1
|
Makino T, Miyata H, Yasuda T, Kitagawa Y, Muro K, Park JH, Hikichi T, Hasegawa T, Igarashi K, Iguchi M, Masaoka Y, Yano M, Doki Y. A phase 3, randomized, double-blind, multicenter, placebo-controlled study of S-588410, a five-peptide cancer vaccine as an adjuvant therapy after curative resection in patients with esophageal squamous cell carcinoma. Esophagus 2024; 21:447-455. [PMID: 38990441 PMCID: PMC11405444 DOI: 10.1007/s10388-024-01072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND S-588410, a cancer peptide vaccine (CPV), comprises five HLA-A*24:02-restricted peptides from five cancer-testis antigens. In a phase 2 study, S-588410 was well-tolerated and exhibited antitumor efficacy in patients with urothelial cancer. Therefore, we aimed to evaluate the efficacy, immune response, and safety of S-588410 in patients with completely resected esophageal squamous cell carcinoma (ESCC). METHODS This phase 3 study involved patients with HLA-A*24:02-positive and lymph node metastasis-positive ESCC who received neoadjuvant therapy followed by curative resection. After randomization, patients were administered S-588410 and placebo (both emulsified with Montanide™ ISA 51VG) subcutaneously. The primary endpoint was relapse-free survival (RFS). The secondary endpoints were overall survival (OS), cytotoxic T-lymphocyte (CTL) induction, and safety. Statistical significance was tested using the one-sided weighted log-rank test with the Fleming-Harrington class of weights. RESULTS A total of 276 patients were randomized (N = 138/group). The median RFS was 84.3 and 84.1 weeks in the S-588410 and placebo groups, respectively (P = 0.8156), whereas the median OS was 236.3 weeks and not reached, respectively (P = 0.6533). CTL induction was observed in 132/134 (98.5%) patients who received S-588410 within 12 weeks. Injection site reactions (137/140 patients [97.9%]) were the most frequent treatment-emergent adverse events in the S-588410 group. Prolonged survival was observed in S-588410-treated patients with upper thoracic ESCC, grade 3 injection-site reactions, or high CTL intensity. CONCLUSIONS S-588410 induced immune response and had acceptable safety but failed to reach the primary endpoint. A high CTL induction rate and intensity may be critical for prolonging survival during future CPV development.
Collapse
Affiliation(s)
- Tomoki Makino
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Miyata
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Takushi Yasuda
- Department of Surgery, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Jae-Hyun Park
- OncoTherapy Science, Inc., Kawasaki, Kanagawa, Japan
| | - Tetsuro Hikichi
- Laboratory Department, Cancer Precision Medicine, Inc., Kawasaki, Kanagawa, Japan
| | | | | | - Motofumi Iguchi
- Medical Affairs Department, Shionogi & Co., Ltd, Osaka, Japan
| | | | - Masahiko Yano
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
- Kyowakai Hospital, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Moon DO. Advancing Cancer Therapy: The Role of KIF20A as a Target for Inhibitor Development and Immunotherapy. Cancers (Basel) 2024; 16:2958. [PMID: 39272816 PMCID: PMC11393963 DOI: 10.3390/cancers16172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The analysis begins with a detailed examination of the gene expression and protein structure of KIF20A, highlighting its interaction with critical cellular components that influence key processes such as Golgi membrane transport and mitotic spindle assembly. The primary focus is on the development of specific KIF20A inhibitors, detailing their roles and the challenges encountered in enhancing their efficacy, such as achieving specificity, overcoming tumor resistance, and optimizing delivery systems. Additionally, it delves into the prognostic value of KIF20A across multiple cancer types, emphasizing its role as a novel tumor-associated antigen, which lays the groundwork for the development of targeted peptide vaccines. The therapeutic efficacy of these vaccines as demonstrated in recent clinical trials is discussed. Future directions are proposed, including the integration of precision medicine strategies to personalize treatments and the use of combination therapies to improve outcomes. By concentrating on the significant potential of KIF20A as both a direct target for inhibitors and an antigen in cancer vaccines, this review sets a foundation for future research aimed at harnessing KIF20A for effective cancer treatment.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
Gatto MS, Johnson MP, Najahi-Missaoui W. Targeted Liposomal Drug Delivery: Overview of the Current Applications and Challenges. Life (Basel) 2024; 14:672. [PMID: 38929656 PMCID: PMC11204409 DOI: 10.3390/life14060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In drug development, it is not uncommon that an active substance exhibits efficacy in vitro but lacks the ability to specifically reach its target in vivo. As a result, targeted drug delivery has become a primary focus in the pharmaceutical sciences. Since the approval of Doxil® in 1995, liposomes have emerged as a leading nanoparticle in targeted drug delivery. Their low immunogenicity, high versatility, and well-documented efficacy have led to their clinical use against a wide variety of diseases. That being said, every disease is accompanied by a unique set of physiological conditions, and each liposomal product must be formulated with this consideration. There are a multitude of different targeting techniques for liposomes that can be employed depending on the application. Passive techniques such as PEGylation or the enhanced permeation and retention effect can improve general pharmacokinetics, while active techniques such as conjugating targeting molecules to the liposome surface may bring even further specificity. This review aims to summarize the current strategies for targeted liposomes in the treatment of diseases.
Collapse
Affiliation(s)
| | | | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (M.S.G.); (M.P.J.)
| |
Collapse
|
5
|
Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a-based and Siglece-based vaccination induces antitumor immunity and inhibits metastasis. J Immunother Cancer 2023; 11:e007935. [PMID: 38135347 DOI: 10.1136/jitc-2023-007935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Cancer-testis (CT) genes are targets for tumor antigen-specific immunotherapy given that their expression is normally restricted to the immune-privileged testis in healthy individuals with aberrant expression in tumor tissues. While they represent targetable germ tissue antigens and play important functional roles in tumorigenesis, there is currently no standardized approach for identifying clinically relevant CT genes. Optimized algorithms and validated methods for accurate prediction of reliable CT antigens (CTAs) with high immunogenicity are also lacking. METHODS Sequencing data from the Genotype-Tissue Expression (GTEx) and The Genomic Data Commons (GDC) databases was used for the development of a bioinformatic pipeline to identify CT exclusive genes. A CT germness score was calculated based on the number of CT genes expressed within a tumor type and their degree of expression. The impact of tumor germness on clinical outcome was evaluated using healthy GTEx and GDC tumor samples. We then used a triple-negative breast cancer mouse model to develop and test an algorithm that predicts epitope immunogenicity based on the identification of germline sequences with strong major histocompatibility complex class I (MHCI) and MHCII binding affinities. Germline sequences for CT genes were synthesized as long synthetic peptide vaccines and tested in the 4T1 triple-negative model of invasive breast cancer with Poly(I:C) adjuvant. Vaccine immunogenicity was determined by flow cytometric analysis of in vitro and in vivo T-cell responses. Primary tumor growth and lung metastasis was evaluated by histopathology, flow cytometry and colony formation assay. RESULTS We developed a new bioinformatic pipeline to reliably identify CT exclusive genes as immunogenic targets for immunotherapy. We identified CT genes that are exclusively expressed within the testis, lack detectable thymic expression, and are significantly expressed in multiple tumor types. High tumor germness correlated with tumor progression but not with tumor mutation burden, supporting CTAs as appealing targets in low mutation burden tumors. Importantly, tumor germness also correlated with markers of antitumor immunity. Vaccination of 4T1 tumor-bearing mice with Siglece and Lin28a antigens resulted in increased T-cell antitumor immunity and reduced primary tumor growth and lung metastases. CONCLUSION Our results present a novel strategy for the identification of highly immunogenic CTAs for the development of targeted vaccines that induce antitumor immunity and inhibit metastasis.
