1
|
Lakshmanan M, Saini M, Nune M. Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J Ovarian Res 2024; 17:241. [PMID: 39633503 PMCID: PMC11619646 DOI: 10.1186/s13048-024-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
The female reproductive system dysfunction considerably affects the overall health of women and children on a global scale. Over the decade, the incidence of reproductive disorders has become a significant source of suffering for women. Infertility in women may be caused by a range of acquired and congenital abnormalities. Ovaries play a central role in the female reproductive function. Any defect in the normal functioning of these endocrine organs causes health issues and reproductive challenges extending beyond infertility, as the hormones interact with other tissues and biological processes in the body. The complex pathophysiology of ovarian disorders makes it a multifactorial disease. The key etiological factors associated with the diseases include genetic factors, hormonal imbalance, environmental and lifestyle factors, inflammatory conditions, oxidative stress, autoimmune diseases, metabolic factors, and age. Oxidative stress is a major contributor to disease development and progression affecting the oocyte quality, fertilization, embryo development, and implantation. The choice of treatment for ovarian disorders varies among individuals and has associated complications. Reproductive tissue engineering holds great promise for overcoming the challenges associated with the current therapeutic approach to tissue regeneration. Furthermore, incorporating nanotechnology into tissue engineering could offer an efficient treatment strategy. This review provides an overview of incorporating antioxidant nanomaterials for engineering ovarian tissue to address the disease recurrence and associated pathophysiology. Cerium oxide nanoparticles (CeO2 NPs) are prioritized for evaluation primarily due to their antioxidant properties. In conclusion, the review explores the potential applications of CeO2 NPs for effective and clinically significant ovarian tissue regeneration.
Collapse
Affiliation(s)
- Maya Lakshmanan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Monika Saini
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Jalili F, Jalili C, Jalalvand AR, Salari N, Pourmotabbed A, Adibi H. Synthesis, characterization and hypolipidemic effects of urazine derivatives on rat: Study of molecular modeling and enzyme inhibition. Bioorg Chem 2023; 139:106681. [PMID: 37385105 DOI: 10.1016/j.bioorg.2023.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
The prevalence of hyperlipidemia has increased dramatically worldwide. It is a major public health threat, characterized by the presence of an abnormal lipid profile, primarily with elevated serum total cholesterol (TC), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL) levels, and reduced high-density lipoprotein (HDL) level. Genetic factors, dietary and lifestyle habits play important roles in hyperlipidemia. It can increase the risk of chronic metabolic disorders, such as obesity, cardiovascular disease, and type II diabetes. The main objective of the present study was to evaluate the effect of urazine derivatives on serum triglyceride, cholesterol, LDL, HDL, and nitric oxide (NO) levels in high-fat diet (HFD)-induced hyperlipidemic rats. Synthetic compounds were prepared and confirmed by spectroscopic methods. Then, 88 male Sprague-Dawley rats were divided into 11 groups: control, HFD-treated group, HFD plus atorvastatin-treated group, and HFD plus 8 synthetic compounds-treated groups. The body weight, triglyceride, cholesterol, LDL, HDL, and NO levels were measured. The data with p < 0.05 were considered significant. The results indicated that HFD significantly increased cholesterol, triglyceride, and LDL levels and decreased NO concentration and HDL level compared to the control group (p < 0.05). However, HFD plus urazine derivatives significantly decreased NO, cholesterol, and triglyceride levels and increased HDL levels compared to the HFD-treated group (p < 0.05). Urazine derivatives may improve liver dysfunction in HFD-induced hyperlipidemic rats by modulation of detoxification enzymes and their anti-oxidant effects and also blood lipid profile.
Collapse
Affiliation(s)
- Faramarz Jalili
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Graduate Studies Student, School of Health Administration, Dalhousie University, Halifax, NS, Canada
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Salari
- Sleep Disorders Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Pourmotabbed
- Deparment Of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Liang J, Gao Y, Feng Z, Zhang B, Na Z, Li D. Reactive oxygen species and ovarian diseases: Antioxidant strategies. Redox Biol 2023; 62:102659. [PMID: 36917900 PMCID: PMC10023995 DOI: 10.1016/j.redox.2023.102659] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Reactive oxygen species (ROS) are mainly produced in mitochondria and are involved in various physiological activities of the ovary through signaling and are critical for regulating the ovarian cycle. Notably, the imbalance between ROS generation and the antioxidant defense system contributes to the development of ovarian diseases. These contradictory effects have critical implications for potential antioxidant strategies that aim to scavenge excessive ROS. However, much remains to be learned about how ROS causes various ovarian diseases to the application of antioxidant therapy for ovarian diseases. Here, we review the mechanisms of ROS generation and maintenance of homeostasis in the ovary and its associated physiological effects. Additionally, we have highlighted the pathological mechanisms of ROS in ovarian diseases and potential antioxidant strategies for treatment.
Collapse
Affiliation(s)
- Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yingzhuo Gao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Feng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Zhang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhijing Na
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, 110004, China.
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, 110004, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
4
|
Postprandial Metabolic and Oxidative Stress Responses to Grape Pomace Extract in Healthy Normal and Overweight/Obese Women: A Randomized, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2022; 15:nu15010156. [PMID: 36615813 PMCID: PMC9824782 DOI: 10.3390/nu15010156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Postprandial oxidative stress has been shown to promote atherosclerosis. Grape pomace (GP) is a source of similar-to-wine bioactive micro-constituents with known antioxidant properties. The aim of the present study was to evaluate metabolic and oxidative stress responses after the intake of grape pomace (GP) extract along with a high-fat meal, in normal and overweight healthy women. In a randomized, double-blind, placebo-controlled crossover study, 18 women were finally included, 11 with BMI < 25 kg/m2 and 7 with BMI > 25 kg/m2, and consumed a high-fat meal with placebo or GP extract capsules in two separate visits. Blood samples were collected before and 6 h after the consumption. Measurements included basic biochemical markers, uric acid (UA), protein carbonyls (PC), thiobarbituric acid substance (TBARS) levels, as well as superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. At certain time points, the GP extract consumption in normal-weight women reduced UA, TBARS levels, and SOD activity, whereas it increased UA and reduced PC levels in overweight/obese women, compared to the placebo. GP-derived bioactive compounds may exert antioxidant actions during the postprandial state in healthy women, through different mechanisms according to their BMI status.
