1
|
Cheng X, Xing C, Zhang F, Lin L, Zhao K, Dong H, Huang X, Zhang S. Pyrus pyrifolia WRKY31 activates the ribosomal protein gene RPL12 to confer black spot resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112487. [PMID: 40194684 DOI: 10.1016/j.plantsci.2025.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Ribosomal proteins (RPs) are essential for genetic transcription and translation, playing a key role in plant growth, development, and stress responses, including disease resistance. However, the function and transcriptional regulation of RPL12 remain poorly understood. Investigating the gene function and the transcription factors that govern its expression is crucial to understanding its mechanism. In this study, a novel transcription factor gene, PpWRKY31, was isolated from Pyrus pyrifolia. The PpWRKY31 protein is expressed in the nucleus and belongs to Group IIb WRKY transcription factors. qRT-PCR analysis revealed that its expression was upregulated under the treatment of Alternaria alternata, as well as to exogenous hormonal treatments. Using yeast one-hybrid (Y1H) assay, dual-luciferase eporter assay, and electrophoretic mobility shift assay (EMSA), we demonstrated that PpWRKY31 can bind to the W-box element in the promoter region of PpRPL12. Overexpression of either PpWRKY31 or PpRPL12 enhanced the resistance of both pear and Arabidopsis thaliana plants to black spot disease, evidenced by reduced lesion size and increased activity of defense enzyme. Conversely, silencing of PpWRKY31 or PpRPL12 markedly diminished the resistance of pear to black spot disease. PpWRKY31 overexpression was observed to notably enhance the expression of PpRPL12 and genes associated with salicylic acid, inducing changes in the activity of enzymes related to the phenylpropanoid pathway, such as phenylalanine ammonia-lyase (PAL). In conclusion, this study elucidates a novel PpWRKY31-PpRPL12 signaling pathway that enhances resistance to pear black spot disease, providing insights into the regulatory networks underpinning plant defense responses. CORE: Pear black spot disease, caused by Alternaria alternata, seriously affects fruit quality and yield. We identified that PpWRKY31 transgenic calli responded to Alternaria alternata in pear. PpWRKY31 binds to the W-box cis-element of the PpRPL12 promoter, upregulating the expression of PpRPL12. The PpWRKY31-PpRPL12 regulatory module indirectly influences the downstream salicylic acid and phenylpropanoid pathways, ultimately enhancing the pear's black spot resistance. GENE AND ACCESSION NUMBERS: The sequence information used in this study is available in the Pear Genome Database (http://peargenome.njau.edu.cn/), the National Center for Biotechnology Information (NCBI) database, and The Arabidopsis Information Resource, see Table S2.
Collapse
Affiliation(s)
- Xiangyu Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Caihua Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China; Shandong Institute of Pomology, Tai'an 271099, China.
| | - Feng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Likun Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Keke Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China; The Sanya Institute of Nanjing Agricultural University, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China; The Sanya Institute of Nanjing Agricultural University, China.
| |
Collapse
|
2
|
Rahman MA, Ullah H. Receptor for Activated C Kinase1B (RACK1B) Delays Salinity-Induced Senescence in Rice Leaves by Regulating Chlorophyll Degradation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2385. [PMID: 37376011 DOI: 10.3390/plants12122385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The widely conserved Receptor for Activated C Kinase1 (RACK1) protein is a WD-40 type scaffold protein that regulates diverse environmental stress signal transduction pathways. Arabidopsis RACK1A has been reported to interact with various proteins in salt stress and Light-Harvesting Complex (LHC) pathways. However, the mechanism of how RACK1 contributes to the photosystem and chlorophyll metabolism in stress conditions remains elusive. In this study, using T-DNA-mediated activation tagging transgenic rice (Oryza sativa L.) lines, we show that leaves from rice RACK1B gene (OsRACK1B) gain-of-function (RACK1B-OX) plants exhibit the stay-green phenotype under salinity stress. In contrast, leaves from down-regulated OsRACK1B (RACK1B-UX) plants display an accelerated yellowing. qRT-PCR analysis revealed that several genes which encode chlorophyll catabolic enzymes (CCEs) are differentially expressed in both RACK1B-OX and RACK1B-UX rice plants. In addition to CCEs, stay-green (SGR) is a key component that forms the SGR-CCE complex in senescing chloroplasts, and which causes LHCII complex instability. Transcript and protein profiling revealed a significant upregulation of OsSGR in RACK1B-UX plants compared to that in RACK1B-OX rice plants during salt treatment. The results imply that senescence-associated transcription factors (TFs) are altered following altered OsRACK1B expression, indicating a transcriptional reprogramming by OsRACK1B and a novel regulatory mechanism involving the OsRACK1B-OsSGR-TFs complex. Our findings suggest that the ectopic expression of OsRACK1B negatively regulates chlorophyll degradation, leads to a steady level of LHC-II isoform Lhcb1, an essential prerequisite for the state transition of photosynthesis for adaptation, and delays salinity-induced senescence. Taken together, these results provide important insights into the molecular mechanisms of salinity-induced senescence, which can be useful in circumventing the effect of salt on photosynthesis and in reducing the yield penalty of important cereal crops, such as rice, in global climate change conditions.
Collapse
Affiliation(s)
| | - Hemayet Ullah
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
3
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
4
|
Receptor for Activated C Kinase1B (OsRACK1B) Impairs Fertility in Rice through NADPH-Dependent H2O2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23158455. [PMID: 35955593 PMCID: PMC9368841 DOI: 10.3390/ijms23158455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The scaffold protein receptor for Activated C Kinase1 (RACK1) regulates multiple aspects of plants, including seed germination, growth, environmental stress responses, and flowering. Recent studies have revealed that RACK1 is associated with NADPH-dependent reactive oxygen species (ROS) signaling in plants. ROS, as a double-edged sword, can modulate several developmental pathways in plants. Thus, the resulting physiological consequences of perturbing the RACK1 expression-induced ROS balance remain to be explored. Herein, we combined molecular, pharmacological, and ultrastructure analysis approaches to investigate the hypothesized connection using T-DNA-mediated activation-tagged RACK1B overexpressed (OX) transgenic rice plants. In this study, we find that OsRACK1B-OX plants display reduced pollen viability, defective anther dehiscence, and abnormal spikelet morphology, leading to partial spikelet sterility. Microscopic observation of the mature pollen grains from the OX plants revealed abnormalities in the exine and intine structures and decreased starch granules in the pollen, resulting in a reduced number of grains per locule from the OX rice plants as compared to that of the wild-type (WT). Histochemical staining revealed a global increase in hydrogen peroxide (H2O2) in the leaves and roots of the transgenic lines overexpressing OsRACK1B compared to that of the WT. However, the elevated H2O2 in tissues from the OX plants can be reversed by pre-treatment with diphenylidonium (DPI), an NADPH oxidase inhibitor, indicating that the source of H2O2 could be, in part, NADPH oxidase. Expression analysis showed a differential expression of the NADPH/respiratory burst oxidase homolog D (RbohD) and antioxidant enzyme-related genes, suggesting a homeostatic mechanism of H2O2 production and antioxidant enzyme activity. BiFC analysis demonstrated that OsRACK1B interacts with the N-terminal region of RbohD in vivo. Taken together, these data indicate that elevated OsRACK1B accumulates a threshold level of ROS, in this case H2O2, which negatively regulates pollen development and fertility. In conclusion, we hypothesized that an optimal expression of RACK1 is critical for fertility in rice plants.