Collapse
Affiliation(s)
- Jason A Carter
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Bharati Matta
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jenna Battaglia
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Carter Somerville
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Benjamin D Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Lyell Immunopharma, South San Francisco, CA, USA
| | - Margaret LaPan
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Gurinder S Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Betsy J Barnes
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
6
|
Tan Y, Chen H, Gou X, Fan Q, Chen J. Tumor vaccines: Toward multidimensional anti-tumor therapies. Hum Vaccin Immunother 2023; 19:2271334. [PMID: 37905395 PMCID: PMC10760370 DOI: 10.1080/21645515.2023.2271334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
For decades, immunotherapies have offered hope for patients with advanced cancer. However, they show distinct benefits and limited clinical effects. Tumor vaccines have the potential to prime tumor-antigen-specific T cells and induce broad subsets of immune responses, ultimately eradicating tumor cells. Here, we classify tumor vaccines by their anti-tumor mechanisms, which include boosting the immune system, overcoming tumor immunosuppression, and modulating tumor angiogenesis. We focus on multidimensional tumor vaccine strategies using combinations of two or three of the above mechanisms, as these are superior to single-dimensional treatments. This review offers a perspective on tumor vaccine strategies and the future role of vaccine therapies in cancer treatment.
Collapse
Affiliation(s)
- Yuanfang Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiyuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Zahedipour F, Hosseini SA, Astaneh M, Kesharwani P, Jaafari MR, Sahebkar A. Application of VEGF/VEGFR peptide vaccines in cancer: A systematic review of clinical trials. Crit Rev Oncol Hematol 2023; 187:104032. [PMID: 37217108 DOI: 10.1016/j.critrevonc.2023.104032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Peptide vaccines that target vascular endothelial growth factor (VEGF) pathway have shown promising results in inducing strong anti-tumor immune responses with minimal toxicity in various clinical studies. This systematic review was conducted to provide a comprehensive evaluation of the therapeutic efficacy, immune response, survival rate, and side effects of VEGF/VEGF receptor-based peptide vaccines. VEGF/VEGFR2 peptide vaccines were found to be safe and effective in inducing anti-tumor immune responses, while induced moderate clinical benefit. In this regard, further clinical trials are necessary to fully evaluate their clinical effects and the exact correlation between induction of immune response and clinical outcomes.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Astaneh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X, Chen F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 2023; 62:71. [PMID: 37144487 PMCID: PMC10198712 DOI: 10.3892/ijo.2023.5519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyuan Li
- Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Daren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruijie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
9
|
Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a- and Siglece-based vaccination induces anti-tumor immunity and inhibits metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539617. [PMID: 37214884 PMCID: PMC10197572 DOI: 10.1101/2023.05.09.539617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Cancer-testis (CT) genes are targets for tumor antigen-specific immunotherapy given that their expression is normally restricted to the immune-privileged testis in healthy individuals with aberrant expression in tumor tissues. While they represent targetable germ-tissue antigens and play important functional roles in tumorigenesis, there is currently no standardized approach for identifying clinically relevant CT genes. Optimized algorithms and validated methods for accurate prediction of reliable CT antigens with high immunogenicity are also lacking. Methods Sequencing data from the Genotype-Tissue Expression (GTEx) and The Genomic Data Commons (GDC) databases was utilized for the development of a bioinformatic pipeline to identify CT exclusive genes. A CT germness score was calculated based on the number of CT genes expressed within a tumor type and their degree of expression. The impact of tumor germness with clinical outcome was evaluated using healthy GTEx and GDC tumor samples. We then used a triple-negative breast cancer mouse model to develop and test an algorithm that predicts epitope immunogenicity based on the identification of germline sequences with strong MHCI and MHCII binding affinities. Germline sequences for CT genes were synthesized as long synthetic peptide vaccines and tested in the 4T1 triple-negative model of invasive breast cancer with Poly(I:C) adjuvant. Vaccine immunogenicity was determined by flow cytometric analysis of in vitro and in vivo T cell responses. Primary tumor growth and lung metastasis was evaluated by histopathology, flow cytometry and colony formation assay. Results We developed a new bioinformatic pipeline to reliably identify CT exclusive genes as immunogenic targets for immunotherapy. We identified CT genes that are exclusively expressed within the testis, lack detectable thymic expression, and are significantly expressed in multiple tumor types. High tumor germness correlated with tumor progression but not with tumor mutation burden, supporting CT antigens as appealing targets in low mutation burden tumors. Importantly, tumor germness also correlated with markers of anti-tumor immunity. Vaccination of 4T1 tumor bearing mice with Siglece and Lin28a antigens resulted in increased T cell anti-tumor immunity and reduced primary tumor growth and lung metastases. Conclusion Our results present a novel strategy for the identification of highly immunogenic CT antigens for the development of targeted vaccines that induce anti-tumor immunity and inhibit metastasis.
Collapse
|
10
|
Jin Z, Peng F, Zhang C, Tao S, Xu D, Zhu Z. Expression, regulating mechanism and therapeutic target of KIF20A in multiple cancer. Heliyon 2023; 9:e13195. [PMID: 36798768 PMCID: PMC9925975 DOI: 10.1016/j.heliyon.2023.e13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.
