437 DOI: 10.1002/pmic.201500229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy.
Collapse
Affiliation(s)
- María Gato
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Idoia Blanco-Luquin
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Maribel Zudaire
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier Martínez de Morentin
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Estela Perez-Valderrama
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Aintzane Zabaleta
- Biofunctional Nanomaterials Laboratory, CIC Biomagune, San Sebastian, Spain
| | - Grazyna Kochan
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - David Escors
- Immunomodulation Laboratory, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernandez-Irigoyen
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, ProteoRed-ISCIII, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
20
|
Liechtenstein T, Perez-Janices N, Gato M, Caliendo F, Kochan G, Blanco-Luquin I, Van der Jeught K, Arce F, Guerrero-Setas D, Fernandez-Irigoyen J, Santamaria E, Breckpot K, Escors D. A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget 2015; 5:7843-57. [PMID: 25151659 PMCID: PMC4202165 DOI: 10.18632/oncotarget.2279] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) exhibit potent immunosuppressive activities in cancer. MDSCs infiltrate tumors and strongly inhibit cancer-specific cytotoxic T cells. Their mechanism of differentiation and identification of MDSC-specific therapeutic targets are major areas of interest. We have devised a highly efficient and rapid method to produce very large numbers of melanoma-infiltrating MDSCs ex vivo without inducing tumors in mice. These MDSCs were used to study their differentiation, immunosuppressive activities and were compared to non-neoplastic counterparts and conventional dendritic cells using unbiased systems biology approaches. Differentially activated/deactivated pathways caused by cell type differences and by the melanoma tumor environment were identified. MDSCs increased the expression of trafficking receptors to sites of inflammation, endocytosis, changed lipid metabolism, and up-regulated detoxification pathways such as the expression of P450 reductase. These studies uncovered more than 60 potential novel therapeutic targets. As a proof of principle, we demonstrate that P450 reductase is the target of pro-drugs such as Paclitaxel, which depletes MDSCs following chemotherapy in animal models of melanoma and in human patients. Conversely, P450 reductase protects MDSCs against the cytotoxic actions of other chemotherapy drugs such as Irinotecan, which is ineffective for the treatment of melanoma.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of infection and immunity, Rayne Institute, 5 University Street, London, UK. Immunomodulation group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | - Noemi Perez-Janices
- Division of infection and immunity, Rayne Institute, 5 University Street, London, UK. Cancer Epigenetics group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | - Maria Gato
- Immunomodulation group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | - Fabio Caliendo
- Immunomodulation group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | - Grazyna Kochan
- Immunomodulation group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Cancer Epigenetics group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | - Kevin Van der Jeught
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Laarbeeklaan, 103/E, Jette, Vrije Universiteit Brussel, Belgium
| | - Frederick Arce
- Division of infection and immunity, Rayne Institute, 5 University Street, London, UK
| | - David Guerrero-Setas
- Cancer Epigenetics group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | | | - Enrique Santamaria
- Proteomics Unit, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Laarbeeklaan, 103/E, Jette, Vrije Universiteit Brussel, Belgium
| | - David Escors
- Division of infection and immunity, Rayne Institute, 5 University Street, London, UK. Immunomodulation group, Navarrabiomed-FMS, calle Irunlarrea 3, Pamplona, Navarra, Spain
| |
Collapse
|
21
|
Buqué A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814. [PMID: 26137403 PMCID: PMC4485728 DOI: 10.1080/2162402x.2015.1008814] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory monoclonal antibodies (mAbs) differ from their tumor-targeting counterparts because they exert therapeutic effects by directly interacting with soluble or (most often) cellular components of the immune system. Besides holding promise for the treatment of autoimmune and inflammatory disorders, immunomodulatory mAbs have recently been shown to constitute a potent therapeutic weapon against neoplastic conditions. One class of immunomodulatory mAbs operates by inhibiting safeguard systems that are frequently harnessed by cancer cells to establish immunological tolerance, the so-called "immune checkpoints." No less than 3 checkpoint-blocking mAbs have been approved worldwide for use in oncological indications, 2 of which during the past 12 months. These molecules not only mediate single-agent clinical activity in patients affected by specific neoplasms, but also significantly boost the efficacy of several anticancer chemo-, radio- or immunotherapies. Here, we summarize recent advances in the development of checkpoint-blocking mAbs, as well as of immunomodulatory mAbs with distinct mechanisms of action.