Collapse
|
5
|
Teng L, Zhu Y, Li H, Song X, Shi L. The phytotoxicity of microplastics to the photosynthetic performance and transcriptome profiling of Nicotiana tabacum seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113155. [PMID: 35007831 DOI: 10.1016/j.ecoenv.2021.113155] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging "new generation" organic contaminants, have attracted extensive attention regarding their severe toxicity to aquatic and terrestrial organisms. However, the responses of plant photosynthesis to soil MP pollution are unclear. In this study, Nicotiana tabacum seedlings were grown in soils containing 0~1000 g·kg-1 polyethylene (PE)-MPs for 48 days. PE-MPs significantly increased the superoxide anion content by 15.3~44.8% but decreased the chlorophyll content and Rubisco activity by 4.3~14.0% and 4.23~30.9%, respectively. PE-MPs also inhibited RuBP carboxylation activation and regeneration, restrained light use efficiency, and prevented dark respiration, thereby reducing the light-saturated photosynthesis rate. The changed shape of OJIP transients indicated that PE-MP toxicity inhibited not only the primary photochemistry rate but also photoelectrochemical quenching, resulting in decreased quantum yields. RNA-Seq revealed thousands of differentially expressed genes (DEGs), among which 79 highly expressed DEGs were enriched in photosynthesis-related processes. Functional annotation revealed that the reduction in environment stress was mainly due to the repressed expression of light harvesting-, electron transport- and photosystem-related genes in chloroplasts. This study regarding the physiological and molecular responses of photosynthetic performance to soil PE-MP pollution provides a new viewpoint for exploring the plant photosynthesis regulating and protective mechanisms under soil MP stresses.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, De'zhou 253023, China
| | - Yihao Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Kramer MC, Kim HJ, Palos KR, Garcia BA, Lyons E, Beilstein MA, Nelson ADL, Gregory BD. A Conserved Long Intergenic Non-coding RNA Containing snoRNA Sequences, lncCOBRA1, Affects Arabidopsis Germination and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:906603. [PMID: 35693169 PMCID: PMC9175010 DOI: 10.3389/fpls.2022.906603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are an increasingly studied group of non-protein coding transcripts with a wide variety of molecular functions gaining attention for their roles in numerous biological processes. Nearly 6,000 lncRNAs have been identified in Arabidopsis thaliana but many have yet to be studied. Here, we examine a class of previously uncharacterized lncRNAs termed CONSERVED IN BRASSICA RAPA (lncCOBRA) transcripts that were previously identified for their high level of sequence conservation in the related crop species Brassica rapa, their nuclear-localization and protein-bound nature. In particular, we focus on lncCOBRA1 and demonstrate that its abundance is highly tissue and developmental specific, with particularly high levels early in germination. lncCOBRA1 contains two snoRNAs domains within it, making it the first sno-lincRNA example in a non-mammalian system. However, we find that it is processed differently than its mammalian counterparts. We further show that plants lacking lncCOBRA1 display patterns of delayed germination and are overall smaller than wild-type plants. Lastly, we identify the proteins that interact with lncCOBRA1 and propose a novel mechanism of lincRNA action in which it may act as a scaffold with the RACK1A protein to regulate germination and development, possibly through a role in ribosome biogenesis.
Collapse
Affiliation(s)
- Marianne C. Kramer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Kyle R. Palos
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- CyVerse Inc., Tucson, AZ, United States
| | - Mark A. Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | | | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Brian D. Gregory,
| |
Collapse
|
7
|
Alshammari SO, Dakshanamurthy S, Ullah H. Small compounds targeting tyrosine phosphorylation of Scaffold Protein Receptor for Activated C Kinase1A (RACK1A) regulate auxin mediated lateral root development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1899488. [PMID: 33784940 PMCID: PMC8078533 DOI: 10.1080/15592324.2021.1899488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Receptor for activated C kinase 1 (RACK1) is WD-40 type scaffold protein, conserved in all eukaryote organisms. Many reports implicated RACK1 in plant hormone signal transduction pathways including in auxin and diverse stress signaling pathways; however, the precise molecular mechanism of its role is not understood. Previously, a group of small compounds targeting the Arabidopsis RACK1A functional site-Tyr248 have been developed. Here, the three different small compounds are used to elucidate the role of RACK1A in auxin mediated lateral root development. Through monitoring the auxin response in the architecture of lateral roots and auxin reporter assays, a small molecule- SD29-12 was found to stabilize the auxin induced RACK1A Tyr248 phosphorylation, thereby stimulating auxin signaling and inducing lateral roots formation. In contrast, two other compounds, SD29 and SD29-14, inhibited auxin induced RACK1A Tyr248 phosphorylation resulting in the inhibition of auxin sensitivity and alternation in the lateral roots formation. Taken together, auxin induced RACK1A Tyr248 phosphorylation is found to be the critical regulatory mechanism for auxin-mediated lateral root development. This work leads to the molecular understanding of the role RACK1A plays in the auxin induced lateral root development signaling pathways. The auxin signal stimulating compound has the potential to be used as auxin-based root inducing bio-stimulant.
Collapse
Affiliation(s)
- Shifaa O Alshammari
- Department of Biology, Howard University, Washington, USA
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, USA
- CONTACT Sivanesan Dakshanamurthy Department of Biochemistry and Molecular Biology,Georgetown University, Washington, DC 20057 United States
| | - Hemayet Ullah
- Department of Biology, Howard University, Washington, USA
| |
Collapse
|
8
|
Genome-wide transcriptome reveals mechanisms underlying Rlm1-mediated blackleg resistance on canola. Sci Rep 2021; 11:4407. [PMID: 33623070 PMCID: PMC7902848 DOI: 10.1038/s41598-021-83267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 11/08/2022] Open
Abstract
Genetic resistance to blackleg (Leptosphaeria maculans, Lm) of canola (Brassica napus, Bn) has been extensively studied, but the mechanisms underlying the host-pathogen interaction are still not well understood. Here, a comparative transcriptome analysis was performed on a resistant doubled haploid Bn line carrying the resistance gene Rlm1 following inoculation with a virulent (avrLm1) or avirulent (AvrLm1) Lm isolate on cotyledons. A total of 6999 and 3015 differentially expressed genes (DEGs) were identified, respectively, in inoculated local tissues with compatible (susceptible) and incompatible (resistant) interactions. Functional enrichment analysis found several biological processes, including protein targeting to membrane, ribosome and negative regulation of programmed cell death, were over-represented exclusively among up-regulated DEGs in the resistant reaction, whereas significant enrichment of salicylic acid (SA) and jasmonic acid (JA) pathways observed for down-regulated DEGs occurred only in the susceptible reaction. A heat-map analysis showed that both biosynthesis and signaling of SA and JA were induced more significantly in the resistant reaction, implying that a threshold level of SA and JA signaling is required for the activation of Rlm1-mediated resistance. Co-expression network analysis revealed close correlation of a gene module with the resistance, involving DEGs regulating pathogen-associated molecular pattern recognition, JA signaling and transcriptional reprogramming. Substantially fewer DEGs were identified in mock-inoculated (control) cotyledons, relative to those in inoculated local tissues, including those involved in SA pathways potentially contributing to systemic acquired resistance (SAR). Pre-inoculation of cotyledon with either an avirulent or virulent Lm isolate, however, failed to induce SAR on remote tissues of same plant despite elevated SA and PR1 protein. This study provides insights into the molecular mechanism of Rlm1-mediated resistance to blackleg.