Collapse
Key Words
- ATP, adenosine triphosphate
- BTC, biliary tract cancer
- CPC, chromosomal passenger complex
- CTL, cytotoxic T lymphocyte
- Cancer
- Cdk1, cyclin-dependent kinase 1
- DLG5, discs large MAGUK scaffold protein 5
- EMT, epithelial-mesenchymal transition
- Expression
- FoxM1, forkhead box protein M1
- GC, gastric cancer
- GEM, gemcitabine
- Gli2, glioma-associated oncogene 2
- HLA, human leukocyte antigen
- HNMT, head-and-neck malignant tumor
- IRF, interferon regulatory factor
- JAK, Janus kinase
- KIF20A
- KIF20A, kinesin family member 20A
- LP, long peptide
- MHC I, major histocompatibility complex I
- MKlp2, mitotic kinesin-like protein 2
- Mad2, mitotic arrest deficient 2
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- Plk1, polo-like kinase 1
- Regulating mechanisms
- Therapeutic target
- circRNA, circular RNA
- miRNA, microRNA
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China,State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China,Corresponding author. Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding author. Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Du JJ, Su Z, Yu H, Qin S, Wang D. From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Front Chem 2023; 10:1107600. [PMID: 36733612 PMCID: PMC9887119 DOI: 10.3389/fchem.2022.1107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can further improve the efficacy and safety of immunotherapy because of their tunability and multifunctionality. Owing to their natural biocompatibility, diverse designs, and dynamic self-assembly, peptide-based nanomaterials hold great potential as immunotherapeutic agents for many malignant cancers, with good immune response and safety. Over the past several decades, peptides have been developed as tumor antigens, effective antigen delivery carriers, and self-assembling adjuvants for cancer immunotherapy. In this review, we give a brief introduction to the use of peptide-based nanomaterials for cancer immunotherapy as antigens, carriers, and adjuvants, and to their current clinical applications. Overall, this review can facilitate further understanding of peptide-based nanomaterials for cancer immunotherapy and may pave the way for designing safe and efficient methods for future vaccines or immunotherapies.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Zhenhong Su
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Haoyi Yu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Sanhai Qin
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China,*Correspondence: Dongyuan Wang,
| |
Collapse
|
12
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 380] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021; 54:e13025. [PMID: 33754407 PMCID: PMC8088465 DOI: 10.1111/cpr.13025] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The peptide‐based therapeutic cancer vaccines have attracted enormous attention in recent years as one of the effective treatments of tumour immunotherapy. Most of peptide‐based vaccines are based on epitope peptides stimulating CD8+ T cells or CD4+ T helper cells to target tumour‐associated antigens (TAAs) or tumour‐specific antigens (TSAs). Some adjuvants and nanomaterials have been exploited to optimize the efficiency of immune response of the epitope peptide to improve its clinical application. At present, numerous peptide‐based therapeutic cancer vaccines have been developed and achieved significant clinical benefits. Similarly, the combination of peptide‐based vaccines and other therapies has demonstrated a superior efficacy in improving anti‐cancer activity. We delve deeper into the choices of targets, design and screening of epitope peptides, clinical efficacy and adverse events of peptide‐based vaccines, and strategies combination of peptide‐based therapeutic cancer vaccines and other therapies. The review will provide a detailed overview and basis for future clinical application of peptide‐based therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Transfusion Medicine Institute, Liaoning Blood Center, Shenyang, China.,Transfusion Medicine Institute, Harbin Blood Center, Harbin, China
| |
Collapse
|
14
|
Russell KL, Gorgulho CM, Allen A, Vakaki M, Wang Y, Facciabene A, Lee D, Roy P, Buchser WJ, Appleman LJ, Maranchie J, Storkus WJ, Lotze MT. Inhibiting Autophagy in Renal Cell Cancer and the Associated Tumor Endothelium. ACTA ACUST UNITED AC 2020; 25:165-177. [PMID: 31135523 PMCID: PMC10395074 DOI: 10.1097/ppo.0000000000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clear cell subtype of kidney cancer encompasses most renal cell carcinoma cases and is associated with the loss of von Hippel-Lindau gene function or expression. Subsequent loss or mutation of the other allele influences cellular stress responses involving nutrient and hypoxia sensing. Autophagy is an important regulatory process promoting the disposal of unnecessary or degraded cellular components, tightly linked to almost all cellular processes. Organelles and proteins that become damaged or that are no longer needed in the cell are sequestered and digested in autophagosomes upon fusing with lysosomes, or alternatively, released via vesicular exocytosis. Tumor development tends to disrupt the regulation of the balance between this process and apoptosis, permitting prolonged cell survival and increased replication. Completed trials of autophagic inhibitors using hydroxychloroquine in combination with other anticancer agents including rapalogues and high-dose interleukin 2 have now been reported. The complex nature of autophagy and the unique biology of clear cell renal cell carcinoma warrant further understanding to better develop the next generation of relevant anticancer agents.
Collapse
Affiliation(s)
| | | | - Abigail Allen
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
15
|
Qin H, Sheng J, Zhang D, Zhang X, Liu L, Li B, Li G, Zhang Z. New Strategies for Therapeutic Cancer Vaccines. Anticancer Agents Med Chem 2019; 19:213-221. [PMID: 30411693 DOI: 10.2174/1871520618666181109151835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Patients with low response rates to cancer vaccines, short duration of anti-tumor response after vaccination, and relatively weak curative effects are problems that have not been resolved effectively during the development and application of cancer vaccines. With the continuous improvement of knowledge and awareness regarding the immune system and cancer cells, many researches have helped to explain the reasons for poor vaccine efficacy. Input from researchers accompanied by some newly emerged strategies could bring hope to improve the therapeutic effects of vaccines. METHODS Data were collected from Web of Science, Medline, Pubmed, through searching of these keywords: "cancer vaccine", "cancer stem cell", "targeted agent", "immune checkpoint blockade" and "neoantigen". RESULTS It may be more effective in immunotherapy of human cancers, including cancer stem cell vaccines, combination vaccines with targeted agents or immune checkpoint blockade, and neoantigen-based vaccines. CONCLUSION Personalized vaccines will become the mainstream solution of cancer treatment program with the continuous improvement of human understanding of the immune system and the progress of related experiments.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun 130041, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun 130041, China
| | - Linlin Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 13033, China
| |
Collapse
|
16
|
Li X, Shu K, Wang Z, Ding D. Prognostic significance of KIF2A and KIF20A expression in human cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e18040. [PMID: 31725680 PMCID: PMC6867763 DOI: 10.1097/md.0000000000018040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The kinesin family (KIF) is reported to be aberrantly expressed and significantly correlated with survival outcomes in patients with various cancers. This meta-analysis was carried out to quantitatively evaluate the prognostic values of partial KIF members in cancer patients. METHODS Two well-known KIF members, KIF2A and KIF20A, were investigated to evaluate their potential values as novel prognostic biomarkers in human cancer. A comprehensive literature search was carried out of the PubMed, EMBASE, Cochrane Library, and Web of Science databases up to April 2019. Pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association of KIF2A and KIF20A expression with overall survival (OS) and clinicopathological parameters. RESULTS Twenty-five studies involving 7262 patients were finally incorporated, including nine about KIF2A and sixteen about KIF20A. Our results indicated that patients with high expression of KIF2 and KIF20A tended to have shorter OS than those with low expression (HR = 2.23, 95% CI = 1.87-2.65, P < .001; HR = 1.77, 95% CI = 1.57-1.99, P < .001, respectively). Moreover, high expression of these 2 KIF members was significantly associated with advanced clinical stage (OR = 1.98, 95% CI: 1.57-2.50, P < .001; OR = 2.63, 95% CI: 2.03-3.41, P < .001, respectively), positive lymph node metastasis (OR = 2.32, 95% CI: 1.65-3.27, P < .001; OR = 2.13, 95% CI: 1.59-2.83, P < .001, respectively), and distant metastasis (OR = 2.20, 95% CI: 1.21-3.99, P = .010; OR = 5.25, 95% CI: 2.82-9.77, P < .001, respectively); only high KIF20A expression was related to poor differentiation grade (OR = 1.82, 95% CI: 1.09-3.07, P = .023). CONCLUSIONS High expression of KIF2 and KIF20A in human cancer was significantly correlated with worse prognosis and unfavorable clinicopathological features, suggesting that these 2 KIF members can be used as prognostic biomarkers for different types of tumors. PROSPERO REGISTRATION NUMBER CRD42019134928.
Collapse
Affiliation(s)
- Xing Li
- Department of Urology, People's Hospital of Zhengzhou University
| | - Kunpeng Shu
- Department of Urology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Mohsen MO, Vogel M, Riether C, Muller J, Salatino S, Ternette N, Gomes AC, Cabral-Miranda G, El-Turabi A, Ruedl C, Kundig TM, Dermime S, Knuth A, Speiser DE, Bachmann MF. Targeting Mutated Plus Germline Epitopes Confers Pre-clinical Efficacy of an Instantly Formulated Cancer Nano-Vaccine. Front Immunol 2019; 10:1015. [PMID: 31156619 PMCID: PMC6532571 DOI: 10.3389/fimmu.2019.01015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022] Open
Abstract
Personalized cancer vaccines hold promises for future cancer therapy. Targeting neoantigens is perceived as more beneficial compared to germline, non-mutated antigens. However, it is a practical challenge to identify and vaccinate patients with neoantigens. Here we asked whether two neoantigens are sufficient, and whether the addition of germline antigens would enhance the therapeutic efficacy. We developed and used a personalized cancer nano-vaccine platform based on virus-like particles loaded with toll-like receptor ligands. We generated three sets of multi-target vaccines (MTV) to immunize against the aggressive B16F10 murine melanoma: one set based on germline epitopes (GL-MTV) identified by immunopeptidomics, another set based on mutated epitopes (Mutated-MTV) predicted by whole exome sequencing and a last set combines both germline and mutated epitopes (Mix-MTV). Our results demonstrate that both germline and mutated epitopes induced protection but the best therapeutic effect was achieved with the combination of both. Our platform is based on Cu-free click chemistry used for peptide-VLP coupling, thus enabling bedside production of a personalized cancer vaccine, ready for clinical translation.