Collapse
Key Words
- CRC, colorectal carcinoma
- CTLA4, cytotoxic T lymphocyte-associated protein 4
- FDA, Food and Drug Administration
- IL, interleukin
- KIR, killer cell immunoglobulin-like receptor
- MEDI4736
- MPDL3280A
- NK, natural killer
- NSCLC, non-small cell lung carcinoma
- PD-1, programmed cell death 1
- RCC, renal cell carcinoma
- TGFβ1, transforming growth factor β1
- TLR, Toll-like receptor
- TNFRSF, tumor necrosis factor receptor superfamily
- Treg, regulatory T cell
- ipilimumab
- mAb, monoclonal antibody
- nivolumab
- pembrolizumab
- urelumab
Collapse
Affiliation(s)
- Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c.; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Wolf Hervé Fridman
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jitka Fucikova
- Sotio a.c.; Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Radek Spisek
- Sotio a.c.; Prague, Czech Republic
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
22
|
Galluzzi L, Vacchelli E, Pedro JMBS, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fučíková J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jäger D, Kalinski P, Kärre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautès-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508. [PMID: 25537519 PMCID: PMC4350348 DOI: 10.18632/oncotarget.2998] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Erika Vacchelli
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - José-Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Laura Senovilla
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Elisa Elena Baracco
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Norma Bloy
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Francesca Castoldi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
- Sotio a.c., Prague, Czech Republic
| | - Jean-Pierre Abastado
- Pole d'innovation thérapeutique en oncologie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Ron N. Apte
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fernando Aranda
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maha Ayyoub
- INSERM, U1102, Saint Herblain, France
- Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Philipp Beckhove
- Translational Immunology Division, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Yves Blay
- Equipe 11, Centre Léon Bérard (CLR), Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Bracci
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anne Caignard
- INSERM, U1160, Paris, France
- Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center, Dept. of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Estaban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Aled Clayton
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
- Velindre Cancer Centre, Cardiff, UK
| | - Mario P. Colombo
- Unit of Immunotherapy of Human Tumors, Dept. of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Lisa Coussens
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Madhav V. Dhodapkar
- Sect. of Hematology and Immunobiology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | | | | | - Wolf H. Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fučíková
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Dmitry I. Gabrilovich
- Dept. of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory, Dept. of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - François Ghiringhelli
- INSERM, UMR866, Dijon, France
- Centre Georges François Leclerc, Dijon, France
- Université de Bourgogne, Dijon, France
| | - Giuseppe Giaccone
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eli Gilboa
- Dept. of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sacha Gnjatic
- Sect. of Hematology/Oncology, Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Axel Hoos
- Glaxo Smith Kline, Cancer Immunotherapy Consortium, Collegeville, PA, USA
| | - Anne Hosmalin
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Hôpital Cochin, AP-HP, Paris, France
| | - Dirk Jäger
- National Center for Tumor Diseases, University Medical Center Heidelberg, Heidelberg, Germany
| | - Pawel Kalinski
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- Dept. of Immunology and Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Klas Kärre
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Oliver Kepp
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rolf Kiessling
- Dept. of Oncology, Karolinska Institute Hospital, Stockholm, Sweden
| | - John M. Kirkwood
- University of Pittsburgh Cancer Institute Laboratory, Pittsburgh, PA, USA
| | - Eva Klein
- Dept. of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Alexander Knuth
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Claire E. Lewis
- Academic Unit of Inflammation and Tumour Targeting, Dept. of Oncology, University of Sheffield Medical School, Sheffield, UK
| | - Roland Liblau
- INSERM, UMR1043, Toulouse, France
- CNRS, UMR5282, Toulouse, France
- Laboratoire d'Immunologie, CHU Toulouse, Université Toulouse II, Toulouse, France
| | - Michael T. Lotze
- Dept. of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Jean-Pierre Mach
- Dept. of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Fabrizio Mattei
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Institute, Rozzano, Italy
- Dept. of Medical Biotechnologies and Translational Medicine, University of Milan, Rozzano, Italy
| | - Ignacio Melero
- Dept. of Immunology, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Dept. of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Cornelis J. Melief
- ISA Therapeutics, Leiden, The Netherlands
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Elizabeth A. Mittendorf
- Research Dept. of Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Adekunke Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hideho Okada
- Dept. of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Marcus E. Peter
- Div. of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Angel Porgador
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
- Dept. of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Philadelphia, PA, USA
- Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Nicholas P. Restifo
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naiyer Rizvi
- Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Hans Schreiber
- Dept. of Pathology, The Cancer Research Center, The University of Chicago, Chicago, IL, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hiroshi Shiku
- Dept. of Immuno-GeneTherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Daniel E. Speiser
- Dept. of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Cancer Research Center, Lausanne, Switzerland
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Pramod K. Srivastava
- Dept. of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
- Carole and Ray Neag Comprehensive Cancer Center, Farmington, CT, USA
| | - James E. Talmadge
- Laboratory of Transplantation Immunology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | | | - Benoît J. Van Den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - Richard Vile
- Dept. of Molecular Medicine and Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hermann Wagner
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Jeffrey S. Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, FL, USA
| | - Theresa L. Whiteside
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jedd D. Wolchok
- Dept. of Medicine and Ludwig Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, Villejuif, France
- Centre d'Investigation Clinique Biothérapie 507 (CICBT507), Gustave Roussy Cancer Campus, Villejuif, France
| | - Weiping Zou
- University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| |
Collapse
|
23
|
Maenhout SK, Thielemans K, Aerts JL. Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. Oncoimmunology 2014; 3:e956579. [PMID: 25941577 DOI: 10.4161/21624011.2014.956579] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/16/2014] [Indexed: 12/26/2022] Open
Abstract
An increasing number of studies is focusing on the role of myeloid-derived suppressor cells (MDSCs) in the suppression of antitumor immune responses. Although the main site of action for MDSCs is most likely the tumor microenvironment, the study of these cells has been largely restricted to MDSCs derived from peripheral lymphoid organs. Only in a minority of studies MDSCs isolated from the tumor microenvironment have been characterized. This review will give an overview of the data available on the phenotypical and functional differences between tumor-derived MDSCs and MDSCs isolated from the spleen of tumor-bearing mice or from the peripheral blood of cancer patients.
