1
|
Sanchez‐Lucas R, Bosanquet JL, Henderson J, Catoni M, Pastor V, Luna E. Elicitor Specific Mechanisms of Defence Priming in Oak Seedlings Against Powdery Mildew. PLANT, CELL & ENVIRONMENT 2025; 48:4455-4474. [PMID: 40001308 PMCID: PMC12050401 DOI: 10.1111/pce.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Defence priming sensitises plant defences to enable a faster and/or stronger response to subsequent stress. Various chemicals can trigger priming; however, the response remains unexplored in oak. Here, we characterise salicylic acid (SA)-, jasmonic acid (JA)-, and β-aminobutyric acid (BABA)-induced priming of oak seedlings against the causal agent of powdery mildew (Erysiphe alphitoides, PM). Whilst JA had no effects, BABA and SA enhanced resistance by priming callose deposition and SA-dependent gene expression, respectively. Untargeted transcriptome and metabolome analyses revealed genes and metabolites uniquely primed by BABA, SA, and JA. Enrichment analyses demonstrated a limited number of pathways differentiating the three treatments or the resistance-inducing elicitors BABA and SA. However, a similar mode of action between BABA and JA was identified. Moreover, our analyses revealed a lack of crosstalk between SA and JA. Interestingly, priming by BABA was linked to alkaloid, lignan, phenylpropanoid, and indolitic compounds biosynthesis. Moreover, integration of the omics analyses revealed the role of ubiquitination and protein degradation in priming by BABA. Our results confirm the existence of chemical-induced priming in oak and has identified specific molecular markers associated with well-characterised elicitors.
Collapse
Affiliation(s)
- Rosa Sanchez‐Lucas
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Jack L. Bosanquet
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - James Henderson
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Marco Catoni
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Victoria Pastor
- Metabolic Integration and Cell Signalling GroupUniversity Jaume ICastellonValencian RegionSpain
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| |
Collapse
|
2
|
Song L, Yang T, Abubakar YS, Han Y, Zhang R, Li Y, Ye W, Lu GD. OsMbl1 Counteracts OsGdsl1-Mediated Rice Blast Susceptibility by Inhibiting Its Lipase Activity. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230242 DOI: 10.1111/pce.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Plant lectins have a significant impact on the defense against pathogens and insect attacks. The jacalin-related lectin OsMbl1 from rice (Oryza sativa L.) has been reported to play a crucial role in pattern-triggered immunity (PTI). However, the underlying mechanism remains unclear. In this study, we identified a GDSL-like lipase, OsGdsl1, that interacts with OsMbl1 both in vitro and in vivo. The OsGdsl1 protein, which has lipase activity, is localized in the lipid bodies and apoplast. The expression of OsGDSL1 is modulated upon exposure to Magnaporthe oryzae (M. oryzae) or plant hormones. Deletion of the OsGDSL1 gene not only improved the resistance of rice to M. oryzae, but also led to an increased ROS burst after chitin treatments. The expression of some pathogenesis-related (PR) genes was upregulated in the mutants. We also found that OsMbl1 inhibited the lipase activity of OsGdsl1 during infection with M. oryzae. Overall, our results suggest that OsGdsl1 negatively regulates rice immunity to M. oryzae infection by downregulating ROS bursts and PR gene expressions, while its lipase activity, which is inhibited by OsMbl1, contributes to the enhancement of rice innate immunity during M. oryzae infection.
Collapse
Affiliation(s)
- Linlin Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yijuan Han
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Ruina Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Guo-Dong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Roy T, Bandopadhyay A, Majumdar S, Alam S, Das N. Induced Systemic Resistance-Mediated Defense Against Alternaria Blight Disease in Lentil by Pesticide Degrading Plant Growth-Promoting Rhizobacteria. Curr Microbiol 2025; 82:109. [PMID: 39893605 DOI: 10.1007/s00284-025-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/18/2025] [Indexed: 02/04/2025]
Abstract
Enzymatic and antioxidative responses are key defense mechanisms in plants following pathogen invasion, collectively known as induced systemic resistance (ISR). Alternaria sp., a well-known soil-borne pathogen, causes blight diseases in various crops. This study investigates the defence response in lentil plants through the treatment-induced application of two multipotent pesticide degrading plant growth-promoting rhizobacteria (PGPR), Bacillus cereus and Bacillus safensis, to mitigate the destructive effects of Alternaria. Both bacterial strains were applied in different carrier-based bioformulations via soil drenching. We assessed the modulation of defense-related enzymes by various combinational treatments with the Alternaria pathogen. The in vitro production of antimicrobial compounds was analyzed using GC-MS to confirm their pathogen-suppressive capabilities. Field trials showed a positive correlation between treatments and improvements in yield and growth index (GI). The highest (180%) enzymatic induction of phenylalanine ammonia lyase (PAL) followed by catalase (CAT)(100%) and polyphenol oxidase (PPO) (54%), was observed in treatments with B. cereus alone or in combination with B. safensis, in presence of Alternaria, in respect to the control. In vitro analysis revealed the production of antimicrobial compounds, including benzoic acid derivatives, cyclotetrasiloxanes, hexacosane, chlorpyrifos, and phthalates, which may contribute to pathogen suppression. Our findings demonstrate that these biocontrol agents (BCAs) not only stimulate the plant's enzymatic defense system but also enhance growth, seed yield and produce several antimicrobial compounds in vitro. Thus, pesticide-tolerant PGPR, used in this study, exhibit both disease control and plant growth-promoting properties, offering promising applications in sustainable agriculture.
Collapse
Affiliation(s)
- Tina Roy
- Post Graduate Department of Botany, Barasat Government College, Barasat, Kolkata, 700124, India
- Department of Botany, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Anuradha Bandopadhyay
- Post Graduate Department of Botany, Barasat Government College, Barasat, Kolkata, 700124, India
| | - Sukanta Majumdar
- Department of Botany, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Shariful Alam
- Indian Institute of Engineering Science and Technology, Department of Mathematics, Shibpur, Howrah, West Bengal, 711103, India
| | - Nirmalendu Das
- Post Graduate Department of Botany, Barasat Government College, Barasat, Kolkata, 700124, India.
| |
Collapse
|
4
|
Duhan L, Kumar D, Pasrija R. Enhancing salicylic acid levels by its exogenous pretreatment to mitigate Fusarium oxysporum-induced biotic stress in Vigna mungo: defense pathways insights. PLANT CELL REPORTS 2024; 44:2. [PMID: 39652267 DOI: 10.1007/s00299-024-03394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Fusarium oxysporum disrupts redox homeostasis in Vigna mungo, likely by interfering with salicylic acid signaling, which can be ameliorated by boosting PAL and its related pathways via salicylic acid pretreatment. Fusarium oxysporum, a widespread soil-borne fungus, significantly threatens global crops. This study centers on elucidating the infection strategies employed by F. oxysporum against a new and underexplored host Vigna mungo, a leguminous crop of high agronomic value, and the defense mechanisms that can be activated against the infection, aiming to uncover how these responses can be leveraged to develop potential countermeasures. Building on prior work demonstrating the in vitro antifungal efficacy of phytohormones, including salicylic acid (SA), this study further investigates SA pretreatment at 100 µM, which previously reduced reactive oxygen species (ROS) and improved germination under Fusarium stress. Through a comprehensive analysis of V. mungo plants pretreated with SA and subjected to F. oxysporum infection, we observed that fungal exposure reduced growth, chlorophyll content, and levels of proteins, phenolics and flavonoids, while increasing stress markers and antioxidant activity. SA pretreatment mitigated these effects by boosting antioxidant molecules and activating the phenylalanine ammonia-lyase (PAL) pathway, thereby enhancing endogenous SA and ROS scavenging. Furthermore, qRT-PCR analysis confirmed SA-mediated upregulation of antioxidant (catalase and peroxidase), fungal stress response genes ((pathogenesis-related gene 4 (PR4) and defensin (DEF)) and SA synthesis and regulator genes (PAL and WRKY70) involved in plant systemic resistance, while LC-MS data revealed an altered metabolic profile with increased phytoalexins and antioxidants synthesis. Overall, SA pretreatment confers resistance against F. oxysporum in V. mungo by modulating endogenous SA and metabolic profile to activate key defense pathways and redox homeostasis, highlighting its potential in plant defense strategies and reinforcing our proposed model of SA action.
Collapse
Affiliation(s)
- Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
5
|
Huang J, Qi G, Li M, Yu Y, Zhang E, Liu Y. Transcription-Aided Selection (TAS) for Crop Disease Resistance: Strategy and Evidence. Int J Mol Sci 2024; 25:11879. [PMID: 39595949 PMCID: PMC11593552 DOI: 10.3390/ijms252211879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
A transcription-aided selection (TAS) strategy is proposed in this paper, which utilizes the positive regulatory roles of genes involved in the plant immunity pathways to screen crops with high disease resistance. Increased evidence has demonstrated that upon pathogen attack, the expression of diverse genes involved in salicylic acid (SA)-mediated SAR are differentially expressed and transcriptionally regulated. The paper discusses the molecular mechanisms of the SA signaling pathway, which plays a central role in plant immunity, and identifies differentially expressed genes (DEGs) that could be targeted for transcriptional detection. We have conducted a series of experiments to test the TAS strategy and found that the level of GmSAGT1 expression is highly correlated with soybean downy mildew (SDM) resistance with a correlation coefficient R2 = 0.7981. Using RT-PCR, we screened 2501 soybean germplasms and selected 26 collections with higher levels of both GmSAGT1 and GmPR1 (Pathogenesis-related proteins1) gene expression. Twenty-three out of the twenty-six lines were inoculated with Peronospora manshurica (Pm) in a greenhouse. Eight showed HR (highly resistant), four were R (resistant), five were MR (moderately resistant), three were S (susceptible), and three were HS (highly susceptible). The correlation coefficient R2 between the TAS result and Pm inoculation results was 0.7035, indicating a satisfactory consistency. The authors anticipate that TAS provides an effective strategy for screening crops with broad-spectrum and long-lasting resistance.