Collapse
Affiliation(s)
- Mona O Mohsen
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom.,Department of BioMedical Research, Immunology RIA, University Hospital of Bern, Bern, Switzerland.,National Center for Cancer Care & Research, Doha, Qatar
| | - Monique Vogel
- Department of BioMedical Research, Immunology RIA, University Hospital of Bern, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, University Hospital of Bern, Bern, Switzerland
| | - Julius Muller
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Silvia Salatino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ariane C Gomes
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gustavo Cabral-Miranda
- Department of BioMedical Research, Immunology RIA, University Hospital of Bern, Bern, Switzerland
| | - Aadil El-Turabi
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Christiane Ruedl
- Division of Molecular Genetics and Cell Biology, Nanyang Technological University, Singapore, Singapore
| | - Thomas M Kundig
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Said Dermime
- National Center for Cancer Care & Research, Doha, Qatar
| | | | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Martin F Bachmann
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom.,Department of BioMedical Research, Immunology RIA, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Wei X, Chen F, Xin K, Wang Q, Yu L, Liu B, Liu Q. Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Transl Oncol 2019; 12:733-738. [PMID: 30877975 PMCID: PMC6423365 DOI: 10.1016/j.tranon.2019.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer vaccines, including peptide-based vaccines, have been considered a key tool of effective and protective cancer immunotherapy because of their capacity to provide long-term clinical benefit for tumors. Among a large number of explorations of peptide antigen-based vaccines, cancer-testis antigens (CTAs), which are activated in cancers but silenced in normal tissues (except testis tissue), are considered as ideal targets. Currently, personalized treatment for cancer has become a trend due to its superior clinical efficacy. Thus, we envisage rational selection of CTA peptides to design "personalized" CTA peptide vaccines. This review summarizes the advances in CTA peptide vaccine research and discusses the feasibility of establishing "personalized" CTA peptide vaccines.
Collapse
Affiliation(s)
- Xiao Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Kai Xin
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University; The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University.
| |
Collapse
|
19
|
Takeda K, Kitaura K, Suzuki R, Owada Y, Muto S, Okabe N, Hasegawa T, Osugi J, Hoshino M, Tsunoda T, Okumura K, Suzuki H. Quantitative T-cell repertoire analysis of peripheral blood mononuclear cells from lung cancer patients following long-term cancer peptide vaccination. Cancer Immunol Immunother 2018; 67:949-964. [PMID: 29568993 PMCID: PMC11028142 DOI: 10.1007/s00262-018-2152-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Biofunctional Micribiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kazutaka Kitaura
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, 252-0392, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, 252-0392, Japan
| | - Yuki Owada
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Satoshi Muto
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Takeo Hasegawa
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Jun Osugi
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Mika Hoshino
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Takuya Tsunoda
- Department of Clinical Immuno-oncology, Showa University, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Ko Okumura
- Department of Biofunctional Micribiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, 113-8421, Japan
- Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| |
Collapse
|
20
|
Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed Pharmacother 2018; 103:574-581. [PMID: 29677544 DOI: 10.1016/j.biopha.2018.04.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Bioactive peptides are actively involved in different biological functions and importantly contribute to human health, and the use of peptides as therapeutics has a long successful history in disease management. A number of peptides have wide-ranging therapeutic effects, such as antioxidant, antimicrobial, and antithrombotic effects. Neurodegenerative diseases are typically caused by abnormal aggregations of proteins or peptides, and the depositions of these aggregates in or on neurons, disrupt signaling and eventually kill neurons. During recent years, research on short peptides has advanced tremendously. This review offers a brief introduction to peptide based therapeutics and their application in disease management and provides an overview of peptide vaccines, and toxicity related issues. In addition, the importance of peptides in the management of different neurodegenerative diseases and their therapeutic applications is discussed. The present review provides an understanding of peptides and their applications for the management of different diseases, but with focus on neurodegenerative diseases. The role of peptides as anti-cancer, antimicrobial and antidiabetic agents has also been discussed.
Collapse
|
21
|
Li W, Song X, Yu H, Zhang M, Li F, Cao C, Jiang Q. Dendritic cell-based cancer immunotherapy for pancreatic cancer. Arab J Gastroenterol 2018. [PMID: 29526540 DOI: 10.1016/j.ajg.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is a lethal disease and remains one of the most resistant cancers to traditional therapies. New therapeutic modalities are urgently needed, particularly immunotherapy, which has shown promise in numerous animal model studies. Dendritic cell (DC)-based immunotherapy has been used in clinical trials for various cancers, including PC, because DCs are the most potent antigen-presenting cell (APC), which are capable of priming naive T cells and stimulating memory T cells to generate antigen-specific responses. In this paper, we review the preclinical and clinical efforts towards the application of DCs for PC.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Xiujun Song
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Huijie Yu
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Manze Zhang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Fengsheng Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Qisheng Jiang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China.
| |
Collapse
|
22
|
Wagner SC, Ichim TE, Bogin V, Min WP, Silva F, Patel AN, Kesari S. Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget 2018; 8:28595-28613. [PMID: 28404894 PMCID: PMC5438675 DOI: 10.18632/oncotarget.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
ValloVax is a placental endothelium derived vaccine which induces tissue-nonspecific antitumor immunity by blocking tumor angiogesis. To elucidate mechanisms of action, we showed that production of ValloVax, which involves treating placental endothelial cells with IFN-gamma, results in upregulation of HLA and costimulatory molecules. It was shown that in mixed lymphocyte reaction, ValloVax induces Type I cytokines and allo-proliferative responses. Plasma from ValloVax immunized mice was capable of killing in vitro tumor-like endothelium but not control endothelium. Using defined antigens associated with tumor endothelial cells, specific molecular entities were identified as being targeted by ValloVax induced antibodies. Binding of predominantly IgG antibodies to ValloVax cells was confirmed by flow cytometry. Further suggesting direct killing of tumor endothelial cells was expression of TUNEL positive cells, as well as, reduction in tumor oxygenation. Supporting a role for antibody mediated responses, cell depletion experiments suggested a predominant role of B cells in maintaining an intact anti-tumor endothelial response. Adoptive transfer experiments suggested that infusion of CD3+ T cells from immunized mice was sufficient to transfer tumor protection. Generation of memory T cells selective to tumor endothelial specific markers was observed. Functional confirmation of memory responses was observed in tumor rechallenge experiments. Furthermore, we observed that both PD-1 or CTLA-4 blockade augmented antitumor effects of ValloVax. These data suggest a T cell induced B cell mediated anti-tumor endothelial response and set the framework clinical trials through elucidation of mechanism of action.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Silva
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Amit N Patel
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|
23
|
Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners. Cancers (Basel) 2018; 10:cancers10020051. [PMID: 29462900 PMCID: PMC5836083 DOI: 10.3390/cancers10020051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.