Collapse
|
5
|
Wu CL, Yang TJ, Wu MH, Liang HJ, Chen YL, Wu SL, Chiu CH. Walking Exercise Reduces Postprandial Lipemia but Does Not Influence Postprandial Hemorheological Properties and Oxidative Stress. Metabolites 2022; 12:1038. [PMID: 36355121 PMCID: PMC9699123 DOI: 10.3390/metabo12111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
A higher postprandial triglycerides response and hemorheological abnormalities may increase the incidence of metabolic disorders and negatively interfere with the aging process. A single session of preprandial endurance exercise was found to be effective in reducing triglyceride levels after a high-fat diet. However, whether the exercise-induced reduction in postprandial triglyceride levels influences hemorheological indicators remains unknown. This study aims to investigate the effects of postprandial lipemia on hemorheological properties and oxidative stress. Eight healthy young male participants completed two experimental trials. On day 1, the participants were randomly assigned to walk for 1 h at 50% VO2max (EE trial) or rest (CON trial). On day 2, participants rested and consumed a high-fat meal in the morning. Results: The postprandial area under the curve (AUC) of plasma TG concentration was significantly lower in EE compared to CON (EE: 9.2 ± 1.9; CON: 10.9 ± 1.7 mmol/L·h−1; p = 0.013; Cohen’s d = 0.036). No significant difference was observed in hemorheological properties and MDA (p > 0.05). Endurance exercise effectively decreased postprandial TG concentration but did not influence the postprandial hemorheological properties and oxidative stress indicators.
Collapse
Affiliation(s)
- Ching-Lin Wu
- Graduate Institute of Sports and Health Management, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tsung-Jen Yang
- Department of Physical Education, National Taiwan Normal University, Taipei 106209, Taiwan
| | - Min-Huan Wu
- Senior Wellness and Sport Science, Tunghai University, Taichung 404, Taiwan
| | - Hong-Jen Liang
- Department of Food Science, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Yi-Liang Chen
- Graduate Institute of Sports Training, University of Taipei, Taipei 11153, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua 500209, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua 500209, Taiwan
| | - Chih-Hui Chiu
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404401, Taiwan
| |
Collapse
|
6
|
Bhutia RD, Sherpa ML, Singh TA, Khandelwal B. Oxidative stress in metabolic syndrome & its association with DNA-strand break. Indian J Med Res 2019; 148:435-440. [PMID: 30666006 PMCID: PMC6362720 DOI: 10.4103/ijmr.ijmr_620_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background & objectives: Oxidative stress (OS) is associated with numerous components of metabolic syndrome (MetS). This study was aimed to investigate if hydrogen peroxide (H2O2) as the reactive oxygen species was capable of depicting OS in MetS, and If MetS patients showed DNA damage in the form of DNA strand breaks (DSB). Methods: A total of 160 participants (90 males, 70 females) ≥20 yr of age were categorized into four groups based on the number of MetS risk parameters (n=40 in each group). Sugar and lipid profile, H2O2 concentration in blood and DNA-strand breaks were measured. Results: DSB was significantly more in those with MetS (n=40) than those without (n=120) whereas H2O2 levels were the same in both the study groups. The number of DSB differed significantly between the control and 3 risk factor groups. DSB was also higher in groups with 2 and 1 risk factors compared to 0 risk but the difference was not significant. H2O2 level was higher in groups with 3, 2 and 1 risk factors compared to 0 risk group but the difference was not significant. The H2O2 level correlated positively with triglyceride values but not with other MetS risk parameters. There was no significant correlation between DSB and MetS risk parameters. Interpretation & conclusions: Our findings showed a cumulative and synergistic effect of the risk factors of MetS on DSB. Individuals with three risk parameters had a greater effect on DNA damage than in those with two or one risk parameter. Although plasma H2O2 level increased with an increase in the fat depots, use of H2O2 to depict OS in MetS should be coupled with an adjunct and estimation of DSB in peripheral blood lymphocytes may be used as indicator of OS in MetS patients.
Collapse
Affiliation(s)
- Rinchen Doma Bhutia
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, India
| | - Mingma Lhamu Sherpa
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, India
| | - T A Singh
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, India
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Gangtok, India
| |
Collapse
|
7
|
Warren JL, Bulur S, Ovalle F, Windham ST, Gower BA, Fisher G. Effects of acute hyperinsulinemia on skeletal muscle mitochondrial function, reactive oxygen species production, and metabolism in premenopausal women. Metabolism 2017; 77:1-12. [PMID: 29132536 PMCID: PMC5726454 DOI: 10.1016/j.metabol.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Acute metabolic demands that promote excessive and/or prolonged reactive oxygen species production may stimulate changes in mitochondrial oxidative capacity. PURPOSE To assess changes in skeletal muscle H2O2 production, mitochondrial function, and expression of genes at the mRNA and protein levels regulating energy metabolism and mitochondrial dynamics following a hyperinsulinemic-euglycemic clamp in a cohort of 11 healthy premenopausal women. METHODS Skeletal muscle biopsies of the vastus lateralis were taken at baseline and immediately following the conclusion of a hyperinsulinemic-euglycemic clamp. Mitochondrial production of H2O2 was quantified fluorometrically and mitochondrial oxidation supported by pyruvate, malate, and succinate (PMS) or palmitoyl carnitine and malate (PCM) was measured by high-resolution respirometry in permeabilized muscle fiber bundles. mRNA and protein levels were assessed by real time PCR and Western blotting. RESULTS H2O2 emission increased following the clamp (P<0.05). Coupled respiration (State 3) supported by PMS and the respiratory control ratio (index of mitochondrial coupling) for both PMS and PCM were lower following the clamp (P<0.05). IRS1 mRNA decreased, whereas PGC1α and GLUT4 mRNA increased following the clamp (P≤0.05). PGC1α, IRS1, and phosphorylated AKT protein levels were higher after the clamp compared to baseline (P<0.05). CONCLUSIONS This study demonstrated that acute hyperinsulinemia induced H2O2 production and a concurrent decrease in coupling of mitochondrial respiration with ATP production in a cohort of healthy premenopausal women. Future studies should determine if this uncoupling ameliorates peripheral oxidative damage, and if this mechanism is impaired in diseases associated with chronic oxidative stress.