Collapse
Affiliation(s)
- Jiu Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Guangxun Qi
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Mei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Yue Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Erte Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| |
Collapse
|
6
|
Del Prete S, Pagano M. Enzyme Inhibitors as Multifaceted Tools in Medicine and Agriculture. Molecules 2024; 29:4314. [PMID: 39339309 PMCID: PMC11433695 DOI: 10.3390/molecules29184314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are molecules that play a crucial role in maintaining homeostasis and balance in all living organisms by catalyzing metabolic and cellular processes. If an enzyme's mechanism of action is inhibited, the progression of certain diseases can be slowed or halted, making enzymes a key therapeutic target. Therefore, identifying or developing enzyme inhibitors is essential for treating significant diseases and ensuring plant defense against pathogens. This review aims to compile information on various types of enzyme inhibitors, particularly those that are well studied and beneficial in both human and plant contexts, by analyzing their mechanisms of action and the resulting benefits. Specifically, this review focuses on three different types of enzyme inhibitors that are most studied, recognized, and cited, each with distinct areas of action and potential benefits. For instance, serine enzyme inhibitors in plants help defend against pathogens, while the other two classes-alpha-glucosidase inhibitors and carbonic anhydrase inhibitors-have significant effects on human health. Furthermore, this review is also intended to assist other researchers by providing valuable insights into the biological effects of specific natural or synthetic inhibitors. Based on the current understanding of these enzyme inhibitors, which are among the most extensively studied in the scientific community, future research could explore their use in additional applications or the development of synthetic inhibitors derived from natural ones. Such inhibitors could aid in defending against pathogenic organisms, preventing the onset of diseases in humans, or even slowing the growth of certain pathogenic microorganisms. Notably, carbonic anhydrase inhibitors have shown promising results in potentially replacing antibiotics, thereby addressing the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mario Pagano
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
7
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
8
|
Afreen U, Kumar M. 5-mC methylation study of sORFs in 3'UTR of transcription factor JUNGBRUNNEN 1-like during leaf rust pathogenesis in wheat. Mol Biol Rep 2024; 51:801. [PMID: 39001882 DOI: 10.1007/s11033-024-09718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND JUB1, a NAC domain containing hydrogen peroxide-induced transcription factor, plays a critical role in plant immunity. Little is known about how JUB1 responds to leaf rust disease in wheat. Recent discoveries in genomics have also unveiled a multitude of sORFs often assumed to be non-functional, to argue for the necessity of including them as potential regulatory players of translation. However, whether methylation on sORFs spanning the 3'UTR of regulatory genes like JUB1 modulate gene expression, remains unclear. METHODS AND RESULTS In this study, we identified the methylation states of two sORFs in 3'UTR of a homologous gene of JUB1 in wheat, TaJUB1-L, at cytosine residues in CpG, CHH and CHG sites at different time points of disease progression in two near-isogenic lines of wheat (HD2329), with and without Lr24 gene during leaf rust pathogenesis. Here, we report a significant demethylation of the CpG dinucleotides occurring in the sORFs of the 3'UTR in the resistant isolines after 24 h post-infection. Also, the up-regulated gene expression observed through RT-qPCR was directly proportional to the demethylation of the CpG sites in the sORFs. CONCLUSIONS Our findings indicate that TaJUB1-L might be a positive regulator in providing tolerance during leaf rust pathogenesis and cytosine methylation at 3'UTR might act as a switch for its expression control. These results enrich the potential benefit of conventional methylation assay techniques for unraveling the unexplored enigma in epigenetics during plant-pathogen interaction in a cost-effective and confidentially conclusive manner.
Collapse
Affiliation(s)
- Uzma Afreen
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
9
|
Grayton Q, Purvis ME, Schoenfisch MH. Antimicrobial Effects of Nitric Oxide against Plant Pathogens. ACS OMEGA 2024; 9:26066-26074. [PMID: 38911785 PMCID: PMC11190915 DOI: 10.1021/acsomega.4c01454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Pathogen infection represents the greatest challenge to agricultural crop production, resulting in significant economic loss. Conventional pesticides are used to control such infection but can result in antimicrobial resistance and detrimental effects on the plant, environment, and human health. Due to nitric oxide's (NO) endogenous roles in plant immune responses, treatment with exogenous NO represents an attractive nonpesticide approach for eradicating plant pathogens. In this work, the antimicrobial activity of small-molecule NO donors of varying NO-release kinetics was evaluated against Pseudomonas syringae and Botrytis cinerea, two prevalent plant pathogens. Intermediate NO-release kinetics proved to be most effective at eradicating these pathogens in vitro. A selected NO donor (methyl tris diazeniumdiolate; MD3) was capable of treating both bacterial infection of plant leaves and fungal infection of tomato fruit without exerting toxicity to earthworms. Taken together, these results demonstrate the potential for utilizing NO as a broad-spectrum, environmentally safe pesticide and may guide development of other NO donors for such application.
Collapse
Affiliation(s)
- Quincy
E. Grayton
- Department
of Chemistry and Eshelman School of Pharmacy, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Margery E. Purvis
- Department
of Chemistry and Eshelman School of Pharmacy, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department
of Chemistry and Eshelman School of Pharmacy, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Czerwoniec P, Kukawka R, Spychalski M, Koczura R, Mokracka J, Smiglak M. New biologically active ionic liquids with benzethonium cation-efficient SAR inducers and antimicrobial agents. PEST MANAGEMENT SCIENCE 2024; 80:3047-3055. [PMID: 38319125 DOI: 10.1002/ps.8014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND An urgent need to find new methods for crop protection remains open due to the withdrawal from the market of the most toxic pesticides and increasing consumer awareness. One of the alternatives that can be used in modern agriculture is the use of bifunctional compounds whose actions towards plant protection are wider than those of conventional pesticides. RESULTS In this study, we present the investigation of the biological efficacy of nine dual-functional salts containing a systemic acquired resistance (SAR)-inducing anion and the benzethonium cation. A significant result of the presented study is the discovery of the SAR induction activity of benzethonium chloride, which was previously reported only as an antimicrobial agent. Moreover, the concept of dual functionality was proven, as the application of presented compounds in a given concentrations resulted both in the control of human and plant bacteria species and induction of SAR. CONCLUSION The strategy presented in this article shows the capabilities of derivatization of common biologically active compounds into their ionic derivatives to obtain bifunctional salts. This approach may be an example of the design of potential new compounds for modern agriculture. It provides plants with two complementary actions allowing to provide efficient protection to plants, if one mode of action is ineffective. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Patrycja Czerwoniec
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Rafal Kukawka
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
| | - Maciej Spychalski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Poznań, Poland
- Innosil Sp. z o.o., Poznań, Poland
| |
Collapse
|
11
|
Sankoh AF, Adjei J, Roberts DM, Burch-Smith TM. Comparing Methods for Detection and Quantification of Plasmodesmal Callose in Nicotiana benthamiana Leaves During Defense Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:427-431. [PMID: 38377039 DOI: 10.1094/mpmi-09-23-0152-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Callose, a β-(1,3)-d-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD or, conversely, by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing likely intercellular trafficking activity during plant immunity. Despite the popularity of this metric, there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying plasmodesmal callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescence microscopy to measure callose deposition in fixed tissue. Manual or semiautomated workflows for image analysis were also compared and found to produce similar results, although the semiautomated workflow produced a wider distribution of data points. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, U.S.A
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Joseph Adjei
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Daniel M Roberts
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, U.S.A
| | | |
Collapse
|
12
|
Daccache JA, Naik S. Inflammatory Memory in Chronic Skin Disease. JID INNOVATIONS 2024; 4:100277. [PMID: 38708420 PMCID: PMC11068922 DOI: 10.1016/j.xjidi.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Inflammation is a hallmark of remitting-relapsing dermatological diseases. Although a large emphasis has been placed on adaptive immune cells as mediators of relapse, evidence in epithelial and innate immune biology suggests that disease memory is widespread. In this study, we bring to the fore the concept of inflammatory memory or nonspecific training of long-lived cells in the skin, highlighting the epigenetic and other mechanisms that propagate memory at the cellular level. We place these findings in the context of psoriasis, a prototypic flaring disease known to have localized memory, and underscore the importance of targeting memory to limit disease flares.
Collapse
Affiliation(s)
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, New York, USA
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, New York, USA
- Department of Medicine, NYU Langone Health, New York, New York, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Colton Center for Autoimmunity, NYU Langone Health, New York, New York, USA
| |
Collapse
|
13
|
Sun S, Bakkeren G. A bird's-eye view: exploration of the flavin-containing monooxygenase superfamily in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1369299. [PMID: 38681221 PMCID: PMC11046709 DOI: 10.3389/fpls.2024.1369299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
The Flavin Monooxygenase (FMO) gene superfamily in plants is involved in various processes most widely documented for its involvement in auxin biosynthesis, specialized metabolite biosynthesis, and plant microbial defense signaling. The roles of FMOs in defense signaling and disease resistance have recently come into focus as they may present opportunities to increase immune responses in plants including leading to systemic acquired resistance, but are not well characterized. We present a comprehensive catalogue of FMOs found in genomes across vascular plants and explore, in depth, 170 wheat TaFMO genes for sequence architecture, cis-acting regulatory elements, and changes due to Transposable Element insertions. A molecular phylogeny separates TaFMOs into three clades (A, B, and C) for which we further report gene duplication patterns, and differential rates of homoeologue expansion and retention among TaFMO subclades. We discuss Clade B TaFMOs where gene expansion is similarly seen in other cereal genomes. Transcriptome data from various studies point towards involvement of subclade B2 TaFMOs in disease responses against both biotrophic and necrotrophic pathogens, substantiated by promoter element analysis. We hypothesize that certain TaFMOs are responsive to both abiotic and biotic stresses, providing potential targets for enhancing disease resistance, plant yield and other important agronomic traits. Altogether, FMOs in wheat and other crop plants present an untapped resource to be exploited for improving the quality of crops.