Collapse
|
9
|
Zhu W, Han H, Liu A, Guan Q, Kang J, David L, Dufresne C, Chen S, Tian J. Combined ultraviolet and darkness regulation of medicinal metabolites in Mahonia bealei revealed by proteomics and metabolomics. J Proteomics 2020; 233:104081. [PMID: 33352312 DOI: 10.1016/j.jprot.2020.104081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
Roots of Mahonia bealei have been used as traditional Chinese medicine with antibacterial, antioxidant and anti-inflammatory properties due to its high alkaloid content. Previously, we reported that alkaloid and flavonoid contents in the M. bealei leaves could be increased by the combined ultraviolet B and dark treatment (UV+D). To explore the underlying metabolic pathways and networks, proteomic and metabolomic analyses of the M. bealei leaves were conducted. Proteins related to tricarboxylic acid cycle, transport and signaling varied greatly under the UV + D. Among them, calmodulin involved in calcium signaling and ATP-binding cassette transporter involved in transport of berberine were increased. Significantly changed metabolites were overrepresented in phenylalanine metabolism, nitrogen metabolism, phenylpropanoid, flavonoid and alkaloid biosynthesis. In addition, the levels of salicylic acid and gibberellin decreased in the UV group and increased in the UV + D group. These results indicate that multi-hormone crosstalk may regulate the biosynthesis of flavonoids and alkaloids to alleviate oxidative stress caused by the UV + D treatment. Furthermore, protoberberine alkaloids may be induced through calcium signaling crosstalk with reaction oxygen species and transported to leaves. SIGNIFICANCE: Mahonia bealei root and stem, not leaf, were used as traditional medicine for a long history because of the high contents of active components. In the present study, UV-B combined with dark treatments induced the production of alkaloids and flavonoids in the M. bealei leaf, especially protoberberine alkaloids such as berberine. Multi-omics analyses indicated that multi-hormone crosstalk, enhanced tricarboxylic acid cycle and active calcium signaling were involved. The study informs a strategy for utilization of the leaves, and improves understanding of the functions of secondary metabolites in M. bealei.
Collapse
Affiliation(s)
- Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China; Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Changsu Qiushi Technology Co., Ltd, Suzhou 215500, PR China
| | - Haote Han
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China; Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Lisa David
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Fisher Scientific, West Palm Beach, FL 33407, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
10
|
Ramu VS, Dawane A, Lee S, Oh S, Lee H, Sun L, Senthil‐Kumar M, Mysore KS. Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:1481-1494. [PMID: 32964634 PMCID: PMC7548997 DOI: 10.1111/mpp.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.
Collapse
Affiliation(s)
- Vemanna S. Ramu
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Labortory of Plant Functional GenomicsRegional Centre for BiotechnologyFaridabadIndia
| | - Akashata Dawane
- Labortory of Plant Functional GenomicsRegional Centre for BiotechnologyFaridabadIndia
| | - Seonghee Lee
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Present address:
Gulf Coast Research and Education CenterInstitute of Food and Agricultural ScienceUniversity of FloridaWimaumaFloridaUSA
| | - Sunhee Oh
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
| | | | - Liang Sun
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
| | - Muthappa Senthil‐Kumar
- Noble Research Institute, LLC.ArdmoreOklahomaUSA
- Present address:
National Institute of Plant Genome ResearchNew DelhiIndia
| | | |
Collapse
|
11
|
Chen C, Meng Y, Shopan J, Whelan J, Hu Z, Yang J, Zhang M. Identification and characterization of Arabidopsis thaliana mitochondrial F 1F 0-ATPase inhibitor factor 1. JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153264. [PMID: 33032063 DOI: 10.1016/j.jplph.2020.153264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Mitochondrial F1F0-ATP synthase (F1F0-ATPase) inhibitor factor 1 (IF1) has been extensively characterized as an endogenous inhibitor that prevents the hydrolysis of adenosine-5'-triphosphate (ATP) by mitochondrial ATPases in mammals and yeasts; however, IF1's functions in plants remain unclear. Here, a comprehensive bioinformatic analysis was performed to identify plant mitochondrial F1F0-ATPase IF1 orthologs. Plant IF1s contain a conserved F1F0-ATPase inhibitory domain, but lack the antiparallel α-helical coiled-coil structure compared with mammalian IF1s. A subcellular localization analysis in Arabidopsis thaliana revealed that AtIF1-green fluorescent protein was present only in mitochondria. Additionally, AtIF1 was widely expressed in diverse organs and intense β-glucuronidase staining was observed in reproductive tissues and germinating seeds. Compared with the wild-type and p35S:AtIF1-if1 etiolated seedlings, the ATP/ADP ratio was significantly lower in the AtIF1 T-DNA knockout seedlings (if1 mutant) growing under dark conditions, suggesting that AtIF1 can influence the energy state of cells. A significant reduction in seed yield and strong growth retardation under dark conditions were observed in the if1 mutant line. Furthermore, if1 plants exhibited a substantially decreased sensitivity to abscisic acid. Thus, the A. thaliana mitochondrial IF1, which is a conserved F1F0-ATPase inhibitor, is crucial for plant growth and responses to abscisic acid.
Collapse
Affiliation(s)
- Cuiting Chen
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Yiqing Meng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Liu C, Zhu P, Fan W, Feng Y, Kou M, Hu J, Zhao A. Functional analysis of drought and salt tolerance mechanisms of mulberry RACK1 gene. TREE PHYSIOLOGY 2019; 39:2055-2069. [PMID: 31728533 DOI: 10.1093/treephys/tpz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/08/2019] [Accepted: 09/24/2019] [Indexed: 05/15/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) protein acts as a central hub for the integration of many physiological processes in eukaryotic organisms. Plant RACK1 is implicated in abiotic stress responses, but the underlying molecular mechanisms of stress adaptation remain largely unknown. Here, the overexpression of the mulberry (Morus alba L.) RACK1 gene in Arabidopsis decreased tolerance to drought and salt stresses and MaRACK1 overexpression changed expression levels of genes in response to stress and stimuli. We developed a simple and efficient transient transformation system in mulberry, and the mulberry seedlings transiently expressing MaRACK1 were hypersensitive to drought and salt stresses. The expression levels of guanine nucleotide-binding protein (G-protein) encoding genes in mulberry and Arabidopsis were not affected by MaRACK1 overexpression. The interactions between RACK1 and G-proteins were confirmed, and the RACK1 proteins from mulberry and Arabidopsis could not interact with their respective G-proteins, which indicated that RACK1 may regulate stress responses independently of G-proteins. Additionally, MaRACK1 may regulate drought and salt stress tolerances by interacting with a fructose 1, 6-bisphosphate aldolase. Our findings provide new insights into the mechanisms underlying RACK1 functions in abiotic stress responses and important information for their further characterization.