Collapse
Affiliation(s)
- Jonathan L Warren
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Sule Bulur
- Department of Human Studies, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Fernando Ovalle
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Samuel T Windham
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| | - Gordon Fisher
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Department of Human Studies, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Saha SK, Lee SB, Won J, Choi HY, Kim K, Yang GM, Dayem AA, Cho SG. Correlation between Oxidative Stress, Nutrition, and Cancer Initiation. Int J Mol Sci 2017; 18:E1544. [PMID: 28714931 PMCID: PMC5536032 DOI: 10.3390/ijms18071544] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Inadequate or excessive nutrient consumption leads to oxidative stress, which may disrupt oxidative homeostasis, activate a cascade of molecular pathways, and alter the metabolic status of various tissues. Several foods and consumption patterns have been associated with various cancers and approximately 30-35% of the cancer cases are correlated with overnutrition or malnutrition. However, several contradictory studies are available regarding the association between diet and cancer risk, which remains to be elucidated. Concurrently, oxidative stress is a crucial factor for cancer progression and therapy. Nutritional oxidative stress may be induced by an imbalance between antioxidant defense and pro-oxidant load due to inadequate or excess nutrient supply. Oxidative stress is a physiological state where high levels of reactive oxygen species (ROS) and free radicals are generated. Several signaling pathways associated with carcinogenesis can additionally control ROS generation and regulate ROS downstream mechanisms, which could have potential implications in anticancer research. Cancer initiation may be modulated by the nutrition-mediated elevation in ROS levels, which can stimulate cancer initiation by triggering DNA mutations, damage, and pro-oncogenic signaling. Therefore, in this review, we have provided an overview of the relationship between nutrition, oxidative stress, and cancer initiation, and evaluated the impact of nutrient-mediated regulation of antioxidant capability against cancer therapy.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Jihye Won
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
9
|
Nieves JW, Gennings C, Factor-Litvak P, Hupf J, Singleton J, Sharf V, Oskarsson B, Fernandes Filho JAM, Sorenson EJ, D'Amico E, Goetz R, Mitsumoto H. Association Between Dietary Intake and Function in Amyotrophic Lateral Sclerosis. JAMA Neurol 2017; 73:1425-1432. [PMID: 27775751 DOI: 10.1001/jamaneurol.2016.3401] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Importance There is growing interest in the role of nutrition in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS). Objective To evaluate the associations between nutrients, individually and in groups, and ALS function and respiratory function at diagnosis. Design, Setting, and Participants A cross-sectional baseline analysis of the Amyotrophic Lateral Sclerosis Multicenter Cohort Study of Oxidative Stress study was conducted from March 14, 2008, to February 27, 2013, at 16 ALS clinics throughout the United States among 302 patients with ALS symptom duration of 18 months or less. Exposures Nutrient intake, measured using a modified Block Food Frequency Questionnaire (FFQ). Main Outcomes and Measures Amyotrophic lateral sclerosis function, measured using the ALS Functional Rating Scale-Revised (ALSFRS-R), and respiratory function, measured using percentage of predicted forced vital capacity (FVC). Results Baseline data were available on 302 patients with ALS (median age, 63.2 years [interquartile range, 55.5-68.0 years]; 178 men and 124 women). Regression analysis of nutrients found that higher intakes of antioxidants and carotenes from vegetables were associated with higher ALSFRS-R scores or percentage FVC. Empirically weighted indices using the weighted quantile sum regression method of "good" micronutrients and "good" food groups were positively associated with ALSFRS-R scores (β [SE], 2.7 [0.69] and 2.9 [0.9], respectively) and percentage FVC (β [SE], 12.1 [2.8] and 11.5 [3.4], respectively) (all P < .001). Positive and significant associations with ALSFRS-R scores (β [SE], 1.5 [0.61]; P = .02) and percentage FVC (β [SE], 5.2 [2.2]; P = .02) for selected vitamins were found in exploratory analyses. Conclusions and Relevance Antioxidants, carotenes, fruits, and vegetables were associated with higher ALS function at baseline by regression of nutrient indices and weighted quantile sum regression analysis. We also demonstrated the usefulness of the weighted quantile sum regression method in the evaluation of diet. Those responsible for nutritional care of the patient with ALS should consider promoting fruit and vegetable intake since they are high in antioxidants and carotenes.
Collapse
Affiliation(s)
- Jeri W Nieves
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York2Clinical Research Center, Helen Hayes Hospital, West Haverstraw, New York
| | - Chris Gennings
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Jonathan Hupf
- Department of Neurology, Columbia University, New York, New York
| | | | - Valerie Sharf
- Department of Neurology, Columbia University, New York, New York
| | - Björn Oskarsson
- Department of Neurology, University of California-Davis, Sacramento
| | | | | | | | - Ray Goetz
- Department of Psychiatry, New York State Psychiatric Institute, New York
| | | | | |
Collapse
|
10
|
Diamanti-Kandarakis E, Papalou O, Kandaraki EA, Kassi G. MECHANISMS IN ENDOCRINOLOGY: Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women. Eur J Endocrinol 2017; 176:R79-R99. [PMID: 27678478 DOI: 10.1530/eje-16-0616] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders.