Collapse
Affiliation(s)
- Sherry Sun
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Center, Summerland, BC, Canada
| |
Collapse
|
14
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Yang P, Yuan P, Liu W, Zhao Z, Bernier MC, Zhang C, Adhikari A, Opiyo SO, Zhao L, Banks F, Xia Y. Plant Growth Promotion and Plant Disease Suppression Induced by Bacillus amyloliquefaciens Strain GD4a. PLANTS (BASEL, SWITZERLAND) 2024; 13:672. [PMID: 38475518 DOI: 10.3390/plants13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Botrytis cinerea, the causative agent of gray mold disease (GMD), invades plants to obtain nutrients and disseminates through airborne conidia in nature. Bacillus amyloliquefaciens strain GD4a, a beneficial bacterium isolated from switchgrass, shows great potential in managing GMD in plants. However, the precise mechanism by which GD4a confers benefits to plants remains elusive. In this study, an A. thaliana-B. cinerea-B. amyloliquefaciens multiple-scale interaction model was used to explore how beneficial bacteria play essential roles in plant growth promotion, plant pathogen suppression, and plant immunity boosting. Arabidopsis Col-0 wild-type plants served as the testing ground to assess GD4a's efficacy. Additionally, bacterial enzyme activity and targeted metabolite tests were conducted to validate GD4a's potential for enhancing plant growth and suppressing plant pathogens and diseases. GD4a was subjected to co-incubation with various bacterial, fungal, and oomycete pathogens to evaluate its antagonistic effectiveness in vitro. In vivo pathogen inoculation assays were also carried out to investigate GD4a's role in regulating host plant immunity. Bacterial extracellular exudate (BEE) was extracted, purified, and subjected to untargeted metabolomics analysis. Benzocaine (BEN) from the untargeted metabolomics analysis was selected for further study of its function and related mechanisms in enhancing plant immunity through plant mutant analysis and qRT-PCR analysis. Finally, a comprehensive model was formulated to summarize the potential benefits of applying GD4a in agricultural systems. Our study demonstrates the efficacy of GD4a, isolated from switchgrass, in enhancing plant growth, suppressing plant pathogens and diseases, and bolstering host plant immunity. Importantly, GD4a produces a functional bacterial extracellular exudate (BEE) that significantly disrupts the pathogenicity of B. cinerea by inhibiting fungal conidium germination and hypha formation. Additionally, our study identifies benzocaine (BEN) as a novel small molecule that triggers basal defense, ISR, and SAR responses in Arabidopsis plants. Bacillus amyloliquefaciens strain GD4a can effectively promote plant growth, suppress plant disease, and boost plant immunity through functional BEE production and diverse gene expression.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen Obol Opiyo
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Fredrekis Banks
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Ito S, Sakugawa K, Novianti F, Arie T, Komatsu K. Local Application of Acibenzolar- S-Methyl Treatment Induces Antiviral Responses in Distal Leaves of Arabidopsis thaliana. Int J Mol Sci 2024; 25:1808. [PMID: 38339085 PMCID: PMC10855377 DOI: 10.3390/ijms25031808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic acquired resistance (SAR) is a plant defense mechanism that provides protection against a broad spectrum of pathogens in distal tissues. Recent studies have revealed a concerted function of salicylic acid (SA) and N-hydroxypipecolic acid (NHP) in the establishment of SAR against bacterial pathogens, but it remains unknown whether NHP is also involved in SAR against viruses. We found that the local application of acibenzolar-S-methyl (ASM), a synthetic analog of SA, suppressed plantago asiatica mosaic virus (PlAMV) infection in the distal leaves of Arabidopsis thaliana. This suppression of infection in untreated distal leaves was observed at 1 day, but not at 3 days, after application. ASM application significantly increased the expression of SAR-related genes, including PR1, SID2, and ALD1 after 1 day of application. Viral suppression in distal leaves after local ASM application was not observed in the sid2-2 mutant, which is defective in isochorismate synthase 1 (ICS1), which is involved in salicylic acid synthesis; or in the fmo1 mutant, which is defective in the synthesis of NHP; or in the SA receptor npr1-1 mutant. Finally, we found that the local application of NHP suppressed PlAMV infection in the distal leaves. These results indicate that the local application of ASM induces antiviral SAR against PlAMV through a mechanism involving NHP.
Collapse
Affiliation(s)
- Seiya Ito
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
| | - Kagari Sakugawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
| | - Fawzia Novianti
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
| | - Tsutomu Arie
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan (T.A.)
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan
| |
Collapse
|
17
|
Gao Z, Sun M, Shao C, Chen Y, Xiang L, Wu J, Wang J, Chen X. Genome-wide analysis and characterization of the TaTLP gene family in wheat and functional characterization of the TaTLP44 in response to Rhizoctonia cerealis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108323. [PMID: 38183904 DOI: 10.1016/j.plaphy.2023.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Wheat sharp eyespot is a soil-borne disease caused by Rhizoctonia cerealis, which occurs in many countries worldwide and significantly reduces the yield. Thaumatin-like protein (TLP), also known as PR5, is a member of the pathogen response protein family and plays an essential role in plant resistance to pathogen infection. In this study, 131 TaTLP genes were identified from the wheat genome, of which 38 TaTLPs were newly discovered. The TaTLP gene family contains many tandem duplications and fragment duplications, which is a major pathway for gene amplification. Besides, we also analyzed the physicochemical properties, gene structure and promoter cis-acting regulatory elements of all the TaTLP genes. In addition, the expression patterns of nine TaTLPs in response to R. cerealis were analyzed by RT-qPCR. Six TaTLP proteins expressed in vitro had no significant inhibitory effect on R. cerealis, suggesting that these TaTLP proteins may function in other ways. Finally, we performed gene silencing of TaTLP44 in wheat, which increased the expression of some defense-associated genes and improved resistance to R. cerealis. In summary, we systematically analyzed TaTLP family members and demonstrated that TaTLP44 negatively regulates the resistance to R. cerealis by controlling expression of defense-associated genes. These results provide new insights into the functional mechanism of TaTLP proteins.
Collapse
Affiliation(s)
- Zhen Gao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Miao Sun
- College of Agronomy, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.
| | - Chunyu Shao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yihua Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Linrun Xiang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Wu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Wang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
18
|
Kloc M, Halasa M, Kubiak JZ, Ghobrial RM. Invertebrate Immunity, Natural Transplantation Immunity, Somatic and Germ Cell Parasitism, and Transposon Defense. Int J Mol Sci 2024; 25:1072. [PMID: 38256145 PMCID: PMC10815962 DOI: 10.3390/ijms25021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the vertebrate immune system consists of innate and adaptive branches, invertebrates only have innate immunity. This feature makes them an ideal model system for studying the cellular and molecular mechanisms of innate immunity sensu stricto without reciprocal interferences from adaptive immunity. Although invertebrate immunity is evolutionarily older and a precursor of vertebrate immunity, it is far from simple. Despite lacking lymphocytes and functional immunoglobulin, the invertebrate immune system has many sophisticated mechanisms and features, such as long-term immune memory, which, for decades, have been exclusively attributed to adaptive immunity. In this review, we describe the cellular and molecular aspects of invertebrate immunity, including the epigenetic foundation of innate memory, the transgenerational inheritance of immunity, genetic immunity against invading transposons, the mechanisms of self-recognition, natural transplantation, and germ/somatic cell parasitism.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland;
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| | - Rafik M. Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA; (M.H.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
19
|
Payá C, Belda-Palazón B, Vera-Sirera F, Pérez-Pérez J, Jordá L, Rodrigo I, Bellés JM, López-Gresa MP, Lisón P. Signalling mechanisms and agricultural applications of ( Z)-3-hexenyl butyrate-mediated stomatal closure. HORTICULTURE RESEARCH 2024; 11:uhad248. [PMID: 38239809 PMCID: PMC10794947 DOI: 10.1093/hr/uhad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2023] [Indexed: 01/22/2024]
Abstract
Biotic and abiotic stresses can severely limit crop productivity. In response to drought, plants close stomata to prevent water loss. Furthermore, stomata are the main entry point for several pathogens. Therefore, the development of natural products to control stomata closure can be considered a sustainable strategy to cope with stresses in agriculture. Plants respond to different stresses by releasing volatile organic compounds. Green leaf volatiles, which are commonly produced across different plant species after tissue damage, comprise an important group within volatile organic compounds. Among them, (Z)-3-hexenyl butyrate (HB) was described as a natural inducer of stomatal closure, playing an important role in stomatal immunity, although its mechanism of action is still unknown. Through different genetic, pharmacological, and biochemical approaches, we here uncover that HB perception initiates various defence signalling events, such as activation of Ca2+ permeable channels, mitogen-activated protein kinases, and production of Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species. Furthermore, HB-mediated stomata closure was found to be independent of abscisic acid biosynthesis and signalling. Additionally, exogenous treatments with HB alleviate water stress and improve fruit productivity in tomato plants. The efficacy of HB was also tested under open field conditions, leading to enhanced resistance against Phytophthora spp. and Pseudomonas syringae infection in potato and tomato plants, respectively. Taken together, our results provide insights into the HB signalling transduction pathway, confirming its role in stomatal closure and plant immune system activation, and propose HB as a new phytoprotectant for the sustainable control of biotic and abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Celia Payá
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Julia Pérez-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| |
Collapse
|
20
|
Lang B, Chen J. Trichoderma harzianum Cellulase Gene thph2 Affects Trichoderma Root Colonization and Induces Resistance to Southern Leaf Blight in Maize. J Fungi (Basel) 2023; 9:1168. [PMID: 38132769 PMCID: PMC10744625 DOI: 10.3390/jof9121168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Trichoderma, widely distributed all over the world, is commonly found in soil and root ecosystems. It is a group comprising beneficial fungi that improve plant disease resistance and promote plant growth. Studies have shown that Trichoderma cellulases can also improve plant disease resistance. Based on previous studies, we reported that a C6 zinc finger protein (Thc6) regulates two cellulase genes, thph1 and thph2, to induce ISR responses in plants. Therefore, in this study, we focused on the role of thph2 in the colonization of maize roots by T. harzianum and the induction of systemic resistance against southern leaf blight. The results showed that thph2 had a positive regulatory effect on the Trichoderma colonization of maize roots. After the root was treated with Trichoderma, the leaf defense genes AOS, LOX5, HPL, and OPR1 were expressed to resist the attack of Cochliobolus heterostrophus. The pure Thph2 protein also resulted in a similar induction activity of the AOS, LOX5, HPL, and OPR1 expression in maize roots, further demonstrating that thph2 can induce plant defense responses and that signal transduction occurs mainly through the JA signaling pathway.