Collapse
Affiliation(s)
- Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Panpan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Yang Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Min Kou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
13
|
Marín‐de la Rosa N, Lin C, Kang YJ, Dhondt S, Gonzalez N, Inzé D, Falter‐Braun P. Drought resistance is mediated by divergent strategies in closely related Brassicaceae. THE NEW PHYTOLOGIST 2019; 223:783-797. [PMID: 30955214 PMCID: PMC6771540 DOI: 10.1111/nph.15841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/29/2019] [Indexed: 05/08/2023]
Abstract
Droughts cause severe crop losses worldwide and climate change is projected to increase their prevalence in the future. Similar to the situation for many crops, the reference plant Arabidopsis thaliana (Ath) is considered drought-sensitive, whereas, as we demonstrate, its close relatives Arabidopsis lyrata (Aly) and Eutrema salsugineum (Esa) are drought-resistant. To understand the molecular basis for this plasticity we conducted a deep phenotypic, biochemical and transcriptomic comparison using developmentally matched plants. We demonstrate that Aly responds most sensitively to decreasing water availability with early growth reduction, metabolic adaptations and signaling network rewiring. By contrast, Esa is in a constantly prepared mode as evidenced by high basal proline levels, ABA signaling transcripts and late growth responses. The stress-sensitive Ath responds later than Aly and earlier than Esa, although its responses tend to be more extreme. All species detect water scarcity with similar sensitivity; response differences are encoded in downstream signaling and response networks. Moreover, several signaling genes expressed at higher basal levels in both Aly and Esa have been shown to increase water-use efficiency and drought resistance when overexpressed in Ath. Our data demonstrate contrasting strategies of closely related Brassicaceae to achieve drought resistance.
Collapse
Affiliation(s)
- Nora Marín‐de la Rosa
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
| | - Chung‐Wen Lin
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
| | - Yang Jae Kang
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
- Division of Life ScienceGyeongsang National UniversityJinju52828Korea
| | - Stijn Dhondt
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
- UMR 1332Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'Ornon Cedex33882France
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
| | - Pascal Falter‐Braun
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
- Microbe–Host InteractionsLudwig‐Maximilians‐Universität (LMU) MünchenMunich80539Germany
| |
Collapse
|
14
|
Ullah H, Hou W, Dakshanamurthy S, Tang Q. Host targeted antiviral (HTA): functional inhibitor compounds of scaffold protein RACK1 inhibit herpes simplex virus proliferation. Oncotarget 2019; 10:3209-3226. [PMID: 31143369 PMCID: PMC6524932 DOI: 10.18632/oncotarget.26907] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the small number of molecular targets in viruses and the rapid evolution of viral genes, it is very challenging to develop specific antiviral drugs. Viruses require host factors to translate their transcripts, and targeting the host factor(s) offers a unique opportunity to develop broad antiviral drugs. It is well documented that some viruses utilize a host protein, Receptor for Activated C Kinase 1 (RACK1), to translate their mRNAs using a viral mRNA secondary structure known as the Internal Ribosomal Entry Site (IRES). RACK1 is essential for the translation of many viruses including hepatitis C (HCV), polio, Drosophila C (DCV), Dengue, Cricket Paralysis (CrpV), and vaccinia viruses. In addition, HIV-1 and Herpes Simplex virus (HSV-1) are known to use IRES as well. Therefore, host RACK1 protein is an attractive target for developing broad antiviral drugs. Depletion of the host's RACK1 will potentially inhibit virus replication. This background study has led us to the development of novel antiviral therapeutics, such as RACK1 inhibitors. By utilizing the crystal structure of the RACK1A protein from the model plant Arabidopsis and using a structure based drug design method, dozens of small compounds were identified that could potentially bind to the experimentally determined functional site of the RACK1A protein. The SPR assays showed that the small compounds bound strongly to recombinant RACK1A protein. Here we provide evidence that the drugs show high efficacy in inhibition of HSV-1 proliferation in a HEp-2 cell line. The drug showed similar efficacy as the available anti-herpes drug acyclovir and showed supralinear effect when applied in a combinatorial manner. As an increasing number of viruses are reported to use host RACK1 proteins, and more than 100 diverse animals and plant disease-causing viruses are known to use IRES-based translation, these drugs can be established as host-targeted broad antiviral drugs.
Collapse
Affiliation(s)
- Hemayet Ullah
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Wangheng Hou
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Clinical and Experimental Therapeutics Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
15
|
Wang W, Wang X, Wang X, Ahmed S, Hussain S, Zhang N, Ma Y, Wang S. Integration of RACK1 and ethylene signaling regulates plant growth and development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:31-40. [PMID: 30824009 DOI: 10.1016/j.plantsci.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023]
Abstract
Arabidopsis RACK1 (Receptors for Activated C Kinase 1) are versatile scaffold proteins that have been shown to be involved in the regulation of plant response to plant hormones including auxin, ABA, gibberellin and brassinosteroid, but not ethylene. By characterizing the double and triple mutants of RACK1 genes, we found that rack1 mutants showed reduced sensitivity to ethylene. By characterizing double and high order mutants generated between ein2, a loss-of-function mutant of the key ethylene signaling regulator gene EIN2 (Ethylene INsensitive 2), and rack1 mutants, we found that loss-of-function of EIN2 partially recovered some phenotypes observed in the rack1 mutants, such as low-fertility and reduced root length and rosette size. On the other hand, the ein2 rack1 mutants produced more rosette leaves, and flowered late when compared with ein2 and the corresponding rack1 mutants. We also found that the curled leaves and twisted petioles phenotypes observed in the ein2 mutants were enhanced in the ein2 rack1 mutants. However, assays in yeast indicated that EIN2 may not physically interact with RACK1. On the other hand, RT-PCR results showed that the expression level of EIN2 was reduced in the rack1 mutants. Taken together, our results suggest that RACKl may integrate ethylene signaling to regulate plant growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Sajjad Ahmed
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Yanxing Ma
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China.