Collapse
Affiliation(s)
| | - Olga Papalou
- Department of Endocrinology and Diabetes Center of ExcellenceEUROCLINIC, Athens, Greece
| | - Eleni A Kandaraki
- Endocrine Unit3rd Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| | - Georgia Kassi
- Endocrine Unit3rd Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| |
Collapse
|
11
|
A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8361493. [PMID: 28243359 PMCID: PMC5294375 DOI: 10.1155/2017/8361493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/05/2016] [Accepted: 11/23/2016] [Indexed: 11/17/2022]
Abstract
This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N = 11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p < 0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p < 0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat.
Collapse
|
12
|
Prenatal phthalate exposure and 8-isoprostane among Mexican-American children with high prevalence of obesity. J Dev Orig Health Dis 2016; 8:196-205. [PMID: 28031075 DOI: 10.1017/s2040174416000763] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been linked to many obesity-related conditions among children including cardiovascular disease, diabetes mellitus and hypertension. Exposure to environmental chemicals such as phthalates, ubiquitously found in humans, may also generate reactive oxygen species and subsequent oxidative stress. We examined longitudinal changes of 8-isoprostane urinary concentrations, a validated biomarker of oxidative stress, and associations with maternal prenatal urinary concentrations of phthalate metabolites for 258 children at 5, 9 and 14 years of age participating in a birth cohort residing in an agricultural area in California. Phthalates are endocrine disruptors, and in utero exposure has been also linked to altered lipid metabolism, as well as adverse birth and neurodevelopmental outcomes. We found that median creatinine-corrected 8-isoprostane concentrations remained constant across all age groups and did not differ by sex. Total cholesterol, systolic and diastolic blood pressure were positively associated with 8-isoprostane in 14-year-old children. No associations were observed between 8-isoprostane and body mass index (BMI), BMI Z-score or waist circumference at any age. Concentrations of three metabolites of high molecular weight phthalates measured at 13 weeks of gestation (monobenzyl, monocarboxyoctyl and monocarboxynonyl phthalates) were negatively associated with 8-isoprostane concentrations among 9-year olds. However, at 14 years of age, isoprostane concentrations were positively associated with two other metabolites (mono(2-ethylhexyl) and mono(2-ethyl-5-carboxypentyl) phthalates) measured in early pregnancy. Longitudinal data on 8-isoprostane in this pediatric population with a high prevalence of obesity provides new insight on certain potential cardiometabolic risks of prenatal exposure to phthalates.
Collapse
|
13
|
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 3:228-37. [PMID: 20972369 PMCID: PMC2952083 DOI: 10.4161/oxim.3.4.12858] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects.
Collapse
Affiliation(s)
- Jaouad Bouayed
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg.
| | - Torsten Bohn
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg
| |
Collapse
|
14
|
Obesity and follicular fluid oxidative stress: Relationship to ICSI outcome. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2014. [DOI: 10.1016/j.mefs.2013.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
15
|
Chu KO, Chan SO, Pang CP, Wang CC. Pro-oxidative and antioxidative controls and signaling modification of polyphenolic phytochemicals: contribution to health promotion and disease prevention? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4026-4038. [PMID: 24779775 DOI: 10.1021/jf500080z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyphenolic phytochemicals (PPs) have been extensively studied as potential nutriceuticals for maintenance of health and treatment of cancer, inflammation, and neurodegeneration. However, the reported beneficial outcomes are inconsistent. The biological activities of PPs have been attributed to their pro-oxidative and antioxidative actions and effects on signaling mechanisms and epigenomic modifications. These diversified properties were described or postulated on the basis of a variety of experimental studies using cell culture and animal models, even though most have not been replicated and results are not validated. This review attempts to give an overview of biological properties of PPs, based on the coherent results from relevant studies, and evaluate critically the experimental conditions and possible artifacts. Complicated molecular mechanisms and multitargeting genomic interactions of PPs are discussed, with a view that reasonable mechanistic propositions are usually obtained from well-designed in vivo studies.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong in Hong Kong Eye Hospital , Kowloon, Hong Kong
| | | | | | | |
Collapse
|
16
|
Gupta S, Fedor J, Biedenharn K, Agarwal A. Lifestyle factors and oxidative stress in female infertility: is there an evidence base to support the linkage? ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.2013.849418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Bloomer RJ, Lee SR. Women experience lower postprandial oxidative stress compared to men. SPRINGERPLUS 2013; 2:553. [PMID: 25674404 PMCID: PMC4320247 DOI: 10.1186/2193-1801-2-553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022]
Abstract
Background Women have enhanced triglyceride (TAG) removal from the circulation following consumption of high-fat loads, potentially leading to decreased reactive oxygen and nitrogen species (RONS) generation. This may have implications related to long-term health outcomes. We examined the oxidative stress response to high-fat feeding between men and women to determine if women are less prone to postprandial oxidative stress as compared to men. Methods A total of 49 women (mean age: 31 ± 12 yrs) and 49 men (mean age: 27 ± 9 yrs) consumed a high-fat meal in the morning hours following a 10–12 hour overnight fast. Blood samples were collected before and at 2 and 4 hours after the meal. Samples were analyzed for TAG, various markers of oxidative stress (malondialdehyde [MDA], hydrogen peroxide [H2O2], Advanced Oxidation Protein Products [AOPP], nitrate/nitrite [NOx]), and Trolox-Equivalent Antioxidant Capacity (TEAC). Area under the curve (AUC) was calculated for each variable. Effect size calculations were performed using Cohen’s d. Data from the total sample of 98 subjects were collected as a part of six previously conducted studies in our lab focused on postprandial oxidative stress, between 2007 and 2012. Results AUC was higher for men compared to women for TAG (249.0 ± 21.5 vs. 145.0 ± 9.8 mg·dL-1·4 hr-1; p < 0.0001; effect size = 0.89), MDA (2.7 ± 0.2 vs. 2.2 ± 0.1 μmol·L-1·4 hr-1; p = 0.009; effect size = 0.47), H2O2 (29.9 ± 2.4 vs. 22.5 ± 1.6 μmol·L-1·4 hr-1; p = 0.001; effect size = 0.55), AOPP (92.8 ± 6.9 vs. 56.4 ± 3.7 μmol·L-1·4 hr-1; p < 0.0001; effect size = 1.38), and TEAC (1.7 ± 0.1 vs. 1.3 ± 0.0 mmol·L-1·4 hr-1; p = 0.002; effect size = 0.91). No significant difference was noted for NOx (42.2 ± 4.6 vs. 38.3 ± 3.5 μmol·L-1·4 hr-1 for men and women, respectively; p = 0.09; effect size = 0.17). Conclusion In the context of the current design, women experienced lower postprandial oxidative stress compared to men. Future work is needed to determine the potential health implications of lower postprandial oxidative stress in women.