Collapse
Affiliation(s)
- Bo Lang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Aamir M, Shanmugam V, Dubey MK, Husain FM, Adil M, Ansari WA, Rai A, Sah P. Transcriptomic characterization of Trichoderma harzianum T34 primed tomato plants: assessment of biocontrol agent induced host specific gene expression and plant growth promotion. BMC PLANT BIOLOGY 2023; 23:552. [PMID: 37940862 PMCID: PMC10631224 DOI: 10.1186/s12870-023-04502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
In this study, we investigated the intricate interplay between Trichoderma and the tomato genome, focusing on the transcriptional and metabolic changes triggered during the late colonization event. Microarray probe set (GSE76332) was utilized to analyze the gene expression profiles changes of the un-inoculated control (tomato) and Trichoderma-tomato interactions for identification of the differentially expressed significant genes. Based on principal component analysis and R-based correlation, we observed a positive correlation between the two cross-comaparable groups, corroborating the existence of transcriptional responses in the host triggered by Trichoderma priming. The statistically significant genes based on different p-value cut-off scores [(padj-values or q-value); padj-value < 0.05], [(pcal-values); pcal-value < 0.05; pcal < 0.01; pcal < 0.001)] were cross compared. Through cross-comparison, we identified 156 common genes that were consistently significant across all probability thresholds, and showing a strong positive corelation between p-value and q-value in the selected probe sets. We reported TD2, CPT1, pectin synthase, EXT-3 (extensin-3), Lox C, and pyruvate kinase (PK), which exhibited upregulated expression, and Glb1 and nitrate reductase (nii), which demonstrated downregulated expression during Trichoderma-tomato interaction. In addition, microbial priming with Trichoderma resulted into differential expression of transcription factors related to systemic defense and flowering including MYB13, MYB78, ERF2, ERF3, ERF5, ERF-1B, NAC, MADS box, ZF3, ZAT10, A20/AN1, polyol sugar transporter like zinc finger proteins, and a novel plant defensin protein. The potential bottleneck and hub genes involved in this dynamic response were also identified. The protein-protein interaction (PPI) network analysis based on 25 topmost DEGS (pcal-value < 0.05) and the Weighted Correlation Gene Network Analysis (WGCNA) of the 1786 significant DEGs (pcal-value < 0.05) we reported the hits associated with carbohydrate metabolism, secondary metabolite biosynthesis, and the nitrogen metabolism. We conclude that the Trichoderma-induced microbial priming re-programmed the host genome for transcriptional response during the late colonization event and were characterized by metabolic shifting and biochemical changes specific to plant growth and development. The work also highlights the relevance of statistical parameters in understanding the gene regulatory dynamics and complex regulatory networks based on differential expression, co-expression, and protein interaction networks orchestrating the host responses to beneficial microbial interactions.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi-110012, Delhi, India.
| | - V Shanmugam
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi-110012, Delhi, India
| | - Manish Kumar Dubey
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Punjab, 140413, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mohd Adil
- Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, B2N2R9, Canada
| | - Waquar Akhter Ansari
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, 221002, India
| | - Ashutosh Rai
- Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Uttar Pradesh, Banda, 210001, India
| | - Pankaj Sah
- Applied Sciences Department, College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences-Muscat, Al Janubyyah Street, PO Box 74, Muscat, 133, Sultanate of Oman
| |
Collapse
|
22
|
Sankoh AF, Adjei J, Roberts DM, Burch-Smith TM. Reliable detection and quantification of plasmodesmal callose in Nicotiana benthamiana leaves during defense responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560305. [PMID: 37873219 PMCID: PMC10592870 DOI: 10.1101/2023.09.30.560305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Callose, a beta-(1,3)-D-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD, or conversely by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during innate immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing the intercellular trafficking activity during plant immunity. Despite the popularity of this metric there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying PD callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescent microscopy to measure callose deposition in fixed tissue. Manual or semi-automated workflows for image analysis were also compared and found to produce similar results although the semi-automated workflow produced a wider distribution of data points.
Collapse
Affiliation(s)
- Amie F. Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
- Donald Danforth Plant Science Center, Saint Louis, MO 63132 USA
| | - Joseph Adjei
- Donald Danforth Plant Science Center, Saint Louis, MO 63132 USA
| | - Daniel M. Roberts
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
| | | |
Collapse
|
23
|
García-Espinoza F, García MJ, Quesada-Moraga E, Yousef-Yousef M. Entomopathogenic Fungus-Related Priming Defense Mechanisms in Cucurbits Impact Spodoptera littoralis (Boisduval) Fitness. Appl Environ Microbiol 2023; 89:e0094023. [PMID: 37439674 PMCID: PMC10467339 DOI: 10.1128/aem.00940-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Entomopathogenic fungi (EPF) exhibit direct and indirect mechanisms to increase plant resistance against biotic and abiotic stresses. Plant responses to these stresses are interconnected by common regulators such as ethylene (ET), which is involved in both iron (Fe) deficiency and induced systemic resistance responses. In this work, the roots of cucurbit seedlings were primed with Metarhizium brunneum (EAMa 01/58-Su strain), and relative expression levels of 18 genes related to ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) synthesis, as well as pathogen-related (PR) protein genes, were studied by reverse transcription-quantitative PCR (qRT-PCR). Effects of priming on Spodoptera littoralis were studied by feeding larvae for 15 days with primed and control plants. Genes showed upregulation in studied species; however, the highest relative expression was observed in roots and shoots of plants with Fe deficiency, demonstrating the complexity and the overlapping degree of the regulatory network. EIN2 and EIN3 should be highlighted; both are key genes of the ET transduction pathway that enhanced their expression levels up to eight and four times, respectively, in shoots of primed cucumber. Also, JA and SA synthesis and PR genes showed significant upregulation during the observation period (e.g., the JA gene LOX1 increased 506 times). Survival and fitness of S. littoralis were affected with significant effects on mortality of larvae fed on primed plants versus controls, length of the larval stage, pupal weight, and the percentage of abnormal pupae. These results highlight the role of the EAMa 01/58-Su strain in the induction of resistance, which could be translated into direct benefits for plant development. IMPORTANCE Entomopathogenic fungi are multipurpose microorganisms with direct and indirect effects on insect pests. Also, EPF provide multiple benefits to plants by solubilizing minerals and facilitating nutrient acquisition. A very interesting and novel effect of these fungi is the enhancement of plant defense systems by inducing systematic and acquired resistance. However, little is known about this function. This study sheds light on the molecular mechanisms involved in cucurbits plants' defense activation after being primed by the EPF M. brunneum. Furthermore, the subsequent effects on the fitness of the lepidopteran pest S. littoralis are shown. In this regard, a significant upregulation was recorded for the genes that regulate JA, SA, and ET pathways. This increased expression of defense genes caused lethal and sublethal effects on S. littoralis. This could be considered an added value for the implementation of EPF in integrated pest management programs.
Collapse
Affiliation(s)
- F. García-Espinoza
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- Departamento de Parasitología. Universidad Autónoma Agraria Antonio Narro – Unidad Laguna, Torreón, Coahuila, Mexico
| | - M. J. García
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - E. Quesada-Moraga
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - M. Yousef-Yousef
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2023, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
24
|
Ruiz-Galea M, Kremer C, Friero E, Hernández I. Tolerant Epitypes of Elicited Holm Oak Somatic Embryos Could Be Revealed by Challenges in Dual Culture with Phytophthora cinnamomi Rands. PLANTS (BASEL, SWITZERLAND) 2023; 12:3056. [PMID: 37687303 PMCID: PMC10489650 DOI: 10.3390/plants12173056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Holm oaks (Quercus ilex L.) can suffer severe infection by the oomycete Phytophthora cinnamomi Rands; the production of more tolerant plants is, therefore, required. Embryo formation is a key period in the establishment of epigenetic memory. Somatic embryos from three holm oak genotypes were elicited, either over 3 days or 60 days, with methyl-jasmonate, salicylic acid (SA), β-aminobutyric acid (BABA), or benzothiadiazole (all at 50 μM and 100 μM), or 10% and 30% of a filtered oomycete extract (FILT10 and FILT30) to activate plant immune responses. The number of embryos produced and conversion rate under all conditions were recorded. Some elicited embryos were then exposed to P. cinnamomi in dual culture, and differential mycelial growth and the progression of necrosis were measured. The same was performed with the roots of germinated embryos. Within genotypes, significant differences were seen among the elicitation treatments in terms of both variables. Embryos and roots of 60-day BABA, SA, or FILT10 treatments inhibited mycelium growth. The 3-day BABA (either concentration) and 60-day FILT10 induced the greatest inhibition of necrosis. Mycelium and necrosis inhibition were compared with those of tolerant trees. Both inhibitions might be a defense response maintained after primed embryo germination, thus increasing the likelihood of tolerance to infection.