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China; College of Life Science, Linyi University, Linyi, China.
| |
Collapse
|
16
|
Eskelin K, Varjosalo M, Ravantti J, Mäkinen K. Ribosome profiles and riboproteomes of healthy and Potato virus A- and Agrobacterium-infected Nicotiana benthamiana plants. MOLECULAR PLANT PATHOLOGY 2019; 20:392-409. [PMID: 30375150 PMCID: PMC6637900 DOI: 10.1111/mpp.12764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nicotiana benthamiana is an important model plant for plant-microbe interaction studies. Here, we compared ribosome profiles and riboproteomes of healthy and infected N. benthamiana plants. We affinity purified ribosomes from transgenic leaves expressing a FLAG-tagged ribosomal large subunit protein RPL18B of Arabidopsis thaliana. Purifications were prepared from healthy plants and plants that had been infiltrated with Agrobacterium tumefaciens carrying infectious cDNA of Potato virus A (PVA) or firefly luciferase gene, referred to here as PVA- or Agrobacterium-infected plants, respectively. Plants encode a number of paralogous ribosomal proteins (r-proteins). The N. benthamiana riboproteome revealed approximately 6600 r-protein hits representing 424 distinct r-proteins that were members of 71 of the expected 81 r-protein families. Data are available via ProteomeXchange with identifier PXD011602. The data indicated that N. benthamiana ribosomes are heterogeneous in their r-protein composition. In PVA-infected plants, the number of identified r-protein paralogues was lower than in Agrobacterium-infected or healthy plants. A. tumefaciens proteins did not associate with ribosomes, whereas ribosomes from PVA-infected plants co-purified with viral cylindrical inclusion protein and helper component proteinase, reinforcing their possible role in protein synthesis during virus infection. In addition, viral NIa protease-VPg, RNA polymerase NIb and coat protein were occasionally detected. Infection did not affect the proportions of ribosomal subunits or the monosome to polysome ratio, suggesting that no overall alteration in translational activity took place on infection with these pathogens. The riboproteomic data of healthy and pathogen-infected N. benthamiana will be useful for studies on the specific use of r-protein paralogues to control translation in infected plants.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiPO Box 56FI‐00014Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiPO Box 56FI‐00014Finland
| | - Markku Varjosalo
- Institute of BiotechnologyUniversity of HelsinkiPO Box 65FI‐00014Finland
| | - Janne Ravantti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiPO Box 56FI‐00014Finland
| | - Kristiina Mäkinen
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiPO Box 56FI‐00014Finland
| |
Collapse
|
17
|
Denver JB, Ullah H. miR393s regulate salt stress response pathway in Arabidopsis thaliana through scaffold protein RACK1A mediated ABA signaling pathways. PLANT SIGNALING & BEHAVIOR 2019; 14:1600394. [PMID: 31021701 PMCID: PMC6546147 DOI: 10.1080/15592324.2019.1600394] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
Scaffold protein Receptor for Activated C Kinase 1 (RACK1) is a negative regulator of plant stress hormone - abscisic acid (ABA) mediated pathways. RACK1 has been reported to regulate global miRNA biogenesis pathway in C. elegans, humans, and in Arabidopsis. RACK1 regulates different steps of miRNA biogenesis and stability in response to different stimuli in plants. miR393s is implicated in salt stress response pathway through an antagonistic response between the stress hormone ABA-mediated salt stress and growth hormone auxin. Specifically, the known auxin receptor clade transcripts TIR1/AFB2 are the target for the miR393s. By down-regulating the auxin signaling pathways, the miR393s inhibit the regulation of salt tolerance by auxin. Here we show that genetic loss of RACK1A- the predominant member of the three genes family of RACK1 in Arabidopsis, results in the inhibition of miR393 level causing the same salt sensitivities as the individual mir393a or mir393b or the double mutant mir393ab phenotypes. We propose that down-regulation of auxin signaling through RACK1A induced miR393 biogenesis potentially regulates the Arabidopsis acclimation to salinity. Our findings fill up a molecular gap in our understanding of the role of miR393 mediated ABA and auxin-regulated salt stress responses.
Collapse
Affiliation(s)
| | - Hemayet Ullah
- Department of Biology, Howard University, Washington, DC, USA
- CONTACT Hemayet Ullah Department of Biology, Howard University, 415 College St., NW, Washington, DC 20059, USA
| |
Collapse
|
18
|
Zhang D, Wang Y, Shen J, Yin J, Li D, Gao Y, Xu W, Liang J. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. RICE (NEW YORK, N.Y.) 2018; 11:45. [PMID: 30073557 PMCID: PMC6081827 DOI: 10.1186/s12284-018-0232-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/04/2018] [Indexed: 05/22/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) is a WD40 type protein that is involved in multiple signaling pathways and is conserved from prokaryotes to eukaryotes. Here we report that rice RACK1A (OsRACK1A) is regulated by circadian clocks and plays an important role in the salt stress response. OsRACK1A was found to follow a rhythmic expression profile under circadian conditions at both the transcription and the translation levels, although the expression was arrhythmic under salt stress. Analysis of plant survival rates, fresh weight, proline content, malondialdehyde, and chlorophyll showed that suppression of OsRACK1A enhanced tolerance to salt stress. The ion concentration in both roots and leaves revealed that OsRACK1A-suppressed transgenic rice could maintain low Na+ and high K+ concentrations. Furthermore, OsRACK1A-suppressed transgenic rice accumulated significantly more abscisic acid (ABA) and more transcripts of ABA- and stress-inducible genes compared with the wild-type plants. Real-time quantitative polymerase chain reaction analysis revealed that many stress-related genes, including APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors, were upregulated in the OsRACK1A-suppressed transgenic rice line. We identified putative interactors of OsRACK1A, and found that OsRACK1A interacted with many salt stress-responsive proteins directly. These results suggest that OsRACK1A is regulated by circadian rhythm, and involved in the regulation of salt stress responses.
Collapse
Affiliation(s)
- Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jinyu Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jianfeng Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dahong Li
- Department of Biological Engineering, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Yan Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weifeng Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
20
|
Bulgakov VP, Vereshchagina YV, Bulgakov DV, Veremeichik GN, Shkryl YN. The rolB plant oncogene affects multiple signaling protein modules related to hormone signaling and plant defense. Sci Rep 2018; 8:2285. [PMID: 29396465 PMCID: PMC5797197 DOI: 10.1038/s41598-018-20694-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
The rolB plant oncogene of Agrobacterium rhizogenes perturbs many biochemical processes in transformed plant cells, thereby causing their neoplastic reprogramming. The oncogene renders the cells more tolerant to environmental stresses and herbicides and inhibits ROS elevation and programmed cell death. In the present work, we performed a proteomic analysis of Arabidopsis thaliana rolB-expressing callus line AtB-2, which represents a line with moderate expression of the oncogene. Our results show that under these conditions rolB greatly perturbs the expression of some chaperone-type proteins such as heat-shock proteins and cyclophilins. Heat-shock proteins of the DnaK subfamily were overexpressed in rolB-transformed calli, whereas the abundance of cyclophilins, members of the closely related single-domain cyclophilin family was decreased. Real-time PCR analysis of corresponding genes confirmed the reliability of proteomics data because gene expression correlated well with the expression of proteins. Bioinformatics analysis indicates that rolB can potentially affect several levels of signaling protein modules, including effector-triggered immunity (via the RPM1-RPS2 signaling module), the miRNA processing machinery, auxin and cytokinin signaling, the calcium signaling system and secondary metabolism.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia. .,Far Eastern Federal University, Vladivostok, 690950, Russia.