Collapse
Affiliation(s)
- Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN USA ; Department of Health and Sport Sciences, The University of Memphis, 106 Roane Field House, Memphis, TN 38152 USA
| | - Sang-Rok Lee
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN USA
| |
Collapse
|
18
|
Yim J, Petrofsky J, Berk L, Daher N, Lohman E, Moss A, Cavalcanti P. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians. Med Sci Monit 2012; 18:CR467-479. [PMID: 22847195 PMCID: PMC3560689 DOI: 10.12659/msm.883266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. Material/Methods This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. Results This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (p<.001), but not in C. When vitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. Conclusions These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants.
Collapse
Affiliation(s)
- Jongeun Yim
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang R, Yin FZ, Qin CM, Liu B, Ma CM, Lu Q. One-hour postload plasma glucose levels is associated with the production of hydrogen peroxide in abdominal obese men with normal glucose tolerance. Int J Diabetes Dev Ctries 2012. [DOI: 10.1007/s13410-012-0105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 2012; 10:49. [PMID: 22748101 PMCID: PMC3527168 DOI: 10.1186/1477-7827-10-49] [Citation(s) in RCA: 977] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/06/2012] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress (OS), a state characterized by an imbalance between pro-oxidant molecules including reactive oxygen and nitrogen species, and antioxidant defenses, has been identified to play a key role in the pathogenesis of subfertility in both males and females. The adverse effects of OS on sperm quality and functions have been well documented. In females, on the other hand, the impact of OS on oocytes and reproductive functions remains unclear. This imbalance between pro-oxidants and antioxidants can lead to a number of reproductive diseases such as endometriosis, polycystic ovary syndrome (PCOS), and unexplained infertility. Pregnancy complications such as spontaneous abortion, recurrent pregnancy loss, and preeclampsia, can also develop in response to OS. Studies have shown that extremes of body weight and lifestyle factors such as cigarette smoking, alcohol use, and recreational drug use can promote excess free radical production, which could affect fertility. Exposures to environmental pollutants are of increasing concern, as they too have been found to trigger oxidative states, possibly contributing to female infertility. This article will review the currently available literature on the roles of reactive species and OS in both normal and abnormal reproductive physiological processes. Antioxidant supplementation may be effective in controlling the production of ROS and continues to be explored as a potential strategy to overcome reproductive disorders associated with infertility. However, investigations conducted to date have been through animal or in vitro studies, which have produced largely conflicting results. The impact of OS on assisted reproductive techniques (ART) will be addressed, in addition to the possible benefits of antioxidant supplementation of ART culture media to increase the likelihood for ART success. Future randomized controlled clinical trials on humans are necessary to elucidate the precise mechanisms through which OS affects female reproductive abilities, and will facilitate further explorations of the possible benefits of antioxidants to treat infertility.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Beena J Premkumar
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Amani Shaman
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Sajal Gupta
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Bloomer RJ, Kabir MM, Trepanowski JF, Canale RE, Farney TM. A 21 day Daniel Fast improves selected biomarkers of antioxidant status and oxidative stress in men and women. Nutr Metab (Lond) 2011; 8:17. [PMID: 21414232 PMCID: PMC3068072 DOI: 10.1186/1743-7075-8-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/18/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dietary modification via both caloric and nutrient restriction is associated with multiple health benefits, some of which are related to an improvement in antioxidant status and a decrease in the production of reactive oxygen species. The Daniel Fast is based on the Biblical book of Daniel, is commonly partaken for 21 days, and involves food intake in accordance with a stringent vegan diet. The purpose of the present study was to determine the effect of a 21 day Daniel Fast on biomarkers of antioxidant status and oxidative stress. METHODS 43 subjects (13 men; 30 women; 35 ± 1 yrs; range: 20-62 yrs) completed a 21 day Daniel Fast following the guidelines provided by investigators. Subjects reported to the lab in a 12 hour post-absorptive state both pre fast (day 1) and post fast (day 22). At each visit, blood was collected for determination of malondialdehyde (MDA), hydrogen peroxide (H2O2), nitrate/nitrite (NOx), Trolox Equivalent Antioxidant Capacity (TEAC), and Oxygen Radical Absorbance Capacity (ORAC). Subjects recorded dietary intake during the 7 day period immediately prior to the fast and during the final 7 days of the fast. RESULTS A decrease was noted in MDA (0.66 ± 0.0.03 vs. 0.56 ± 0.02 μmol L-1; p = 0.004), while H2O2 demonstrated a trend for lowering (4.42 ± 0.32 vs. 3.78 ± 0.21 μmol L-1; p = 0.074). Both NOx (18.79 ± 1.92 vs. 26.97 ± 2.40 μmol L-1; p = 0.003) and TEAC (0.47 ± 0.01 vs. 0.51 ± 0.01 mmol L-1; p = 0.001) increased from pre to post fast, while ORAC was unchanged (5243 ± 103 vs. 5249 ± 183 μmol L-1 TE; p = 0.974). As expected, multiple differences in dietary intake were noted (p < 0.05), including a reduction in total calorie intake (2185 ± 94 vs. 1722 ± 85). CONCLUSION Modification of dietary intake in accordance with the Daniel Fast is associated with an improvement in selected biomarkers of antioxidant status and oxidative stress, including metabolites of nitric oxide (i.e., NOx).