Collapse
Affiliation(s)
- Mar Ruiz-Galea
- Department of Agroenvironmental Research, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, 28805 Madrid, Spain; (C.K.); (E.F.); (I.H.)
| | | | | | | |
Collapse
|
25
|
Moolhuijzen P, Sanglard LMVP, Paterson DJ, Gray S, Khambatta K, Hackett MJ, Zerihun A, Gibberd MR, Naim F. Spatiotemporal patterns of wheat response to Pyrenophora tritici-repentis in asymptomatic regions revealed by transcriptomic and X-ray fluorescence microscopy analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4707-4720. [PMID: 37201950 PMCID: PMC10433925 DOI: 10.1093/jxb/erad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Lilian M V P Sanglard
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Sean Gray
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Karina Khambatta
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Fatima Naim
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
26
|
Talavera-Mateo L, Garcia A, Santamaria ME. A comprehensive meta-analysis reveals the key variables and scope of seed defense priming. FRONTIERS IN PLANT SCIENCE 2023; 14:1208449. [PMID: 37546267 PMCID: PMC10398571 DOI: 10.3389/fpls.2023.1208449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023]
Abstract
Background When encountered with pathogens or herbivores, the activation of plant defense results in a penalty in plant fitness. Even though plant priming has the potential of enhancing resistance without fitness cost, hurdles such as mode of application of the priming agent or even detrimental effects in plant fitness have yet to be overcome. Here, we review and propose seed defense priming as an efficient and reliable approach for pathogen protection and pest management. Methods Gathering all available experimental data to date, we evaluated the magnitude of the effect depending on plant host, antagonist class, arthropod feeding guild and type of priming agent, as well as the influence of parameter selection in measuring seed defense priming effect on plant and antagonist performance. Results Seed defense priming enhances plant resistance while hindering antagonist performance and without a penalty in plant fitness. Specifically, it has a positive effect on crops and cereals, while negatively affecting fungi, bacteria and arthropods. Plant natural compounds and biological isolates have a stronger influence in plant and antagonist performance than synthetic chemicals and volatiles. Discussion This is the first meta-analysis conducted evaluating the effect of seed defense priming against biotic stresses studying both plant and pest/pathogen performance. Here, we proved its efficacy in enhancing both, plant resistance and plant fitness, and its wide range of application. In addition, we offered insight into the selection of the most suitable priming agent and directed the focus of interest for novel research.
Collapse
Affiliation(s)
| | | | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, (UPM-INIA/CSIC), Madrid, Spain
| |
Collapse
|
27
|
Nutricati E, De Pascali M, Negro C, Bianco PA, Quaglino F, Passera A, Pierro R, Marcone C, Panattoni A, Sabella E, De Bellis L, Luvisi A. Signaling Cross-Talk between Salicylic and Gentisic Acid in the ' Candidatus Phytoplasma Solani' Interaction with Sangiovese Vines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2695. [PMID: 37514309 PMCID: PMC10383235 DOI: 10.3390/plants12142695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
"Bois noir" disease associated with 'Candidatus Phytoplasma solani' seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma-grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of 'Ca. P. solani'-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in 'Ca. P. solani-positive plants compared to -negative ones during the observed period.
Collapse
Affiliation(s)
- Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Roberto Pierro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Alessandra Panattoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
28
|
Bu Z, Li W, Liu X, Liu Y, Gao Y, Pei G, Zhuo R, Cui K, Qin Z, Zheng H, Wu J, Yang Y, Su P, Cao M, Xiong X, Liu X, Zhu Y. The Rice Endophyte-Derived α-Mannosidase ShAM1 Degrades Host Cell Walls To Activate DAMP-Triggered Immunity against Disease. Microbiol Spectr 2023; 11:e0482422. [PMID: 37154721 PMCID: PMC10269736 DOI: 10.1128/spectrum.04824-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Endophytes play an important role in shaping plant growth and immunity. However, the mechanisms for endophyte-induced disease resistance in host plants remain unclear. Here, we screened and isolated the immunity inducer ShAM1 from the endophyte Streptomyces hygroscopicus OsiSh-2, which strongly antagonizes the pathogen Magnaporthe oryzae. Recombinant ShAM1 can trigger rice immune responses and induce hypersensitive responses in various plant species. After infection with M. oryzae, blast resistance was dramatically improved in ShAM1-inoculated rice. In addition, the enhanced disease resistance by ShAM1 was found to occur through a priming strategy and was mainly regulated through the jasmonic acid-ethylene (JA/ET)-dependent signaling pathway. ShAM1 was identified as a novel α-mannosidase, and its induction of immunity is dependent on its enzyme activity. When we incubated ShAM1 with isolated rice cell walls, the release of oligosaccharides was observed. Notably, extracts from the ShAM1-digested cell wall can enhance the disease resistance of the host rice. These results indicated that ShAM1 triggered immune defense against pathogens by damage-associated molecular pattern (DAMP)-related mechanisms. Our work provides a representative example of endophyte-mediated modulation of disease resistance in host plants. The effects of ShAM1 indicate the promise of using active components from endophytes as plant defense elicitors for the management of plant disease. IMPORTANCE The specific biological niche inside host plants allows endophytes to regulate plant disease resistance effectively. However, there have been few reports on the role of active metabolites from endophytes in inducing host disease resistance. In this study, we demonstrated that an identified α-mannosidase protein, ShAM1, secreted by the endophyte S. hygroscopicus OsiSh-2 could activate typical plant immunity responses and induce a timely and cost-efficient priming defense against the pathogen M. oryzae in rice. Importantly, we revealed that ShAM1 enhanced plant disease resistance through its hydrolytic enzyme (HE) activity to digest the rice cell wall and release damage-associated molecular patterns. Taken together, these findings provide an example of the interaction mode of endophyte-plant symbionts and suggest that HEs derived from endophytes can be used as environmentally friendly and safe prevention agent for plant disease control.
Collapse
Affiliation(s)
- Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Wei Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiaoli Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Gang Pei
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province Hunan, University of Chinese Medicine, Changsha, People’s Republic of China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ziwei Qin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Heping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jie Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yutong Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Pin Su
- Hunan Academy of Agricultural Sciences, Hunan Plant Protection Institute, Changsha, People’s Republic of China
| | - Meiting Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xianqiu Xiong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| |
Collapse
|
29
|
Philosoph AM, Dombrovsky A, Luria N, Sela N, Elad Y, Frenkel O. Rapid defense mechanism suppression during viral- oomycete disease complex formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1124911. [PMID: 37360707 PMCID: PMC10288809 DOI: 10.3389/fpls.2023.1124911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Combined infection of the host plant with pathogens involving different parasitic lifestyles may result in synergistic effects that intensify disease symptoms. Understanding the molecular dynamics during concurrent infection provides essential insight into the host response. The transcriptomic pattern of cucumber plants infected with a necrotrophic pathogen, Pythium spinosum, and a biotrophic pathogen, Cucumber green mottle mosaic virus (CGMMV) was studied at different time points, under regimes of single and co-infection. Analysis of CGMMV infection alone revealed a mild influence on host gene expression at the stem base, while the infection by P. spinosum is associated with drastic changes in gene expression. Comparing P. spinosum as a single infecting pathogen with a later co-infection by CGMMV revealed a rapid host response as early as 24 hours post-CGMMV inoculation with a sharp downregulation of genes related to the host defense mechanism against the necrotrophic pathogen. Suppression of the defense mechanism of co-infected plants was followed by severe stress, including 30% plants mortality and an increase of the P. spinosum hyphae. The first evidence of defense recovery against the necrotrophic pathogen only occurred 13 days post-viral infection. These results support the hypothesis that the viral infection of the Pythium pre-infected plants subverted the host defense system and changed the equilibrium obtained with P. spinosum. It also implies a time window in which the plants are most susceptible to P. spinosum after CGMMV infection.
Collapse
Affiliation(s)
- Amit M. Philosoph
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Science, The Volcani Institute, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
30
|
Mattedi A, Sabbi E, Farda B, Djebaili R, Mitra D, Ercole C, Cacchio P, Del Gallo M, Pellegrini M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023; 11:1408. [PMID: 37374910 PMCID: PMC10304952 DOI: 10.3390/microorganisms11061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
With the expansion of the green products market and the worldwide policies and strategies directed toward a green revolution and ecological transition, the demand for innovative approaches is always on the rise. Among the sustainable agricultural approaches, microbial-based products are emerging over time as effective and feasible alternatives to agrochemicals. However, the production, formulation, and commercialization of some products can be challenging. Among the main challenges are the industrial production processes that ensure the quality of the product and its cost on the market. In the context of a circular economy, solid-state fermentation (SSF) might represent a smart approach to obtaining valuable products from waste and by-products. SSF enables the growth of various microorganisms on solid surfaces in the absence or near absence of free-flowing water. It is a valuable and practical method and is used in the food, pharmaceutical, energy, and chemical industries. Nevertheless, the application of this technology in the production of formulations useful in agriculture is still limited. This review summarizes the literature dealing with SSF agricultural applications and the future perspective of its use in sustainable agriculture. The survey showed good potential for SSF to produce biostimulants and biopesticides useful in agriculture.
Collapse
Affiliation(s)
- Alessandro Mattedi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Enrico Sabbi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj 733134, India;
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Paola Cacchio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| |
Collapse
|
31
|
Buziashvili A, Yemets A. Lactoferrin and its role in biotechnological strategies for plant defense against pathogens. Transgenic Res 2023; 32:1-16. [PMID: 36534334 PMCID: PMC9761627 DOI: 10.1007/s11248-022-00331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Agricultural crops are susceptible to many diseases caused by various pathogens, such as viruses, bacteria and fungi. This paper reviews the general principles of plant protection against pathogens, as well as the role of iron and antimicrobial peptide metabolism in plant immunity. The article highlights the principles of antibacterial, fungicidal and antiviral action of lactoferrin, a mammalian secretory glycoprotein, and lactoferrin peptides, and their role in protecting plants from phytopathogens. This review offers a comprehensive analysis and shows potential prospects of using the lactoferrin gene to enhance plant resistance to various phytopathogens, as well as the advantages of this biotechnological approach over existing methods of protecting plants against various diseases.