| | - Yulia V Vereshchagina
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| | - Dmitry V Bulgakov
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| | - Galina N Veremeichik
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| | - Yuri N Shkryl
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| |
Collapse
|
21
|
Bian Y, Deng X, Yan X, Zhou J, Yuan L, Yan Y. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Sci Rep 2017; 7:46183. [PMID: 28387352 PMCID: PMC5384013 DOI: 10.1038/srep46183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/10/2017] [Indexed: 11/18/2022] Open
Abstract
In this study, we performed the first integrated physiological and proteomic analysis of the response to drought and recovery from drought, using Brachypodium distachyon L. Roots and leaves. Drought stress resulted in leaves curling, root tips becoming darker in color and significant changes in some physiological parameters. Two-dimensional difference gel electrophoresis (2D-DIGE) identified 78 and 98 differentially accumulated protein (DAP) spots representing 68 and 73 unique proteins responding to drought stress and/or recovery in roots and leaves, respectively. Differences between the root and leaf proteome were most marked for photosynthesis, energy metabolism, and protein metabolism. In particular, some DAPs involved in energy and protein metabolism had contrasting accumulation patterns in roots and leaves. Protein-protein interaction (PPI) analysis of roots and leaves revealed complex protein interaction networks that can generate synergistic responses to drought stress and during recovery from drought. Transcript analysis using quantitative real-time polymerase chain reaction (qRT-PCR) validated the differential expression of key proteins involved in the PPI network. Our integrated physiological and proteomic analysis provides evidence for a synergistic network involved in responses to drought and active during recovery from drought, in Brachypodium roots and leaves.
Collapse
Affiliation(s)
- Yanwei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xing Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Jiaxing Zhou
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Linlin Yuan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| |
Collapse
|
22
|
A Split-Ubiquitin Based Strategy Selecting for Protein Complex-Interfering Mutations. G3-GENES GENOMES GENETICS 2016; 6:2809-15. [PMID: 27402358 PMCID: PMC5015938 DOI: 10.1534/g3.116.031369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the topologies and functions of protein interaction networks requires the selective removal of single interactions. We introduce a selection strategy that enriches among a random library of alleles for mutations that impair the binding to a given partner protein. The selection makes use of a split-ubiquitin based protein interaction assay. This assay provides yeast cells that carry protein complex disturbing mutations with the advantage of being able to survive on uracil-lacking media. Applied to the exemplary interaction between the PB domains of the yeast proteins Bem1 and Cdc24, we performed two independent selections. The selections were either analyzed by Sanger sequencing of isolated clones or by next generation sequencing (NGS) of pools of clones. Both screens enriched for the same mutation in position 833 of Cdc24. Biochemical analysis confirmed that this mutation disturbs the interaction with Bem1 but not the fold of the protein. The larger dataset obtained by NGS achieved a more complete representation of the bipartite interaction interface of Cdc24.
Collapse
|
23
|
Sabila M, Kundu N, Smalls D, Ullah H. Tyrosine Phosphorylation Based Homo-dimerization of Arabidopsis RACK1A Proteins Regulates Oxidative Stress Signaling Pathways in Yeast. FRONTIERS IN PLANT SCIENCE 2016; 7:176. [PMID: 26941753 PMCID: PMC4764707 DOI: 10.3389/fpls.2016.00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/02/2016] [Indexed: 05/21/2023]
Abstract
Scaffold proteins are known as important cellular regulators that can interact with multiple proteins to modulate diverse signal transduction pathways. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, plays regulatory roles in diverse signal transduction and stress response pathways. RACK1 in humans has been implicated in myriads of neuropathological diseases including Alzheimer and alcohol addictions. Model plant Arabidopsis thaliana genome maintains three different RACK1 genes termed RACK1A, RACK1B, and RACK1C with a very high (85-93%) sequence identity among them. Loss of function mutation in Arabidopsis indicates that RACK1 proteins regulate diverse environmental stress signaling pathways including drought and salt stress resistance pathway. Recently deduced crystal structure of Arabidopsis RACK1A- very first among all of the RACK1 proteins, indicates that it can potentially be regulated by post-translational modifications, like tyrosine phosphorylations and sumoylation at key residues. Here we show evidence that RACK1A proteins, depending on diverse environmental stresses, are tyrosine phosphorylated. Utilizing site-directed mutagenesis of key tyrosine residues, it is found that tyrosine phosphorylation can potentially dictate the homo-dimerization of RACK1A proteins. The homo-dimerized RACK1A proteins play a role in providing UV-B induced oxidative stress resistance. It is proposed that RACK1A proteins ability to function as scaffold protein may potentially be regulated by the homo-dimerized RACK1A proteins to mediate diverse stress signaling pathways.
Collapse
|
24
|
Yan Y, Jiang Y. RACK1 affects glioma cell growth and differentiation through the CNTN2-mediated RTK/Ras/MAPK pathway. Int J Mol Med 2015; 37:251-7. [PMID: 26718491 DOI: 10.3892/ijmm.2015.2421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/11/2015] [Indexed: 11/06/2022] Open
Abstract
Receptor for activated C kinase 1 (RACK1) and contactin-2 (CNTN2) are known to be abnormally expressed in gliomas; however, the association between RACK1 and CNTN2, and the effects of RACK1 and CNTN2 on glioma cell differentiation and the related molecular mechanisms remain largely unknown. The present study aimed to investigate the interaction between RACK1 and CNTN2, and to examine whether RACK1/CNTN2/receptor tyrosine kinase (RTK)/Ras/mitogen-activated protein kinase (MAPK) axis plays a role in glioma growth and differentiation. The results from western blot analysis revealed that the protein expression levels of RACK1 and CNTN2 were higher in high‑grade glioma tissues and cells, and lower in low-grade glioma tissues and cells. A co-immunoprecipitation assay demonstrated that RACK1 interacts with CNTN2, and RACK1 upregulated the expression of CNTN2. Gain-of‑function and loss-of‑function experiments indicated that both RACK1 and CNTN2 promoted glioma cell proliferation, inhibited glioma cell differentiation and activated the RTK/Ras/MAPK pathway. However, the effects of RACK1 on glioma cell proliferation, differentiation and the activation of the RTK/Ras/MAPK signaling pathway were abolished by the knockdown of CNTN2 using siRNA. In Therefore, the findings of this study firstly demonstrate that RACK1 interacts with CNTN2, and that the effects of RACK1 on glioma cell growth and differentiation are mediated by CNTN2. The RACK1/CNTN2/RTK/Ras/MAPK axis exists in glioma cells, and it may be a potential therapeutic target in gliomas.
Collapse
Affiliation(s)
- Yu Yan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
25
|
Urano D, Czarnecki O, Wang X, Jones AM, Chen JG. Arabidopsis receptor of activated C kinase1 phosphorylation by WITH NO LYSINE8 KINASE. PLANT PHYSIOLOGY 2015; 167:507-16. [PMID: 25489024 PMCID: PMC4326752 DOI: 10.1104/pp.114.247460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. Here, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1 acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1A(S122A/T162A), but not the phosphomimetic form, RACK1A(S122D/T162E), rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1A(S122D/T162E) accumulated at similar levels as those of RACK1(S122A/T162A). However, although the steady-state level of the RACK1A(S122A/T162A) protein was similar to wild-type RACK1A protein, the RACK1A(S122D/T162E) protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. Taken together, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.