Collapse
Affiliation(s)
- Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory The University of Memphis Memphis, TN 38152, USA.
| | | | | | | | | |
Collapse
|
22
|
Bloomer RJ, Fisher-Wellman KH. Lower postprandial oxidative stress in women compared with men. ACTA ACUST UNITED AC 2011; 7:340-9. [PMID: 20869634 DOI: 10.1016/j.genm.2010.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous studies indicate that oxidative stress is increased following intake of a high-fat meal, mediated in large part by the triglyceride (TG) response to feeding as well as fasting oxidative stress values. It has been suggested that women may process TG more efficiently after high-fat meals, based on the antilipidemic properties of estrogen. It has also been reported that women present with lower fasting oxidative stress values than do men. It is possible that women experience attenuated postprandial oxidative stress compared with men. OBJECTIVE The purpose of this study was to compare the postprandial TG and oxidative stress response after a lipid meal in healthy men and women. METHODS This study was conducted at The University of Memphis in Memphis, Tennessee, from October to December 2008. Blood samples were collected before (in a 10-hour fasted state), and at 1, 2, 4, and 6 hours after ingestion of a lipid load (heavy whipping cream at 1 g · kg(-1)). Blood samples were analyzed for TG, malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), and nitrate/nitrite (NOx). The AUC was calculated for each variable and results were compared using a t test. Effect-size calculations were performed using Cohen's d. RESULTS Samples from 10 men and 10 women, aged 18 to 47 years (17 subjects aged <37 years), were compared. AUC data were not significantly different for TG (mean [SEM] 330 [48] vs 354 [34] mg · dL(-1) · 6h(-1) for men and women, respectively; effect size = 0.09) or NOx (165 [25] vs 152 [17] μmol · L(-1) · 6h(-1) for men and women; effect size = 0.09). However, significant differences were noted for MDA (10.7 [1.3] vs 6.1 [0.5] μmol · L(-1) · 6h(-1) for men and women, respectively; P = 0.002; effect size = 0.61) and H(2)O(2) (154 [23] vs 86 [8] μmol · L(-1) · 6h(-1) for men and women; P = 0.013; effect size = 0.53). CONCLUSIONS These data indicate that women experience lower oxidative stress than do men, with regard to MDA and H(2)O(2), after ingestion of a lipid load in the form of heavy whipping cream. Considering the strong association between oxidative stress and cardiovascular disease, lower postprandial oxidative stress may be one mechanism associated with decreased risk of cardiovascular disease in women compared with men. Further research is needed to confirm this hypothesis.
Collapse
|
23
|
Setshedi M, Wands JR, Monte SMDL. Acetaldehyde adducts in alcoholic liver disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:178-85. [PMID: 20716942 DOI: 10.4161/oxim.3.3.12288] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic alcohol abuse causes liver disease that progresses from simple steatosis through stages of steatohepatitis, fibrosis, cirrhosis, and eventually hepatic failure. In addition, chronic alcoholic liver disease (ALD), with or without cirrhosis, increases risk for hepatocellular carcinoma (HCC). Acetaldehyde, a major toxic metabolite, is one of the principal culprits mediating fibrogenic and mutagenic effects of alcohol in the liver. Mechanistically, acetaldehyde promotes adduct formation, leading to functional impairments of key proteins, including enzymes, as well as DNA damage, which promotes mutagenesis. Why certain individuals who heavily abuse alcohol, develop HCC (7.2-15%) versus cirrhosis (15-20%) is not known, but genetics and co-existing viral infection are considered pathogenic factors. Moreover, adverse effects of acetaldehyde on the cardiovascular system and hematologic systems leading to ischemia, heart failure, and coagulation disorders, can exacerbate hepatic injury and increase risk for liver failure. Herein, we review the role of acetaldehyde adducts in the pathogenesis of chronic ALD and HCC.
Collapse
Affiliation(s)
- Mashiko Setshedi
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | | | | |
Collapse
|
24
|
Bulku E, Zinkovsky D, Patel P, Javia V, Lahoti T, Khodos I, Stohs SJ, Ray SD. A novel dietary supplement containing multiple phytochemicals and vitamins elevates hepatorenal and cardiac antioxidant enzymes in the absence of significant serum chemistry and genomic changes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:129-44. [PMID: 20716937 DOI: 10.4161/oxim.3.2.11157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel dietary supplement composed of three well-known phytochemicals, namely, Salvia officinalis (sage) extract, Camellia sinensis (oolong tea) extract, and Paullinia cupana (guarana) extract, and two prominent vitamins (thiamine and niacin) was designed to provide nutritional support by enhancing metabolism and maintaining healthy weight and energy. The present study evaluated the safety of this dietary supplement (STG; S=sage; T=tea; G=guarana) and assessed changes in target organ antioxidant enzymes (liver, kidneys and heart), serum chemistry profiles and organ histopathology in Fisher 344 rats. Adult male and female Fisher 344 rats were fed control (no STG) or STG containing (1X and 7X, 1X=daily human dose) diets and sacrificed after 2 and 4 months. Serum chemistry analysis and histopathological examination of three vital target organs disclosed no adverse influence on protein, lipid and carbohydrate profiles, genomic integrity of the liver and/or the tissue architecture. However, analysis of the most important antioxidant components in the liver, kidney and heart homogenates revealed a dramatic increase in total glutathione concentrations, glutathione peroxidase and superoxide dismutase enzyme activities. Concomitantly, oxidative stress levels (malondialdehyde accumulation) in these three organs were less than control. Organ specific serum markers (ALT/AST for the liver; CPK/AST for the heart; BUN/creatinine for kidneys) and the genomic integrity disclosed no STG-induced alteration. Some of the serum components (lipid and protein) showed insignificant changes. Overall, STG-exposed rats were more active, and the results suggest that STG exposure produces normal serum chemistry coupled with elevated antioxidant capacity in rats fed up to seven times the normal human dose and does not adversely influence any of the vital target organs. Additionally, this study reiterates the potential benefits of exposure to a pharmacologically relevant combination of phytochemicals compared to a single phytochemical entity.