Collapse
Key Words
- ATRA, all-trans retinoic acid
- Bv8, Bombina variagata peptide 8
- CTLA-4, cytotoxic T-lymphocyte antigen-4
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- IFN-γ, interferon gamma
- IL, interleukin
- IL-4Rα, interleukin-4 receptor alpha
- LPS, lipopolysaccharide
- M-CSF, macrophage-colony stimulating factor
- MAPK, mitogen-activated protein kinases
- MDSCs, myeloid-derived suppressor cells
- NS cells, natural suppressor cells
- PD-L1, programmed death-ligand 1
- PHA, phytohemagglutinin
- ROS, reactive oxygen species
- TAMs, tumor-associated macrophages
- Treg, regulatory T cells
- VEGF, vascular endothelial growth factor.
- iNOS, inducible nitric oxide synthase
- immunosuppression
- myeloid-derived suppressor cells
- siRNA, small interfering ribonucleic acid
- tumor immunology
- tumor microenvironment
- tumor models
Collapse
Affiliation(s)
- Sarah K Maenhout
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology ; Vrije Universiteit Brussel ; Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology ; Vrije Universiteit Brussel ; Brussels, Belgium
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy; Department of Immunology-Physiology ; Vrije Universiteit Brussel ; Brussels, Belgium
| |
Collapse
|
24
|
Wu T, Zhao Y, Zhao Y. The roles of myeloid-derived suppressor cells in transplantation. Expert Rev Clin Immunol 2014; 10:1385-94. [DOI: 10.1586/1744666x.2014.948424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Liechtenstein T, Perez-Janices N, Blanco-Luquin I, Goyvaerts C, Schwarze J, Dufait I, Lanna A, Ridder MD, Guerrero-Setas D, Breckpot K, Escors D. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology 2014; 3:e945378. [PMID: 25954597 DOI: 10.4161/21624011.2014.945378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023] Open
Abstract
Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo. Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities.
Collapse
Key Words
- 142 3p, target sequence for the microRNA 142 3p
- DC, dendritic cell
- G-MDSC, granulocytic MDSC
- IL, interleukin
- IiOVA, MHC II invariant chain-ovalbumin
- M-MDS, monocytic MDSC
- MDSC
- MDSC, myeloid-derived suppressor cell
- MLR, mixed lymphocyte reaction
- OVA, chicken ovalbumin
- PD-1, programmed cell death 1
- PD-L1
- PD-L1, programmed cell death 1 ligand 1
- T cell
- TAA, tumor associated antigen
- TCR, T cell receptor
- TRP1, tyrosinase related protein 1;
- TRP2, tyrosinase related protein 2
- Th, T helper lymphocyte
- immunotherapy
- melanoma
- p1, PD-L1-targeted microRNA
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Immunomodulation group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Noemi Perez-Janices
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - Julia Schwarze
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - Ines Dufait
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium ; Department of Radiotherapy; Vrije Universiteit Brussel ; Jette, Belgium
| | - Alessio Lanna
- Division of infection and immunity; Rayne Institute; University College London ; London, UK
| | - Mark De Ridder
- Department of Radiotherapy; Vrije Universiteit Brussel ; Jette, Belgium
| | - David Guerrero-Setas
- Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - David Escors
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Immunomodulation group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| |
Collapse
|