Collapse
Affiliation(s)
- Daisuke Urano
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Olaf Czarnecki
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Xiaoping Wang
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Alan M Jones
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| | - Jin-Gui Chen
- Departments of Biology (D.U., A.M.J.) andPharmacology (A.M.J.), University of North Carolina, Chapel Hill, North Carolina 27599;Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (O.C., X.W., J.-G.C.); andKey Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China (X.W.)
| |
Collapse
|
26
|
Chen JG. Phosphorylation of RACK1 in plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e1022013. [PMID: 26322575 PMCID: PMC4622689 DOI: 10.1080/15592324.2015.1022013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. These findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.
Collapse
Affiliation(s)
- Jin-Gui Chen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| |
Collapse
|
27
|
Islas-Flores T, Rahman A, Ullah H, Villanueva MA. The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule. FRONTIERS IN PLANT SCIENCE 2015; 6:1090. [PMID: 26697044 PMCID: PMC4672068 DOI: 10.3389/fpls.2015.01090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/20/2015] [Indexed: 05/21/2023]
Abstract
Two decades after the first report of the plant homolog of the Receptor for Activated C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its cellular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses, developmental processes, pathogen infection resistance, environmental stress responses, and miRNA production. Such multiple functional roles are consistent with the scaffolding nature of the plant RACK1 protein. A significant advance was achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was elucidated, thus revealing that its conserved seven WD repeats also assembled into this typical topology. From its crystal structure, it became apparent that it shares the structural platform for the interaction with ligands identified in other systems such as mammals. Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack of a bona fide PKC adds complexity and enigma to the nature of the ligand partners with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant RACK1 is involved in several processes that include defense response, drought and salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information acquired indicates that, in spite of the high degree of conservation of its structure, the functions of the plant RACK1 homolog appear to be distinct and diverse from those in yeast, mammals, insects, etc. In this review, we take a critical look at the novel information regarding the many functions in which plant RACK1 has been reported to participate, with a special emphasis on the information on its currently identified and missing ligand partners.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
| | | | - Hemayet Ullah
- Department of Biology, Howard UniversityWashington, DC, USA
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoPuerto Morelos, México
- *Correspondence: Marco A. Villanueva
| |
Collapse
|
28
|
Nagaraj S, Senthil-Kumar M, Ramu VS, Wang K, Mysore KS. Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:1192. [PMID: 26779226 PMCID: PMC4702080 DOI: 10.3389/fpls.2015.01192] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/11/2015] [Indexed: 05/20/2023]
Abstract
Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens.
Collapse
Affiliation(s)
- Satish Nagaraj
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Vemanna S. Ramu
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
| | - Keri Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc.Ardmore, OK, USA
- *Correspondence: Kirankumar S. Mysore
| |
Collapse
|
29
|
González-Calixto C, Cázares-Raga FE, Cortés-Martínez L, Del Angel RM, Medina-Ramírez F, Mosso C, Ocádiz-Ruiz R, Valenzuela JG, Rodríguez MH, Hernández-Hernández FDLC. AealRACK1 expression and localization in response to stress in C6/36 HT mosquito cells. J Proteomics 2014; 119:45-60. [PMID: 25555378 DOI: 10.1016/j.jprot.2014.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/21/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The Receptor for Activated C Kinase 1 (RACK1), a scaffold protein member of the tryptophan-aspartate (WD) repeat family, folds in a seven-bladed β-propeller structure that permits the association of proteins to form active complexes. Mosquitoes of the genus Aedes sp., are vectors of virus producing important diseases such as: dengue, chikungunya and yellow fever. Based on the highly conserved gene sequence of AeaeRACK1 of the mosquito Aedes aegypti we characterized the mRNA and protein of the homologous AealRACK1 from the Ae. albopictus-derived cell line C6/36 HT. Two protein species differing in MW/pI values were observed at 35kDa/8.0 and 36kDa/6.5. The behavior of AealRACK1 was studied inducing stress with serum deprivation and the glucocorticoid dexamethasone. Both stressors induced increase of the expression of AealRACK1 mRNA and proteins. In serum-deprived cells AealRACK1 protein was located cortically near the plasma membrane in contrast to dexamethasone-treated cells where the protein formed a dotted pattern in the cytoplasm. In addition, 33 protein partners were identified by immunoprecipitation and mass spectrometry. Most of the identified proteins were ribosomal, involved in signaling pathways and stress responses. Our results suggest that AealRACK1 in C6/36 HT cells respond to stress increasing its synthesis and producing phosphorylated activated form. BIOLOGICAL SIGNIFICANCE Insect cells adapt to numerous environmental stressors, including chemicals and invasion of pathogenic microorganisms among others, coordinating cellular and organismal responses. Individual cells sense the environment using receptors that trigger signaling pathways that regulate expression of specific effector proteins and/or cellular responses as movement or secretion. In the coordination of responses to stress, scaffold proteins are pivotal molecules that recruit other proteins forming active complexes. The Receptor for Activated C Kinase 1 (RACK1) is the best studied member of the conserved tryptophan-aspartate (WD) repeat family. RACK1 folds in a seven-bladed β-propeller structure and it could be activated during stress, participating in different signaling pathways. The presence and activities of RACK1 in mosquitoes had not been documented before, in this work the molecule is demonstrated in an Aedes albopictus-derived cell line and its reaction to stress is observed under the effect of serum deprivation and the presence of glucocorticoid analog dexamethasone, a chemical used to cause stress in vitro.
Collapse
Affiliation(s)
- Cecilia González-Calixto
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Rosa María Del Angel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Fernando Medina-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Clemente Mosso
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Ramón Ocádiz-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Jesús G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos, Mexico
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico.
| |
Collapse
|
30
|
Myklebust LM, Horvli O, Raae AJ. RACK1 (receptor for activated C-kinase 1) interactions with spectrin repeat elements. J Mol Recognit 2014; 28:49-58. [PMID: 26268370 DOI: 10.1002/jmr.2411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Line M. Myklebust
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| | - Ole Horvli
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| | - Arnt J. Raae
- Department of Molecular Biology; University of Bergen; HIB, Thormoehlens gt. 55 N-5020 Bergen Norway
| |
Collapse
|
31
|
Lindquist E, Alezzawi M, Aronsson H. Bioinformatic indications that COPI- and clathrin-based transport systems are not present in chloroplasts: an Arabidopsis model. PLoS One 2014; 9:e104423. [PMID: 25137124 PMCID: PMC4138088 DOI: 10.1371/journal.pone.0104423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
Coated vesicle transport occurs in the cytosol of yeast, mammals and plants. It consists of three different transport systems, the COPI, COPII and clathrin coated vesicles (CCV), all of which participate in the transfer of proteins and lipids between different cytosolic compartments. There are also indications that chloroplasts have a vesicle transport system. Several putative chloroplast-localized proteins, including CPSAR1 and CPRabA5e with similarities to cytosolic COPII transport-related proteins, were detected in previous experimental and bioinformatics studies. These indications raised the hypothesis that a COPI- and/or CCV-related system may be present in chloroplasts, in addition to a COPII-related system. To test this hypothesis we bioinformatically searched for chloroplast proteins that may have similar functions to known cytosolic COPI and CCV components in the model plants Arabidopsis thaliana and Oryza sativa (subsp. japonica) (rice). We found 29 such proteins, based on domain similarity, in Arabidopsis, and 14 in rice. However, many components could not be identified and among the identified most have assigned roles that are not related to either COPI or CCV transport. We conclude that COPII is probably the only active vesicle system in chloroplasts, at least in the model plants. The evolutionary implications of the findings are discussed.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mohamed Alezzawi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Hsieh HL, Okamoto H. Molecular interaction of jasmonate and phytochrome A signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2847-57. [PMID: 24868039 DOI: 10.1093/jxb/eru230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytochrome family of red (R) and far-red (FR) light receptors (phyA-phyE in Arabidopsis) play important roles throughout plant development and regulate elongation growth during de-etiolation and under light. Phytochromes regulate growth through interaction with the phytohormones gibberellin, auxin, and brassinosteroid. Recently it has been established that jasmonic acid (JA), a phytohormone for stress responses, namely wounding and defence, is also important in inhibition of hypocotyl growth regulated by phyA and phyB. This review focuses on recent advances in our understanding of the molecular basis of the interaction between JA and phytochrome signalling particularly during seedling development in Arabidopsis. Significantly, JA biosynthesis genes are induced by phyA. The protein abundance of JAR1/FIN219, an enzyme for the final synthesis step to give JA-Ile, an active form of JA, is also determined by phyA. In addition, JAR1/FIN219 directly interacts with an E3-ligase, COP1, a master regulator for transcription factors regulating hypocotyl growth, suggesting a more direct role in growth regulation. There are a number of points of interaction in the molecular signalling of JA and phytochrome during seedling development in Arabidopsis, and we propose a model for how they work together to regulate hypocotyl growth.