Collapse
|
24
|
Obara W, Kanehira M, Katagiri T, Kato R, Kato Y, Takata R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci 2018; 109:550-559. [PMID: 29345737 PMCID: PMC5834812 DOI: 10.1111/cas.13506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Use of peptide‐based vaccines as therapeutics aims to elicit immune responses through antigenic epitopes derived from tumor antigens. Peptide‐based vaccines are easily synthesized and lack significant side‐effects when given in vivo. Peptide‐based vaccine therapy against several cancers including urological cancers has made progress for several decades, but there is no worldwide approved peptide vaccine. Peptide vaccines were also shown to induce a high frequency of immune response in patients accompanied by clinical efficacy. These data are discussed in light of the recent progression of immunotherapy caused by the addition of immune checkpoint inhibitors thus providing a general picture of the potential therapeutic efficacy of peptide‐based vaccines and their combination with other biological agents. In this review, we discuss the mechanism of the antitumor effect of peptide‐based vaccine therapy, development of our peptide vaccine, recent clinical trials using peptide vaccines for urological cancers, and perspectives of peptide‐based vaccine therapy.
Collapse
Affiliation(s)
- Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Mitsugu Kanehira
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Renpei Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yoichiro Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ryo Takata
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
25
|
Emerging trends in the immunotherapy of pancreatic cancer. Cancer Lett 2017; 417:35-46. [PMID: 29242097 DOI: 10.1016/j.canlet.2017.12.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the U.S., claiming approximately 43,000 lives every year. Much like other solid tumors, PC evades the host immune surveillance by manipulating immune cells to establish an immunosuppressive tumor microenvironment (TME). Therefore, targeting and reinstating the patient's immune system could serve as a powerful therapeutic tool. Indeed, immunotherapy has emerged in recent years as a potential adjunct treatment for solid tumors including PC. Immunotherapy modulates the host's immune response to tumor-associated antigens (TAAs), eradicates cancer cells by reducing host tolerance to TAAs and provides both short- and long-term protection against the disease. Passive immunotherapies like monoclonal antibodies or engineered T-cell based therapies directly target tumor cells by recognizing TAAs. Active immunotherapies, like cancer vaccines, on the other hand elicit a long-lasting immune response via activation of the patient's immune cells against cancer cells. Several immunotherapy strategies have been tested for anti-tumor responses alone and in combination with standard care in multiple preclinical and clinical studies. In this review, we discuss various immunotherapy strategies used currently and their efficacy in abrogating self-antigen tolerance and immunosuppression, as well as their ability to eradicate PC.
Collapse
|
26
|
Han Y, Wu Y, Yang C, Huang J, Guo Y, Liu L, Chen P, Wu D, Liu J, Li J, Zhou X, Hou J. Dynamic and specific immune responses against multiple tumor antigens were elicited in patients with hepatocellular carcinoma after cell-based immunotherapy. J Transl Med 2017; 15:64. [PMID: 28330473 PMCID: PMC5363021 DOI: 10.1186/s12967-017-1165-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers in China and frequently occurs with chronic hepatitis B virus infection. To investigate whether cell-based cancer immunotherapy induces tumor specific immune responses in patients with HCC and provides clinical benefits, as well as to elucidate the most immunogenic tumor associated antigens (TAAs), multiple antigen stimulating cellular therapy (MASCT) was applied in addition to standard of care. METHODS Mature dendritic cells (DCs) and activated T cells prepared for MASCT were generated from autologous peripheral blood mononuclear cells (PBMCs). DCs were loaded with a peptide pool of multiple HCC-related tumor antigens, and T cells were stimulated by these DCs. RESULTS Thirteen patients with HCC received repeated MASCT after tumor resection during which their immune responses were examined. After three courses of MASCT, the frequency of regulatory T cells in the patients' PBMCs significantly decreased (p < 0.001), while the antigen peptide pool-triggered T cell proliferation (p < 0.001) and IFNγ production (p = 0.001) were significantly enhanced. The specific T cell responses against each antigen in the pool were detected in 11 patients, but with individualized distinct patterns. The most immunogenic TAAs for HCC are survivin, CCND1, and RGS5. Moreover, the antigen-specific immune responses observed in tumor-free patients' PBMCs were significantly stronger than that in the patients with recurrence (p = 0.037). CONCLUSIONS Our study demonstrates that MASCT is well-tolerated by patients with HCC and elicits strong and dynamic immune responses specifically against multiple tumor associated antigens, which may correlate with clinical outcomes.
Collapse
Affiliation(s)
- Yanyan Han
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,HRYZ Biotech Co., Shenzhen, China
| | - Yeting Wu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chou Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | - Jin Li
- HRYZ Biotech Co., Shenzhen, China
| | | | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Saito K, Ohta S, Kawakami Y, Yoshida K, Toda M. Functional analysis of KIF20A, a potential immunotherapeutic target for glioma. J Neurooncol 2017; 132:63-74. [DOI: 10.1007/s11060-016-2360-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/23/2016] [Indexed: 01/05/2023]
|
28
|
Fabian KL, Storkus WJ. Immunotherapeutic Targeting of Tumor-Associated Blood Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:191-211. [PMID: 29275473 DOI: 10.1007/978-3-319-67577-0_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathological angiogenesis occurs during tumor progression and leads in the formation of an abnormal vasculature in the tumor microenvironment (TME). The tumor vasculature is disorganized, tortuous and leaky, resulting in high interstitial pressure and hypoxia in the TME, all of which are events that support tumor growth and survival. Given the sustaining role of the tumor vasculature, it has become an increasingly attractive target for the development of anti-cancer therapies. Antibodies, tyrosine kinase inhibitors and cancer vaccines that target pro-angiogenic factors, angiogenesis-associated receptors or tumor blood vessel-associated antigens continue to be developed and tested for therapeutic efficacy. Preferred anti-angiogenic protocols include those that "normalize" the tumor-associated vasculature which reduce hypoxia and improve tumor blood perfusion, resulting in tumor cell apoptosis, decreased immunosuppression, and enhanced effector immune cell infiltration/tumoricidal action within the TME.