Collapse
Affiliation(s)
- Elida Bulku
- Molecular Toxicology Laboratories, Division of Pharmaceutical Sciences, A & M Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sowers KM, Hayden MR. Calcific uremic arteriolopathy: pathophysiology, reactive oxygen species and therapeutic approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010. [PMID: 20716935 PMCID: PMC2952095 DOI: 10.4161/oxim.3.2.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcific uremic arteriolopathy (CUA)/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.
Collapse
|
26
|
Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45:217-34. [PMID: 20064603 DOI: 10.1016/j.exger.2010.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 12/28/2009] [Accepted: 01/07/2010] [Indexed: 01/12/2023]
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
|
27
|
Sowers KM, Hayden MR. Calcific Uremic Arteriolopathy: Pathophysiology, Reactive Oxygen Species and Therapeutic Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:109-21. [DOI: 10.4161/oxim.3.2.11354] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcific uremic arteriolopathy (CUA)/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.
Collapse
Affiliation(s)
- Kurt M. Sowers
- University of Maryland, Division of Nephrology, Columbia, MI, USA
- University of Maryland, Division of Physiology, Columbia, MI, USA
| | - Melvin R. Hayden
- University of Missouri School of Medicine, Department of Internal Medicine, Columbia, MI, USA
- University of Missouri School of Medicine, Department of Endocrinology Diabetes and Metabolism, Columbia, MI, USA
- Diabetes and Cardiovascular Disease Research Center, University of Missouri School of Medicine, Columbia, MI, USA
| |
Collapse
|
28
|
Bulku E, Zinkovsky D, Patel P, Javia V, Lahoti T, Khodos I, Stohs SJ, Ray SD. A novel dietary supplement containing multiple phytochemicals and vitamins elevates hepatorenal and cardiac antioxidant enzymes in the absence of significant serum chemistry and genomic changes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3. [PMID: 20716937 PMCID: PMC2952097 DOI: 10.4161/oxim.3.2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel dietary supplement composed of three well-known phytochemicals, namely, Salvia officinalis (sage) extract, Camellia sinensis (oolong tea) extract, and Paullinia cupana (guarana) extract, and two prominent vitamins (thiamine and niacin) was designed to provide nutritional support by enhancing metabolism and maintaining healthy weight and energy. The present study evaluated the safety of this dietary supplement (STG; S, sage; T, tea; G, guarana) and assessed changes in target organ antioxidant enzymes (liver, kidneys and heart), serum chemistry profiles and organ histopathology in Fisher 344 rats. Adult male and female Fisher 344 rats were fed control (no STG) or STG containing (1X and 7X, 1X = daily human dose) diets and sacrificed after 2 and 4 months. Serum chemistry analysis and histopathological examination of three vital target organs disclosed no adverse influence on protein, lipid and carbohydrate profiles, genomic integrity of the liver and/or the tissue architecture. However, analysis of the most important antioxidant components in the liver, kidney and heart homogenates revealed a dramatic increase in total glutathione concentrations, glutathione peroxidase and superoxide dismutase enzyme activities. Concomitantly, oxidative stress levels (malondialdehyde accumulation) in these three organs were less than control. Organ specific serum markers (ALT/AST for the liver; CPK/AST/LDH for the heart; BUN/creatinine for kidneys) and the genomic integrity disclosed no STG-induced alteration. Some of the serum components (lipid and protein) showed insignificant changes. Overall, STG-exposed rats were more active, and the results suggest that STG exposure produces normal serum chemistry coupled with elevated antioxidant capacity in rats fed up to seven times the normal human dose and does not adversely influence any of the vital target organs. Additionally, this study reiterates the potential benefits of exposure to a pharmacologically relevant combination of phytochemicals compared to a single phytochemical entity.
Collapse
Affiliation(s)
- Elida Bulku
- Molecular Toxicology Laboratories; Division of Pharmaceutical Sciences; A & M Schwartz College of Pharmacy and Health Sciences; Long Island University; Brooklyn, NY USA
| | - Daniel Zinkovsky
- Molecular Toxicology Laboratories; Division of Pharmaceutical Sciences; A & M Schwartz College of Pharmacy and Health Sciences; Long Island University; Brooklyn, NY USA
| | - Payal Patel
- Molecular Toxicology Laboratories; Division of Pharmaceutical Sciences; A & M Schwartz College of Pharmacy and Health Sciences; Long Island University; Brooklyn, NY USA
| | - Vishal Javia
- Molecular Toxicology Laboratories; Division of Pharmaceutical Sciences; A & M Schwartz College of Pharmacy and Health Sciences; Long Island University; Brooklyn, NY USA
| | - Tejas Lahoti
- Molecular Toxicology Laboratories; Division of Pharmaceutical Sciences; A & M Schwartz College of Pharmacy and Health Sciences; Long Island University; Brooklyn, NY USA
| | | | - Sidney J Stohs
- Creighton University School of Pharmacy and Allied Health Professions; Omaha, NE USA
| | - Sidhartha D Ray
- Molecular Toxicology Laboratories; Division of Pharmaceutical Sciences; A & M Schwartz College of Pharmacy and Health Sciences; Long Island University; Brooklyn, NY USA,Creighton University School of Pharmacy and Allied Health Professions; Omaha, NE USA
| |
Collapse
|
29
|
Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3. [PMID: 20716942 PMCID: PMC2952076 DOI: 10.4161/oxim.3.3.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic alcohol abuse causes liver disease that progresses from simple steatosis through stages of steatohepatitis, fibrosis, cirrhosis, and eventually hepatic failure. In addition, chronic alcoholic liver disease (ALD), with or without cirrhosis, increases risk for hepatocellular carcinoma (HCC). Acetaldehyde, a major toxic metabolite, is one of the principal culprits mediating fibrogenic and mutagenic effects of alcohol in the liver. Mechanistically, acetaldehyde promotes adduct formation, leading to functional impairments of key proteins, including enzymes, as well as DNA damage, which promotes mutagenesis. Why certain individuals who heavily abuse alcohol, develop HCC (7.2-15%) versus cirrhosis (15-20%) is not known, but genetics and co-existing viral infection are considered pathogenic factors. Moreover, adverse effects of acetaldehyde on the cardiovascular system and hematologic systems leading to ischemia, heart failure, and coagulation disorders, can exacerbate hepatic injury and increase risk for liver failure. Herein, we review the role of acetaldehyde adducts in the pathogenesis of chronic ALD and HCC.