Collapse
Affiliation(s)
- Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Haruko Okamoto
- Centre for Biological Sciences, University of Southampton, Southampton, UK Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Iwate, Japan
| |
Collapse
|
33
|
OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS One 2014; 9:e97120. [PMID: 24865690 PMCID: PMC4035261 DOI: 10.1371/journal.pone.0097120] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction.
Collapse
|
34
|
Tarnowski K, Fituch K, Szczepanowski RH, Dadlez M, Kaus-Drobek M. Patterns of structural dynamics in RACK1 protein retained throughout evolution: a hydrogen-deuterium exchange study of three orthologs. Protein Sci 2014; 23:639-51. [PMID: 24591271 DOI: 10.1002/pro.2448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/15/2022]
Abstract
RACK1 is a member of the WD repeat family of proteins and is involved in multiple fundamental cellular processes. An intriguing feature of RACK1 is its ability to interact with at least 80 different protein partners. Thus, the structural features enabling such interactomic flexibility are of great interest. Several previous studies of the crystal structures of RACK1 orthologs described its detailed architecture and confirmed predictions that RACK1 adopts a seven-bladed β-propeller fold. However, this did not explain its ability to bind to multiple partners. We performed hydrogen-deuterium (H-D) exchange mass spectrometry on three orthologs of RACK1 (human, yeast, and plant) to obtain insights into the dynamic properties of RACK1 in solution. All three variants retained similar patterns of deuterium uptake, with some pronounced differences that can be attributed to RACK1's divergent biological functions. In all cases, the most rigid structural elements were confined to B-C turns and, to some extent, strands B and C, while the remaining regions retained much flexibility. We also compared the average rate constants for H-D exchange in different regions of RACK1 and found that amide protons in some regions exchanged at least 1000-fold faster than in others. We conclude that its evolutionarily retained structural architecture might have allowed RACK1 to accommodate multiple molecular partners. This was exemplified by our additional analysis of yeast RACK1 dimer, which showed stabilization, as well as destabilization, of several interface regions upon dimer formation.
Collapse
Affiliation(s)
- Krzysztof Tarnowski
- Institute of Biochemistry and Biophysics Department, Polish Academy of Science, 02-106, Warsaw, Poland
| | | | | | | | | |
Collapse
|
35
|
Speth C, Laubinger S. RACK1 and the microRNA pathway: is it déjà-vu all over again? PLANT SIGNALING & BEHAVIOR 2014; 9:e27909. [PMID: 24521556 PMCID: PMC4091593 DOI: 10.4161/psb.27909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/19/2014] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) control many aspects of development and adaption in plants and in animals by post-transcriptional control of mRNA stability and translatability. Over the last years numerous proteins have been identified in the miRNA pathway. The versatile scaffold protein RACK1 has been associated with efficient miRNA production and function in plants and metazoans. Here, we briefly summarize the differences of RACK1 function in the plant and animal miRNA pathways and discuss putative mechanisms and functional roles of RACK1 in miRNA biogenesis and action.
Collapse
Affiliation(s)
- Corinna Speth
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
- Chemical Genomics Centre (CGC) of the Max Planck Society; Dortmund, Germany, & MPI for Developmental Biology; Tübingen, Germany
| | - Sascha Laubinger
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
- Chemical Genomics Centre (CGC) of the Max Planck Society; Dortmund, Germany, & MPI for Developmental Biology; Tübingen, Germany
| |
Collapse
|
36
|
Chang J, Clay JM, Chang C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:558-67. [PMID: 24635651 PMCID: PMC4040253 DOI: 10.1111/tpj.12401] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 05/20/2023]
Abstract
Ethylene plays important roles in plant growth, development and stress responses, and is perceived by a family of receptors that repress ethylene responses when ethylene is absent. Repression by the ethylene receptor ETR1 depends on an integral membrane protein, REVERSION TO ETHYLENE SENSITIVITY1 (RTE1), which acts upstream of ETR1 in the endoplasmic reticulum (ER) membrane and Golgi apparatus. To investigate RTE1 function, we screened for RTE1-interacting proteins using the yeast split-ubiquitin assay, which yielded the ER-localized cytochrome b(5) (Cb5) isoform D. Cb5s are small hemoproteins that perform electron transfer reactions in all eukaryotes, but their roles in plants are relatively uncharacterized. Using bimolecular fluorescence complementation (BiFC), we found that all four ER-localized Arabidopsis Cb5 isoforms (AtCb5–B, -C, -D and -E) interact with RTE1 in plant cells. In support of this interaction, atcb5 mutants exhibited phenotypic parallels with rte1 mutants in Arabidopsis. Phenotypes included partial suppression of etr1–2 ethylene insensitivity, and no suppression of RTE1-independent ethylene receptor isoforms. The single loss-of-function mutants atcb5–b, -c and -d appeared similar to the wild-type, but double mutant combinations displayed slight ethylene hypersensitivity. Over-expression of AtCb5–D conferred reduced ethylene sensitivity similar to that conferred by RTE1 over-expression, and genetic analyses suggested that AtCb5–D acts upstream of RTE1 in the ethylene response. These findings suggest an unexpected role for Cb5, in which Cb5 and RTE1 are functional partners in promoting ETR1-mediated repression of ethylene signaling.
Collapse
Affiliation(s)
| | | | - Caren Chang
- Corresponding author: Caren Chang, Department of Cell Biology and Molecular Genetics, Bioscience Research Building, Bldg 413, University of Maryland, College Park, MD 20742, USA, Phone: 301-405-1643, Fax: 301-314-1248,
| |
Collapse
|