Collapse
Affiliation(s)
- Kellsye L Fabian
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Voutsas IF, Anastasopoulou EA, Tzonis P, Papamichail M, Perez SA, Baxevanis CN. Unraveling the role of preexisting immunity in prostate cancer patients vaccinated with a HER-2/neu hybrid peptide. J Immunother Cancer 2016; 4:75. [PMID: 27891225 PMCID: PMC5109671 DOI: 10.1186/s40425-016-0183-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Background Cancer vaccines aim at eliciting not only an immune response against specific tumor antigens, but also at enhancing a preexisting immunity against the tumor. In this context, we recently reported on the levels of preexisting immunity in prostate cancer patients vaccinated with the HER-2 hybrid peptide (AE37), during a phase I clinical trial. The purpose of the current study was to correlate between preexisting immunity to the native HER-2 peptide, AE36, and expression of HLA-A2 and -A24 molecules with the clinical outcome. Additionally, we investigated the ability of the AE37 vaccine to induce an antitumor immune response against other tumor associated antigens, not integrated in the vaccine formulation, with respect to the clinical response. Methods We analyzed prostate cancer patients who were vaccinated with the AE37 vaccine [Ii-Key-HER-2/neu(776–790) hybrid peptide vaccine (AE37), which is a MHC class II long peptide vaccine encompassing MHC class I epitopes, during a phase I clinical trial. Preexisting immunity to the native HER-2/neu(776–790) (AE36) peptide was assessed by IFNγ response or dermal reaction at the inoculation site. Antigen specificity against other tumor antigens was defined using multimer analysis. Progression free survival (PFS) was considered as the patients’ clinical outcome. Two-tailed Wilcoxon signed rank test at 95 % confidence interval was used for statistical evaluation at different time points and Kaplan–Meier curves with log-rank (Mantel-Cox) test were used for the evaluation of PFS. Results Preexisting immunity to AE36, irrespectively of HLA expression, was correlated with longer PFS. Specific CD8+ T cell immunity against E75 and PSA146–151 (HLA-A2 restricted), as well as, PSA153–161 (HLA-A24 restricted) was detected at relatively high frequencies which were further enhanced during vaccinations. Specific immunity against PSA153–161 correlated with longer PFS in HLA-A24+ patients. However, HLA-A2+ patients with high preexisting or vaccine-induced immunity to E75, showed a trend for shorter PFS. Conclusions Our data cast doubt on whether preexisting immunity or epitope spreading specific for HLA-class I-restricted peptides can actually predict a favorable clinical outcome. They also impose that preexisting immunity to long vaccine peptides, encompassing both HLA class II and I epitopes should be considered as an important prerequisite for the improvement of future immunotherapeutic protocols. Protocol ID Code: Generex-06-07 National Organization for Medicines (EOF) ID Code: IS-107-01-06 NEC Study Code: EED107/1/06 EudraCT Number: 2006-003299-37 Date of registration: 07/06/2006 Date of enrolment of the first participant to the trial: Nov 1st, 2007 Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0183-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | - Panagiotis Tzonis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | |
Collapse
|
30
|
Lu H, Tang B, He Y, Zhou W, Qiu J, Li Y. Identification of HLA‑A*1101‑restricted cytotoxic T lymphocyte epitopes derived from epidermal growth factor pathway substrate number 8. Mol Med Rep 2016; 14:4999-5006. [PMID: 27840923 PMCID: PMC5355652 DOI: 10.3892/mmr.2016.5888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (EPS8) is critical in the proliferation, progression and metastasis of solid and hematological types of cancer, and thus constitutes an ideal target for cancer immunotherapy. The present study aimed to identify human leukocyte antigen (HLA)‑A*1101‑restricted cytotoxic T lymphocyte (CTL) epitopes from EPS8 and characterize their immunotherapeutic efficacy in vitro. Two computer‑based algorithms were used to predict native EPS8 epitopes with potential high binding affinity to the HLA‑A*1101 molecule, which is the HLA‑A allele with the highest frequency in the Chinese population. The peptide‑induced cytokine production from the CTLs was examined using enzyme‑linked immunosorbent spot analysis. The cytotoxic effects on cancer cells by CTLs primed with the identified peptides were examined using flow cytometry. A total of five peptides, designated as P380, P70, P82, P30 and P529, presented with high affinity towards the HLA‑A*1101 molecule. In response to stimulation by these five peptides, enhanced secretion of interferon‑γ from the CTLs and increased cytolytic capabilities of the CTLs toward cancer cells were noted, with the most potent effects observed from the P380 peptide. Taken together, the present study identified five potential CTL epitopes from EPS8. Among these, P380 presented with the highest therapeutic efficacy in vitro. These peptides may benefit the development of EPS8‑based immunotherapy for the treatment of HLA‑A*1101‑positive hematological malignancies.
Collapse
Affiliation(s)
- Huifang Lu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Baishan Tang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jielei Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
31
|
Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol 2016; 28:319-28. [PMID: 27235694 DOI: 10.1093/intimm/dxw027] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor cells commonly express several antigens, such as tumor-associated antigens (TAAs) or mutation-derived antigens (neoantigens), that can be regarded as foreign antigens and elicit anti-tumor immune responses in cancer patients. Various TAAs or neoantigens expressed in cancer cells have been identified and utilized as targets for cancer vaccines. One approach to elicit tumor-specific immune responses is termed peptide-based cancer vaccination; it involves administrating TAAs or neoantigen-derived peptide for treatment of cancers. There have been several forms of peptide-based cancer vaccines depending on which effector cells, such as CTLs or CD4(+) T-helper cells, are targeted to be activated. Many phase I and II clinical trials of peptide-based cancer vaccines using TAA-derived CTL epitopes, T-helper cell epitopes or dendritic cells loaded with TAA-derived peptides for various malignant tumors have been conducted and provide clinical benefits in a small fraction of patients. Nowadays, to improve the efficiency of peptide-based cancer vaccines, combination immunotherapy of peptide-based cancer vaccines with the immune-checkpoint blockade therapies using mAbs specific for CTLA-4, programmed cell death 1 (PD-1), or PD-1 ligand 1 (PD-L1) have been developed for clinical application. Furthermore, along with the recent technological progress in genetic and bioinformatic analysis, it has become easier to identify neoantigens from individual cancer patients. It is expected that peptide-based cancer vaccines targeting neoantigens as a personalized cancer immunotherapy will be developed.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Immunogenetics and Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | | |
Collapse
|
32
|
McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG. Pancreatic cancer: Update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother 2016; 12:563-75. [PMID: 26619245 PMCID: PMC4964650 DOI: 10.1080/21645515.2015.1093264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma is notoriously lethal, and despite improvements in systemic chemotherapy approaches bringing survival rates for metastatic disease to almost 1 year, by 2030 it is expected to become the second leading cause of cancer death. Pancreatic cancer (PC) prognosis has been associated with both the presence of intratumoral helper and cytotoxic T lymphocytes, as well as humoral immune responses to tumor associated antigens like mesothelin. It is well described that the PC microenvironment is characterized by a fibroinflammatory and immunosuppressive stroma. On these premises several immune-targeted strategies have been developed to harness the adaptable immune system with a goal of improving survival with little toxicity. Cancer vaccines involve the administration of tumor-associated antigens with the goal of inducing an endogenous anti-tumor response. Among several strategies discussed, we will focus on the algenpantucel-L (HyperAcute™ Pancreas) immunotherapy. Algenpantucel-L is a whole cell immunotherapy consisting of irradiated allogeneic PC cells genetically engineered to express the murine enzyme α(1,3)-galactosyltransferase (αGT), which ultimately leads to hyperacute rejection with complement- and antibody-dependent cytotoxicity. While phase III data in the adjuvant treatment of pancreatic cancer are pending, phase II results have been encouraging, particularly for patients who demonstrated humoral immunologic responses. Novel strategies using immune checkpoint inhibitors, costimulatory antibodies, and combinations with cancer vaccines may overcome immunotolerance and improve treatment success.
Collapse
|
33
|
Khongkow P, Gomes AR, Gong C, Man EPS, Tsang JWH, Zhao F, Monteiro LJ, Coombes RC, Medema RH, Khoo US, Lam EWF. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene 2016; 35:990-1002. [PMID: 25961928 PMCID: PMC4538879 DOI: 10.1038/onc.2015.152] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/11/2022]
Abstract
FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7Tax(R) cells. KIF20A depletion also renders MCF-7 and MCF-7Tax(R) cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance.