Collapse
Affiliation(s)
- Anastasiia Buziashvili
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskogo Str., 2a, Kyiv, 04123 Ukraine
| | - Alla Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskogo Str., 2a, Kyiv, 04123 Ukraine
| |
Collapse
|
32
|
Huang Y, Liu Q, Jibrin M, Mou Z, Dufault N, Li Y, Zhang S. Evaluating Nicotinamide Adenine Dinucleotide for Its Effects on Halo Blight of Snap Bean. PLANT DISEASE 2023; 107:675-681. [PMID: 35881875 DOI: 10.1094/pdis-05-22-1126-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halo blight, caused by Pseudomonas syringae pv. phaseolicola, is one of the major bacterial diseases on snap bean in Florida, and the outbreaks of this disease have occurred more often in recent years. Current management of this disease primarily depends on application of fixed copper-based bactericides but climate change and resistance development in the pathogen populations still cause hardship for management of this disease, especially in south Florida. In this study, nicotinamide adenine dinucleotide (NAD+) was evaluated in the greenhouse for its potential to reduce halo blight on snap bean. When NAD+ at 5 mM was applied by soil drench, foliar spray, or leaf infiltration, NAD+ significantly (P < 0.05) reduced disease severity of halo blight on snap bean compared with the untreated control. When NAD+ was applied by leaf infiltration, among the tested concentrations, NAD+ at 0.5 to 1.0 mM was most effective in decreasing halo blight disease. NAD+ at 2.5 mM applied as a foliar spray in rotation with Kocide 3000 (copper hydroxide) at 0.5 mg/ml further reduced disease severity compared with Kocide 3000 alone. In the in vitro study, no inhibitory effects of NAD+ were detected on the bacterial pathogen P. syringae pv. phaseolicola. Results of real-time PCR showed that the defense-related genes PR1, AZI1, EDS1, SARD1, PDF1.2, and PAL1 were upregulated in the NAD+ treatment. Taken together, these data indicated that NAD+ significantly suppressed halo blight on snap bean, and application of NAD+ has the potential in management of this important disease.
Collapse
Affiliation(s)
- Yi Huang
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| | - Qingchun Liu
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Mustafa Jibrin
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, IFAS, Gainesville, FL 32601
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
| | - Shouan Zhang
- Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL 33031
- Department of Plant Pathology, University of Florida, IFAS, Gainesville, FL 32601
| |
Collapse
|
33
|
Liu R, Lu J, Xing J, Xue L, Wu Y, Zhang L. Characterization and functional analyses of wheat TaPR1 genes in response to stripe rust fungal infection. Sci Rep 2023; 13:3362. [PMID: 36849488 PMCID: PMC9971213 DOI: 10.1038/s41598-023-30456-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
The pathogenesis-related protein-1 (PR1) gene is important for plants to respond to various biotic and abiotic stresses. Unlike those in model plants, PR1 genes in wheat have not been systematically studied. Herein, we identified 86 potential TaPR1 wheat genes using bioinformatics tools and RNA sequencing. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the TaPR1 genes were involved in the salicylic acid signalling pathway, MAPK signalling pathway, and phenylalanine metabolism in response to Pst-CYR34 infection. Ten of the TaPR1 genes were structurally characterized and validated by RT‒PCR. One particular gene, TaPR1-7, was found to be associated with resistance to Puccinia striiformis f. sp. tritici (Pst) in a biparental wheat population. Virus-induced gene silencing showed that TaPR1-7 is important for Pst resistance in wheat. This study provides the first comprehensive study on wheat PR1 genes, improving our overall understanding of these genes in plant defenses, particularly against stripe rust.
Collapse
Affiliation(s)
- Rong Liu
- Faculty of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, 644000, China.
| | - Jing Lu
- grid.9227.e0000000119573309Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Jiayi Xing
- grid.9227.e0000000119573309Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Lv Xue
- grid.9227.e0000000119573309Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Yu Wu
- grid.9227.e0000000119573309Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China ,grid.9227.e0000000119573309Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
34
|
Mmbando GS, Ando S, Takahashi H, Hidema J. High ultraviolet-B sensitivity due to lower CPD photolyase activity is needed for biotic stress response to the rice blast fungus, Magnaporthe oryzae. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00379-4. [PMID: 36729358 DOI: 10.1007/s43630-023-00379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Sensitivity to ultraviolet-B (UVB, 280-315 nm) radiation varies widely among rice (Oryza sativa) cultivars due to differences in the activity of cyclobutane pyrimidines dimer (CPD) photolyase. Interestingly, cultivars with high UVB sensitivity and low CPD photolyase activity have been domesticated in tropical areas with high UVB radiation. Here, we investigated how differences in CPD photolyase activity affect plant resistance to the rice blast fungus, Magnaporthe oryzae, which is one of the other major stresses. We used Asian and African rice cultivars and transgenic lines with different CPD photolyase activities to evaluate the interaction effects of CPD photolyase activity on resistance to M. oryzae. In UVB-resistant rice plants overexpressing CPD photolyase, 12 h of low-dose UVB (0.4 W m-2) pretreatment enhanced sensitivity to M. oryzae. In contrast, UVB-sensitive rice (transgenic rice with antisense CPD photolyase, A-S; and rice cultivars with low CPD photolyase activity) showed resistance to M. oryzae. Several defense-related genes were upregulated in UVB-sensitive rice compared to UVB-resistant rice. UVB-pretreated A-S plants showed decreased multicellular infection and robust accumulation of reactive oxygen species. High UVB-induced CPD accumulation promoted defense responses and cross-protection mechanisms against rice blast disease. This may indicate a trade-off between high UVB sensitivity and biotic stress tolerance in tropical rice cultivars.
Collapse
Affiliation(s)
- Gideon S Mmbando
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.,Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, P. O. Box 256, Dodoma, Tanzania
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
35
|
Hudeček M, Nožková V, Plíhalová L, Plíhal O. Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1103088. [PMID: 36743569 PMCID: PMC9889983 DOI: 10.3389/fpls.2022.1103088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner. Many different organic and inorganic compounds have been successfully tested to induce resistance in plants. Among the plethora of commonly used physicochemical techniques, priming by plant growth regulators (phytohormones and their derivatives) appears to be a viable approach with a wide range of applications. While several classes of plant hormones have been exploited in agriculture with promising results, much less attention has been paid to cytokinin, a major plant hormone involved in many biological processes including the regulation of photosynthesis. Cytokinins have been long known to be involved in the regulation of chlorophyll metabolism, among other functions, and are responsible for delaying the onset of senescence. A comprehensive overview of the possible mechanisms of the cytokinin-primed defense or stress-related responses, especially those related to photosynthesis, should provide better insight into some of the less understood aspects of this important group of plant growth regulators.
Collapse
Affiliation(s)
- Martin Hudeček
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
36
|
Li TY, Ye C, Zhang YJ, Zhang JX, Yang M, He XH, Mei XY, Liu YX, Zhu YY, Huang HC, Zhu SS. 2,3-Butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax. PLANT DIVERSITY 2023; 45:104-116. [PMID: 36876306 PMCID: PMC9975478 DOI: 10.1016/j.pld.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/03/2023]
Abstract
Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq). Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P. notoginseng to Alternaria panax. The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A. panax infection upregulated the expression of large number of genes, many of which are involved in transcription factor activity and the mitogen-activated protein kinase (MAPK) signaling pathway. Specifically, 2,3-Butanediol spraying resulted in jasmonic acid (JA) -mediated induced systemic resistance (ISR) by activating MYC2 and ERF1. Moreover, 2,3-Butanediol induced systemic acquired resistance (SAR) by upregulating pattern-triggered immunity (PTI)- and effector-triggered immunity (ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33. Overall, 2,3-Butanediol from the leachates of pine needles could activate the resistance of P. notoginseng to leaf disease infection through ISR, SAR and camalexin biosynthesis. Thus, 2,3-Butanediol is worth developing as a chemical inducer for agricultural production.
Collapse
Affiliation(s)
- Tian-Yao Li
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Jie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Xing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- Southwest Forestry University, Kunming, 650224, China
| | - Xin-Yue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Xiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - You-Yong Zhu
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hui-Chuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shu-Sheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
37
|
Abstract
Macrophages have been recognized as the primary mediators of innate immunity starting from embryonic/fetal development. Macrophage-mediated defenses may not be as antigen-specific as adaptive immunity, but increasing information suggests that these responses do strengthen with repeated immunological triggers. The concept of innate memory in macrophages has been described as "trained immunity" or "innate immune memory (IIM)." As currently understood, this cellular memory is rooted in epigenetic and metabolic reprogramming. The recognition of IIM may be particularly important in the fetus and the young neonate who are yet to develop protective levels of adaptive immunity, and could even be of preventive/therapeutic importance in many disorders. There may also be a possibility of therapeutic enhancement with targeted vaccination. This article presents a review of the properties, mechanisms, and possible clinical significance of macrophage-mediated IIM.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
38
|
New plant resistance inducers based on polyamines. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
The novel and revolutionary approach to plant protection presented in this work, based on the preparation of bifunctional salts of a plant resistance inducer combined with a polyamine cation, may become a potential solution in the future for reducing the effects of abiotic and biotic stresses to which the plant is exposed. This study presents the synthesis, physical properties, phytotoxicity, and systemic acquired resistance (SAR) induction efficacy of new salts composed of the anion of plant resistance inducers and N,N,N,N′,N′,N′-hexamethylpropane-1,3-diammonium cation (5 salts), N,N,N,N′,N′,N′-hexamethyl-butane-1,4-diammonium cation (5 salts), spermidine salicylate, and spermine salicylate. SAR induction efficiency tests were performed on tobacco, Nicotiana tabacum var. Xanthi, infected with the tobacco mosaic virus.