Collapse
Affiliation(s)
- Mashiko Setshedi
- Department of Medicine; Rhode Island Hospital and the Alpert Medical School of Brown University; Providence, RI,Department of Internal Medicine; University of Cape Town; Cape Town, South Africa
| | - Jack R Wands
- Department of Medicine; Rhode Island Hospital and the Alpert Medical School of Brown University; Providence, RI
| | - Suzanne M de la Monte
- Department of Medicine; Rhode Island Hospital and the Alpert Medical School of Brown University; Providence, RI,Department of Pathology; Rhode Island Hospital and the Alpert Medical School of Brown University; Providence, RI
| |
Collapse
|
30
|
Maiese K, Chong ZZ, Hou J, Shang YC. New strategies for Alzheimer's disease and cognitive impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2009; 2:279-89. [PMID: 20716915 PMCID: PMC2835916 DOI: 10.4161/oxim.2.5.9990] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 02/06/2023]
Abstract
Approximately five million people suffer with Alzheimer's disease (AD) and more than twenty-four million people are diagnosed with AD, pre-senile dementia, and other disorders of cognitive loss worldwide. Furthermore, the annual cost per patient with AD can approach $200,000 with an annual population aggregate cost of $100 billion. Yet, complete therapeutic prevention or reversal of neurovascular injury during AD and cognitive loss is not achievable despite the current understanding of the cellular pathways that modulate nervous system injury during these disorders. As a result, identification of novel therapeutic targets for the treatment of neurovascular injury would be extremely beneficial to reduce or eliminate disability from diseases that lead to cognitive loss or impairment. Here we describe the capacity of intrinsic cellular mechanisms for the novel pathways of erythropoietin and forkhead transcription factors that may offer not only new strategies for disorders such as AD and cognitive loss, but also function as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
31
|
Maiese K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9:1072-104. [PMID: 19802503 PMCID: PMC2762199 DOI: 10.1100/tsw.2009.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO), and members of the mammalian forkhead transcription factors of the O class (FoxOs), may offer the greatest promise for new treatment regimens, since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. Yet, EPO and FoxOs may sometimes have unexpected and undesirable effects that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as the complex role that EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
32
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
33
|
Bloomer RJ, Fisher-Wellman KH, Tucker PS. Effect of oral acetyl L-carnitine arginate on resting and postprandial blood biomarkers in pre-diabetics. Nutr Metab (Lond) 2009; 6:25. [PMID: 19490608 PMCID: PMC2697148 DOI: 10.1186/1743-7075-6-25] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 06/02/2009] [Indexed: 12/26/2022] Open
Abstract
Background Resting and postprandial oxidative stress is elevated in those with metabolic disorders such as diabetes. Antioxidant supplementation may attenuate the rise in oxidative stress following feeding. Therefore we sought to determine the effects of acetyl L-carnitine arginate (ALCA) on resting and postprandial biomarkers of glucose and lipid metabolism, as well as oxidative stress. Methods Twenty-nine pre-diabetic men and women were randomly assigned to either 3 g·day-1 of ALCA (n = 14; 31 ± 3 yrs) or placebo (n = 15; 35 ± 3 yrs) in a double-blind design, to consume for eight weeks. Fasting blood samples were taken from subjects both pre and post intervention. After each fasting sample was obtained, subjects consumed a high fat, high carbohydrate meal and additional blood samples were taken at 1, 2, 4, and 6 hours post meal. Samples were analyzed for a variety of metabolic variables (e.g., glucose, HbA1c, lipid panel, C-reactive protein, nitrate/nitrite, and several markers of oxidative stress). Area under the curve (AUC) was calculated for each variable measured post meal, both pre and post intervention. Results ALCA, but not placebo, resulted in an increase in nitrate/nitrite (25.4 ± 1.9 to 30.1 ± 2.8 μmol·L-1) from pre to post intervention, with post intervention values greater compared to placebo (p = 0.01). No other changes of statistical significance were noted (p > 0.05), although ALCA resulted in slight improvements in glucose (109 ± 5 to 103 ± 5 mg·dL-1), HbA1c (6.6 ± 1.1 to 6.2 ± 1.2%), and HOMA-IR (3.3 ± 1.3 to 2.9 ± 1.2). AUC postprandial data were not statistically different between ALCA and placebo for any variable (p > 0.05). However, nitrate/nitrite demonstrated a moderate effect size (r = 0.35) for increase from pre (139.50 ± 18.35 μmol·L-1·6 hr-1) to post (172.40 ± 21.75 μmol·L-1·6 hr-1) intervention with ALCA, and the magnitude of decrease following feeding was not as pronounced as with placebo. Conclusion Supplementation with ALCA results in an increase in resting nitrate/nitrite in pre-diabetics, without any statistically significant change in other metabolic or oxidative stress variables measured at rest or post meal.
Collapse
Affiliation(s)
- Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, The University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | |
Collapse
|