Collapse
Affiliation(s)
- P Khongkow
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - A R Gomes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - C Gong
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - E P S Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J W-H Tsang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - F Zhao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - L J Monteiro
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - R C Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - R H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - U S Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
34
|
Zhang T, Chen J, Jia X. Identification of the Key Fields and Their Key Technical Points of Oncology by Patent Analysis. PLoS One 2015; 10:e0143573. [PMID: 26599967 PMCID: PMC4658002 DOI: 10.1371/journal.pone.0143573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background This paper aims to identify the key fields and their key technical points of oncology by patent analysis. Methodology/Principal Findings Patents of oncology applied from 2006 to 2012 were searched in the Thomson Innovation database. The key fields and their key technical points were determined by analyzing the Derwent Classification (DC) and the International Patent Classification (IPC), respectively. Patent applications in the top ten DC occupied 80% of all the patent applications of oncology, which were the ten fields of oncology to be analyzed. The number of patent applications in these ten fields of oncology was standardized based on patent applications of oncology from 2006 to 2012. For each field, standardization was conducted separately for each of the seven years (2006–2012) and the mean of the seven standardized values was calculated to reflect the relative amount of patent applications in that field; meanwhile, regression analysis using time (year) and the standardized values of patent applications in seven years (2006–2012) was conducted so as to evaluate the trend of patent applications in each field. Two-dimensional quadrant analysis, together with the professional knowledge of oncology, was taken into consideration in determining the key fields of oncology. The fields located in the quadrant with high relative amount or increasing trend of patent applications are identified as key ones. By using the same method, the key technical points in each key field were identified. Altogether 116,820 patents of oncology applied from 2006 to 2012 were retrieved, and four key fields with twenty-nine key technical points were identified, including “natural products and polymers” with nine key technical points, “fermentation industry” with twelve ones, “electrical medical equipment” with four ones, and “diagnosis, surgery” with four ones. Conclusions/Significance The results of this study could provide guidance on the development direction of oncology, and also help researchers broaden innovative ideas and discover new technological opportunities.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail:
| | - Juan Chen
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaofeng Jia
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Parmiani G, Russo V, Maccalli C, Parolini D, Rizzo N, Maio M. Peptide-based vaccines for cancer therapy. Hum Vaccin Immunother 2015; 10:3175-8. [PMID: 25483658 DOI: 10.4161/hv.29418] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interest for cancer vaccination started more than 30 years ago after the demonstration that both in animal models and later on in patients it is possible to generate anti-tumor immune responses. The clinical application of this knowledge, however, was disappointing. In this review we summarize results on peptides epitopes recognized by T cells that have been studied thanks to their easy synthesis and the lack of significant side effects when administered in-vivo. To improve the clinical efficacy, peptides were modified in their aminoacid sequence to augment their immunogenicity. Peptides vaccines were recently shown to induce a high frequency of immune response in patients that were accompanied by clinical efficacy. These data are discussed at the light of recent progression of immunotherapy caused by the addition of check-point antibodies thus providing a general picture of the potential therapeutic efficacy of the peptide-based vaccines and their combination with other biological agents.
Collapse
|
36
|
Finashutina YP, Misyurin AV, Akhlynina TV, Lyzhko NA, Krutov AA, Aksenova EV, Misyurin VA, Baryshnikov AY. PRODUCTION OF PURIFIED HUMAN RECOMBINANT ANTIGEN PRAME AND SPECIFIC MONOCLONAL ANTIBODIES. ACTA ACUST UNITED AC 2015. [DOI: 10.17650/1726-9784-2015-14-3-29-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor antigens recognized by CTLs have been identified several years ago and are major targets for creating anticancer vaccines. PRAME is an antigen which is highly expressed in various malignant tumors including melanomas and hematopoietic malignancies such as acute and chronic leukemias (AML, CML). Technology for producing recombinant antigen PRAME is based on creating a bacterial producer strain containing cDNA of human PRAME gene. We have obtained two producers of recombinant PRAME protein and its N-half, the synthesis of the target protein in the producers occurs in the inclusion bodies. The schemes of isolation and purification of soluble proteins have been developed. The protein purity was approximately 95-96%. The monoclonal antibodies raised against truncated recombinant PRAME were used for PRAME protein analysis by Western blot on the various tumor cells. Specific monoclonal antibodies recognized the native PRAME protein in tumor cell lines as well as in tumor samples from patients. Our findings support the suggestion that this recombinant antigen may be further used as a target for diagnostic and therapeutic approaches. The monoclonal antibodies can be used for immunoassays of tumor samples from patients with hematologic malignancies to reveal clinical features and to monitor tumor progression.
Collapse
|
37
|
Bloy N, Buqué A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology 2015; 4:e1026531. [PMID: 26155408 PMCID: PMC4485755 DOI: 10.1080/2162402x.2015.1026531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.
Collapse
Key Words
- AFP, α-fetoprotein
- APC, antigen-presenting cell
- CDR, complementarity-determining region
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CTLA4, cytotoxic T lymphocyte protein 4
- DAMP, damage-associated molecular pattern
- DC, dendritic cell
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GX-188E
- HCC, hepatocellular carcinoma
- HNSCC, head and neck squamous cell carcinoma
- HPV, human papillomavirus
- IL, interleukin
- OS, overall survival
- OVA, ovalbumin
- PAP, prostate acid phosphatase
- SCGB2A2, secretoglobin, family 2A, member 2
- SOX2, SRY (sex determining region Y)-box 2
- T, brachyury homolog
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- Treg, regulatory T cell
- VGX-3100
- WT1, Wilms tumor 1
- adjuvants
- dendritic cell
- electroporation
- mucosal immunity
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System; Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine; Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jitka Fucikova
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Radek Spisek
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
38
|
Tang B, Zhou W, Du J, He Y, Li Y. Identification of human leukemia antigen A*0201-restricted epitopes derived from epidermal growth factor pathway substrate number 8. Mol Med Rep 2015; 12:1741-52. [PMID: 25936538 PMCID: PMC4463842 DOI: 10.3892/mmr.2015.3673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
T-cell-mediated immunotherapy of hematological malignancies requires selection of targeted tumor-associated antigens and T-cell epitopes contained in these tumor proteins. Epidermal growth factor receptor pathway substrate 8 (EPS8), whose function is pivotal for tumor proliferation, progression and metastasis, has been found to be overexpressed in most human tumor types, while its expression in normal tissue is low. The aim of the present study was to identify human leukemia antigen (HLA)-A*0201-restricted epitopes of EPS8 by using a reverse immunology approach. To achieve this, computer algorithms were used to predict HLA-A*0201 molecular binding, proteasome cleavage patterns as well as translocation of transporters associated with antigen processing. Candidate peptides were experimentally validated by T2 binding affinity assay and brefeldin-A decay assay. The functional avidity of peptide-specific cytotoxic T lymphocytes (CTLs) induced from peripheral blood mononuclear cells of healthy volunteers were evaluated by using an enzyme-linked immunosorbent spot assay and a cytotoxicity assay. Four peptides, designated as P455, P92, P276 and P360, had high affinity and stability of binding towards the HLA-A*0201 molecule, and specific CTLs induced by them significantly responded to the corresponding peptides and secreted IFN-γ. At the same time, the CTLs were able to specifically lyse EPS8-expressing cell lines in an HLA-A*0201-restricted manner. The present study demon-strated that P455, P92, P276 and P360 were CTL epitopes of EPS8, and were able to be used for epitope-defined adoptive T-cell transfer and multi-epitope-based vaccine design.