Collapse
|
39
|
Pazarlar S, Madriz-Ordeñana K, Thordal-Christensen H. Bacillus cereus EC9 protects tomato against Fusarium wilt through JA/ET-activated immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1090947. [PMID: 36589090 PMCID: PMC9798288 DOI: 10.3389/fpls.2022.1090947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The mechanisms of action and the limitations of effectiveness of natural biocontrol agents should be determined in order to convert them into end products that can be used in practice. Rhizosphere Bacillus spp. protect plants from various pathogens by displaying several modes of action. However, the ability of Bacillus spp. to control plant diseases depends on the interaction between the bacteria, host, and pathogen, and the environmental conditions. We found that soil drenching of tomato plants with the non-antifungal Bacillus cereus strain EC9 (EC9) enhances plant defense against Fusarium oxysporum f. sp. lycopersici (Fol). To study the involvement of plant defense-related phytohormones in the regulation of EC9-activated protection against Fol, we conducted plant bioassays in tomato genotypes impaired in salicylic acid (SA) accumulation, jasmonic acid (JA) biosynthesis, and ethylene (ET) production, and analyzed the transcript levels of pathways-related marker genes. Our results indicate that JA/ET-dependent signaling is required for EC9-mediated protection against Fol in tomato. We provide evidence that EC9 primes tomato plants for enhanced expression of proteinase inhibitor I (PI-I) and ethylene receptor4 (ETR4). Moreover, we demonstrated that EC9 induces callose deposition in tomato roots. Understanding the involvement of defense-related phytohormones in EC9-mediated defense against Fusarium wilt has increased our knowledge of interactions between non-antifungal plant defense-inducing rhizobacteria and plants.
Collapse
Affiliation(s)
- Sercan Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
- Department of Plant and Environmental Sciences, Section for Plant and Soil Science, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Madriz-Ordeñana
- Department of Plant and Environmental Sciences, Section for Plant and Soil Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Section for Plant and Soil Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. PLANTS (BASEL, SWITZERLAND) 2022; 11:2566. [PMID: 36235439 PMCID: PMC9573647 DOI: 10.3390/plants11192566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The sessile plant has developed mechanisms to survive the "rough and tumble" of its natural surroundings, aided by its evolved innate immune system. Precise perception and rapid response to stress stimuli confer a fitness edge to the plant against its competitors, guaranteeing greater chances of survival and productivity. Plants can "eavesdrop" on volatile chemical cues from their stressed neighbours and have adapted to use these airborne signals to prepare for impending danger without having to experience the actual stress themselves. The role of volatile organic compounds (VOCs) in plant-plant communication has gained significant attention over the past decade, particularly with regard to the potential of VOCs to prime non-stressed plants for more robust defence responses to future stress challenges. The ecological relevance of such interactions under various environmental stresses has been much debated, and there is a nascent understanding of the mechanisms involved. This review discusses the significance of VOC-mediated inter-plant interactions under both biotic and abiotic stresses and highlights the potential to manipulate outcomes in agricultural systems for sustainable crop protection via enhanced defence. The need to integrate physiological, biochemical, and molecular approaches in understanding the underlying mechanisms and signalling pathways involved in volatile signalling is emphasised.
Collapse
Affiliation(s)
- Joanah Midzi
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - David W. Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Suzy Rogiers
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Vinay Pagay
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| |
Collapse
|
41
|
Gupta AK, Verma J, Srivastava A, Srivastava S, Prasad V. Pseudomonas aeruginosa isolate PM1 effectively controls virus infection and promotes growth in plants. Arch Microbiol 2022; 204:494. [PMID: 35841497 DOI: 10.1007/s00203-022-03105-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
A bacterial isolate PM1 obtained from the rhizosphere of healthy plants was identified as Pseudomonas aeruginosa by biochemical characteristics and 16S rRNA gene sequence (GenBank ID OL321133.1). It induced resistance in Nicotiana tabacum cv. Xanthi-nc and Cyamopsis tetragonoloba, against Tobacco mosaic virus (TMV) and Sunn-hemp rosette virus (SRV), respectively. Foliar treatment with isolate PM1 curbed TMV accumulation in susceptible N. tabacum cv. White Burley. PM1 was more effective as a foliar than a root/soil drench treatment, evident through a comparative decrease in ELISA values, and reduced viral RNA accumulation. Foliar and soil drench treatment with PM1 resulted in a disease index of 48 and 86 per cent, and a control rate of 48.9 and 8.5 per cent, respectively. PM1 exhibited phosphate solubilization, produced siderophores, auxins, HCN, and ammonia, all important plant growth-promoting traits. Foliar treatment with PM1 enhanced growth in tobacco, while its volatiles significantly promoted seedling growth in C. tetragonoloba. Of the several metabolites produced by the isolate, many are known contributors to induction of systemic resistance, antibiosis, and growth promotion in plants. Soluble metabolites of PM1 were less effective in inducing antiviral resistance in N. tabacum cv. Xanthi-nc in comparison with its broth culture. PM1 and its metabolites were antagonistic to Gram-positive Bacillus spizizenii and Staphylococcus aureus, and fungi Fusarium oxysporum, Aspergillus niger, and Rhizopus stolonifer. Its volatiles were inhibitory to F. oxysporum and R. stolonifer. Thus, PM1 exhibited considerable potential for further evaluation in plant virus control and production of diverse metabolites of use in agriculture and medicine.
Collapse
Affiliation(s)
- Ashish Kumar Gupta
- Molecular Plant Virology Laboratory, Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Jyoti Verma
- Molecular Plant Virology Laboratory, Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Aparana Srivastava
- Molecular Plant Virology Laboratory, Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Shalini Srivastava
- Molecular Plant Virology Laboratory, Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vivek Prasad
- Molecular Plant Virology Laboratory, Department of Botany, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
42
|
NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis. Sci Rep 2022; 12:11264. [PMID: 35787631 PMCID: PMC9253118 DOI: 10.1038/s41598-022-14429-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. ‘Thermomemory’ is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Arabidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like ataf1, anac055 mutants show improved thermomemory, revealing a potential co-control of both NAC TFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.
Collapse
|
43
|
Ortega-Cuadros M, De Souza TL, Berruyer R, Aligon S, Pelletier S, Renou JP, Arias T, Campion C, Guillemette T, Verdier J, Grappin P. Seed Transmission of Pathogens: Non-Canonical Immune Response in Arabidopsis Germinating Seeds Compared to Early Seedlings against the Necrotrophic Fungus Alternaria brassicicola. PLANTS (BASEL, SWITZERLAND) 2022; 11:1708. [PMID: 35807659 PMCID: PMC9269218 DOI: 10.3390/plants11131708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
The transmission of seed-borne pathogens by the germinating seed is responsible for major crop diseases. The immune responses of the seed facing biotic invaders are poorly documented so far. The Arabidopsis thaliana/Alternaria brassicicola patho-system was used to describe at the transcription level the responses of germinating seeds and young seedling stages to infection by the necrotrophic fungus. RNA-seq analyses of healthy versus inoculated seeds at 3 days after sowing (DAS), stage of radicle emergence, and at 6 and 10 DAS, two stages of seedling establishment, identified thousands of differentially expressed genes by Alternaria infection. Response to hypoxia, ethylene and indole pathways were found to be induced by Alternaria in the germinating seeds. However, surprisingly, the defense responses, namely the salicylic acid (SA) pathway, the response to reactive oxygen species (ROS), the endoplasmic reticulum-associated protein degradation (ERAD) and programmed cell death, were found to be strongly induced only during the latter post-germination stages. We propose that this non-canonical immune response in early germinating seeds compared to early seedling establishment was potentially due to the seed-to-seedling transition phase. Phenotypic analyses of about 14 mutants altered in the main defense pathways illustrated these specific defense responses. The unexpected germination deficiency and insensitivity to Alternaria in the glucosinolate deficient mutants allow hypothesis of a trade-off between seed germination, necrosis induction and Alternaria transmission to the seedling. The imbalance of the SA and jasmonic acid (JA) pathways to the detriment of the JA also illustrated a non-canonical immune response at the first stages of the seedling.
Collapse
Affiliation(s)
- Mailen Ortega-Cuadros
- Faculty of Exact and Natural Sciences, Institute of Biology, University City Campus, University of Antioquia, Calle 67 N°53-108, Medellín 050010, Colombia;
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Tiago Lodi De Souza
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Romain Berruyer
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Sophie Aligon
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Sandra Pelletier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Jean-Pierre Renou
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Tatiana Arias
- Marie Selby Botanical Gardens, Downtown Sarasota Campus, 1534 Mound Street, Sarasota, FL 34236, USA;
| | - Claire Campion
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Thomas Guillemette
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Jérome Verdier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| | - Philippe Grappin
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, F-49000 Angers, France; (T.L.D.S.); (R.B.); (S.A.); (S.P.); (J.-P.R.); (C.C.); (T.G.); (J.V.)
| |
Collapse
|
44
|
Benjamin G, Pandharikar G, Frendo P. Salicylic Acid in Plant Symbioses: Beyond Plant Pathogen Interactions. BIOLOGY 2022; 11:861. [PMID: 35741382 PMCID: PMC9220041 DOI: 10.3390/biology11060861] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/02/2023]
Abstract
Plants form beneficial symbioses with a wide variety of microorganisms. Among these, endophytes, arbuscular mycorrhizal fungi (AMF), and nitrogen-fixing rhizobia are some of the most studied and well understood symbiotic interactions. These symbiotic microorganisms promote plant nutrition and growth. In exchange, they receive the carbon and metabolites necessary for their development and multiplication. In addition to their role in plant growth and development, these microorganisms enhance host plant tolerance to a wide range of environmental stress. Multiple studies have shown that these microorganisms modulate the phytohormone metabolism in the host plant. Among the phytohormones involved in the plant defense response against biotic environment, salicylic acid (SA) plays an important role in activating plant defense. However, in addition to being a major actor in plant defense signaling against pathogens, SA has also been shown to be involved in plant-microbe symbiotic interactions. In this review, we summarize the impact of SA on the symbiotic interactions. In addition, we give an overview of the impact of the endophytes, AMF, and rhizobacteria on SA-mediated defense response against pathogens.