Collapse
Affiliation(s)
- Baishan Tang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jingwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
39
|
Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sautès-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology 2015; 4:e974411. [PMID: 26137405 PMCID: PMC4485775 DOI: 10.4161/2162402x.2014.974411] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023] Open
Abstract
Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy.
Collapse
Key Words
- APC, antigen-presenting cell
- CMP, carbohydrate-mimetic peptide
- EGFR, epidermal growth factor receptor
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony stimulating factor
- HPV, human papillomavirus
- IDH1, isocitrate dehydrogenase 1 (NADP+), soluble
- IDO1, indoleamine 2, 3-dioxygenase 1
- IFNα, interferon α
- IL-2, interleukin-2
- MUC1, mucin 1
- NSCLC, non-small cell lung carcinoma
- PADRE, pan-DR binding peptide epitope
- PPV, personalized peptide vaccination
- SLP, synthetic long peptide
- TAA, tumor-associated antigen
- TERT, telomerase reverse transcriptase
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- WT1
- carbohydrate-mimetic peptides
- immune checkpoint blockers
- immunostimulatory cytokines
- survivin
- synthetic long peptides
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
40
|
Grizzi F, Mirandola L, Qehajaj D, Cobos E, Figueroa JA, Chiriva-Internati M. Cancer-testis antigens and immunotherapy in the light of cancer complexity. Int Rev Immunol 2015; 34:143-153. [PMID: 25901859 DOI: 10.3109/08830185.2015.1018418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of immunotherapy to evoke successful antitumor immune responses has been well documented over the past decade. Despite abundant preclinical data, it is only with the recent approval by the Food and Drug Administration (FDA) of the drugs such as sipuleucel-T and ipilimumab that immunotherapy is finally being recognized as a viable alternative to traditional therapies for treatment of various cancers. Despite the ability of immunotherapy to elicit successful antitumor immune responses, its efficacy is hindered by several factors. Among these are the paucity of tumor-associated antigens (TAA) that can be used as effective targets and the systemic toxicities that often lead to treatment interruption. Indeed, such adverse effects, which can be immunological and/or parenchymal, can be particularly severe and even fatal to some patients. A family of TAA called cancer-testis antigens (CTA) has been identified and their encoding genes have been extensively investigated. CTA expression has been demonstrated in a variety of human cancer tissues, and at least 19 CTA have been found to elicit humoral and/or cellular immune responses in cancer patients. Here we discuss how CTA and immunotherapy will most likely play a major role in the cure of cancer in the light of cancer complexity.
Collapse
Affiliation(s)
- F Grizzi
- Humanitas Clinical and Research Center , Rozzano, Milan , Italy
| | | | | | | | | | | |
Collapse
|
41
|
Parmiani G, Pilla L, Corti A, Doglioni C, Cimminiello C, Bellone M, Parolini D, Russo V, Capocefalo F, Maccalli C. A pilot Phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma. Oncoimmunology 2014; 3:e963406. [PMID: 25941591 DOI: 10.4161/21624011.2014.963406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Administration of NGR-TNF, a tumor vessel-targeting and tumor necrosis factor α TNFα) peptide conjugate, with immunotherapy has been shown to inhibit tumor growth in mice. Thus, we planned a Phase I pilot clinical trial to assess safety, immune and clinical response of this combination treatment for advanced melanoma. NA17.A2 and MAGE-3.A1 peptides were used as vaccine. HLA-A*0201 or HLA-A*01 metastatic melanoma patients received human NGR-hTNF i.v. alternating with s.c. weekly injections of either of the peptides emulsified in Montanide. The T-cell response was assessed ex-vivo using peripheral blood mononuclear cells (PBMCs) before, during and after therapy. The serum level of chromogranin A (CgA), soluble TNF receptors (sTNFR1/2), vascular endothelial growth factor (VEGF), and MIP-1β and MCP-1 chemokines, was determined. In 3 subjects, pre- and post-treatment tumor lesions were examined by immunohistochemistry. Clinically, chills were observed in 4 patients during NGR-hTNF infusion and erythema at vaccination site was seen in 7 patients. T-cell response against the vaccine or against other melanoma-associated antigens was detectable after treatment in 6 out of 7 tested patients. Low level or reduction of CgA and sTNFR and increase of MIP-1β and MCP-1 were found in patients sera. In the lesions examined the immune infiltrate was scanty but macrophage number increased in post-therapy lesions. From a clinical standpoint, a long term survival (>4 months) was found in 6 out of 8 evaluable patients (4, 4, 7, 11, 23+, 25+, 25+, 29+ months). The combination of NGR-hTNF and vaccine in metastatic melanoma patients was well tolerated, often associated with an ex-vivo T cell response and long-term overall survival. These findings warrant confirmation in a larger group of patients.
Collapse
Key Words
- APC, antigen presenting cell
- CT, cancer/testis
- CgA, chromogranin A
- DFS, disease-free survival
- MAA, melanoma-associated antigens
- MCP-1, macrophage chemoattractant protein 1
- MIP-1β, macrophage inflammatory protein 1β; OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PD, progression of disease
- PFS, progression-free survival
- RR, response rate
- T cells
- TNFα, tumor necrosis factor α
- anti-vascular target therapy
- combination therapy
- inflammatory cytokines
- melanoma
- peptide-based vaccines
- sTNFR, soluble tumor necrosis factor receptor
Collapse
Affiliation(s)
- Giorgio Parmiani
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Lorenzo Pilla
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Angelo Corti
- Unit of Tumor Biology and Vascular Targeting; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Claudio Doglioni
- Unit of Pathology; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Carolina Cimminiello
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Matteo Bellone
- Unit of Cellular Immunology; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Danilo Parolini
- Unit of Gastrointestinal Surgery; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Vincenzo Russo
- Unit of Cancer Gene Therapy; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Filippo Capocefalo
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| | - Cristina Maccalli
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors; San Raffaele Foundation Research Institute ; Via Olgettina , Milan
| |
Collapse
|
42
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|
43
|
Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K, Yamamoto M. Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer. J Transl Med 2014; 12:61. [PMID: 24606884 PMCID: PMC4015445 DOI: 10.1186/1479-5876-12-61] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
Background The prognosis of patients with advanced biliary tract cancer (BTC) is extremely poor and only a few standard treatments are available for this condition. We performed a phase I trial to investigate the safety, immune response and anti-tumor effect of vaccination with three peptides derived from cancer-testis antigens. Methods This study was conducted as a phase I trial. Nine patients with advanced BTC who had unresectable tumors and were refractory to standard chemotherapy were enrolled. Three HLA-A*2402 restricted epitope peptides-cell division cycle associated 1 (CDCA1), cadherin 3 (CDH3) and kinesin family member 20A (KIF20A)-were administered subcutaneously, and the adverse events and immune response were assessed. The clinical effects observed were the tumor response, progression-free survival (PFS) and overall survival (OS). Results The three-peptide vaccination was well-tolerated up to a dose of 3 mg per peptide (9 mg total). No grade 3 or 4 adverse events were observed after vaccination. Peptide-specific T cell immune responses were observed in all patients and stable disease was observed in 5 of 9 patients. The median PFS and OS were 3.4 and 9.7 months. The Grade 2 injection site reaction and continuous vaccination after PD judgment appeared to be prognostic of OS. Conclusions Multiple-peptide vaccination was well tolerated and induced peptide-specific T-cell responses. Trial registration This study was registered with the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR000003229).
Collapse
Affiliation(s)
- Atsushi Aruga
- Department of Gastroenterological Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | |
Collapse
|