Collapse
Affiliation(s)
| | | | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06000 Nice, France;
| |
Collapse
|
45
|
Sun Y, Wu H, Xu S, Tang S, Hao J, Liu X, Zhang H, Han L. Roles of the EPS66A polysaccharide from Streptomyces sp. in inducing tobacco resistance to tobacco mosaic virus. Int J Biol Macromol 2022; 209:885-894. [PMID: 35439473 DOI: 10.1016/j.ijbiomac.2022.04.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
EPS66A was derived from an unidentified Streptomyces sp. HL-66 by chemical fraction and disease-resistance assays. It was identified as a polysaccharide through a series of chemical characterization, including infrared spectrum analysis, methylation, gas chromatography-mass spectrometry, nuclear magnetic resonance, and high-performance gel permeation chromatography. To determine its effect in plant, EPS66A was applied to tobacco leaves infected with TMV, resulting in the plant with enhanced systemic resistance with a significant reduction of TMV severity. Plant defense was confirmed by early responses, including hypersensitive response (HR) indicated by programed cell death, moderate alkalization, oxidative burst, increase in nitric oxide (NO) and salicylic acid (SA). Furthermore, EPS66A induced callose deposition to form defense barriers against pathogen invasion and the expression of pathogenesis-related (PR) genes, which confirmed the second level of plant defense. Therefore, EPS66A served as a resistance inducer, which was reorganized by tobacco cells that triggered the production of signal molecules. The signals moved in long distance and systemically in plant, which coordinated the expression of defense responses. The study provided a new perspective in understanding the mechanism of EPS66A in regulating plants on environmental adaptability and provided a theoretical foundation for designing safe and sustainable pesticides.
Collapse
Affiliation(s)
- Yubo Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shanshan Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiqi Tang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongyan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lirong Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
46
|
Yang K, Sun W, Li Q, Wang J, Yao J, Wang X. Ellman's method-based determination of acibenzolar-S-methyl in tobacco by transesterification with methanol and SABP2-catalyzed hydrolysis. ANAL SCI 2022; 38:749-757. [PMID: 35298794 DOI: 10.1007/s44211-022-00091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
Acibenzolar-S-methyl (ASM) is the most commercially successful biological antibacterial agent used for crop through systemic acquired resistance (SAR). In this study, a reproducible and accurate procedure, based on the spectrophotometric/microplate reader analysis, has been developed to detect ASM in tobacco leaves. This method involves oxidation of methyl mercaptan by the Ellman's reagent 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) to form the yellow derivative 5'-thio-2-nitrobenzoic acid (TNB2-), measurable at 412 nm. Methyl mercaptan can be produced by either the ASM transesterification with methanol or the SA-binding protein 2 (SABP2)-catalyzed ASM hydrolysis. The proportions of methanol, reaction time, temperature, the concentrations of EDTA and DTNB were optimized in a 96-well plate. The calibration curve of ASM was linear over the range of 25.2-315 μg g-1. The results of the intra- and inter-day accuracy and precision data were within the FDA acceptance criteria. With ASM as substrate, the turnover number of SABP2 was determined, with the kcat value of 31.1 min-1 using the Michaelis-Menten equation. In tobacco plants treated with 100 μM ASM, it was decreased as time elapsed in treated tobacco, reaching negligible values 72 h after treatment. The optimized method was applied for the determination of ASM transesterification with methanol and the kinetic data determination of SABP2-catalyzed ASM hydrolysis.
Collapse
Affiliation(s)
- Kang Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Wenyu Sun
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jingfeng Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Xia Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
47
|
Sun Y, Wu H, Zhou W, Yuan Z, Hao J, Liu X, Han L. Effects of indole derivatives from Purpureocillium lilacinum in controlling tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105077. [PMID: 35430069 DOI: 10.1016/j.pestbp.2022.105077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
There are various types of compounds studied and applied for plant disease management, and some of them are environment friendly and suitable in organic production. An example is indole-3-carboxaldehyde (A1) and indole-3-carboxylic acid (A2) derived from Purpureocillium lilacinum H1463, which have shown a strong activity in the control of tobacco mosaic virus (TMV). In this study, the effects of these compounds were studied on suppressing TMV and corresponding mechanism. Both A1 and A2 exhibited strong anti-TMV activities in vitro and in vivo. They fractured TMV virions and forced the fractured particles agglomerated. A1 and A2 also induced immune responses or resistance of tobacco to TMV infection, including expressing hypersensitive reaction (HR), increasing defense-related enzymes and overexpressing pathogenesis-related (PR) proteins. The upregulation of salicylic acid (SA) biosynthesis genes PAL, ICS, and PBS3 confirmed that SA served as a defense-related signal molecule. Therefore, indole derivatives have a potential for activating defense of tobacco against TMV and other pathogens and can be used for disease control.
Collapse
Affiliation(s)
- Yubo Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenning Zhou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhichun Yuan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lirong Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
48
|
Current perspectives on the beneficial effects of soybean isoflavones and their metabolites on plants. Food Sci Biotechnol 2022; 31:515-526. [PMID: 35529690 PMCID: PMC9033921 DOI: 10.1007/s10068-022-01070-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022] Open
Abstract
Soybeans have traditionally been a staple part of the human diet being highly rich in protein and lipid content. In an addition to the high nutritional components, soybeans have several functional components, like isoflavones, saponins, lecithin, and oligosaccharides. Soybeans emerge as a healthy functional food option. Isoflavones are most notable functional component of soybeans, exhibiting antioxidant activity while preventing plant-related diseases (e.g., antimicrobial and antiherbivore activities) and having positive effects on the life quality of plants. Isoflavones are thus sometimes referred to as phytochemicals. The latest research trends evince substantial interest in the biological efficacy of isoflavones in the human body as well as in plants and their related mechanisms. However, there is little information on the relationship between isoflavones and plants than beneficial human effects. This review discusses what is known about the physiological communication (transport and secretion) between isoflavones and plants, especially in soybeans.
Collapse
|
49
|
de Oliveira Silva L, da Silva Pereira L, Pereira JL, Gomes VM, Grativol C. Divergence and conservation of defensins and lipid transfer proteins (LTPs) from sugarcane wild species and modern cultivar genomes. Funct Integr Genomics 2022; 22:235-250. [PMID: 35195843 DOI: 10.1007/s10142-022-00832-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Plant defensins and lipid transfer proteins (LTPs) constitute a large and evolutionarily diverse family of antimicrobial peptides. Defensins and LTPs are two pathogenesis-related proteins (PR proteins) whose characterization may help to uncover aspects about the sugarcane response to pathogens attack. LTPs have also been investigated for their participation in the response to different types of stress. Despite the important roles of defensins and LTPs in biotic and abiotic stresses, scarce knowledge is found about these proteins in sugarcane. By using bioinformatics approaches, we characterized defensins and LTPs in the sugarcane wild species and modern cultivar genomes. The identification of defensins and LTPs showed that all five defensins groups and eight of the nine LTPs have their respective genes loci, although some was only identified in the cultivar genome. Phylogenetic analysis showed that defensins appear to be more conserved among groups of plants than LTPs. Some defensins and LTPs showed opposite expression during pathogenic and benefic bacterial interactions. Interestingly, the expression of defensins and LTPs in shoots and roots was completely different in plants submitted to benefic bacteria or water depletion. Finally, the modeling and comparison of isoforms of LTPs and defensins in wild species and cultivars revealed a high conservation of tertiary structures, with variation of amino acids in different regions of proteins, which could impact their antimicrobial activity. Our data contributed to the characterization of defensins and LTPs in sugarcane and provided new elements for understanding the involvement of these proteins in sugarcane response to different types of stress.
Collapse
Affiliation(s)
- Leandro de Oliveira Silva
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Lídia da Silva Pereira
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Jacymara Lopes Pereira
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Clícia Grativol
- Laboratório de Química, Função de Proteínas E Peptídeos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
50
|
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. THE NEW PHYTOLOGIST 2022; 233:1051-1066. [PMID: 34614214 DOI: 10.1111/nph.17773] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plant resource allocation patterns often reveal tradeoffs that favor growth (G) over defense (D), or vice versa. Ecologists most often explain G-D tradeoffs through principles of economic optimality, in which negative trait correlations are attributed to the reconciliation of fitness costs. Recently, researchers in molecular biology have developed 'big data' resources including multi-omic (e.g. transcriptomic, proteomic and metabolomic) studies that describe the cellular processes controlling gene expression in model species. In this synthesis, we bridge ecological theory with discoveries in multi-omics biology to better understand how selection has shaped the mechanisms of G-D tradeoffs. Multi-omic studies reveal strategically coordinated patterns in resource allocation that are enabled by phytohormone crosstalk and transcriptional signal cascades. Coordinated resource allocation justifies the framework of optimality theory, while providing mechanistic insight into the feedbacks and control hubs that calibrate G-D tradeoff commitments. We use the existing literature to describe the coordinated resource allocation hypothesis (CoRAH) that accounts for balanced cellular controls during the expression of G-D tradeoffs, while sustaining stored resource pools to buffer the impacts of future stresses. The integrative mechanisms of the CoRAH unify the supply- and demand-side perspectives of previous G-D tradeoff theories.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|