1
|
Zhang ZA, Liu MY, Ren SN, Liu X, Gao YH, Zhu CY, Niu HQ, Chen BW, Liu C, Yin W, Wang HL, Xia X. Identification of WUSCHEL-related homeobox gene and truncated small peptides in transformation efficiency improvement in Eucalyptus. BMC PLANT BIOLOGY 2023; 23:604. [PMID: 38030990 PMCID: PMC10688041 DOI: 10.1186/s12870-023-04617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The WUSCHEL-related Homeobox (WOX) genes, which encode plant-specific homeobox (HB) transcription factors, play crucial roles in regulating plant growth and development. However, the functions of WOX genes are little known in Eucalyptus, one of the fastest-growing tree resources with considerable widespread cultivation worldwide. RESULTS A total of nine WOX genes named EgWOX1-EgWOX9 were retrieved and designated from Eucalyptus grandis. From the three divided clades marked as Modern/WUS, Intermediate and Ancient, the largest group Modern/WUS (6 EgWOXs) contains a specific domain with 8 amino acids: TLQLFPLR. The collinearity, cis-regulatory elements, protein-protein interaction network and gene expression analysis reveal that the WUS proteins in E. grandis involve in regulating meristems development and regeneration. Furthermore, by externally adding of truncated peptides isolated from WUS specific domain, the transformation efficiency in E. urophylla × E. grandis DH32-29 was significant enhanced. The transcriptomics data further reveals that the use of small peptides activates metabolism pathways such as starch and sucrose metabolism, phenylpropanoid biosynthesis and flavonoid biosynthesis. CONCLUSIONS Peptides isolated from WUS protein can be utilized to enhance the transformation efficiency in Eucalyptus, thereby contributing to the high-efficiency breeding of Eucalyptus.
Collapse
Affiliation(s)
- Zhuo-Ao Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mei-Ying Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shu-Ning Ren
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue-Hao Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chen-Yu Zhu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hao-Qiang Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bo-Wen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, Guangxi, 530002, China
| | - Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Nandety RS, Wen J, Mysore KS. Medicago truncatula resources to study legume biology and symbiotic nitrogen fixation. FUNDAMENTAL RESEARCH 2023; 3:219-224. [PMID: 38932916 PMCID: PMC11197554 DOI: 10.1016/j.fmre.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022] Open
Abstract
Medicago truncatula is a chosen model for legumes towards deciphering fundamental legume biology, especially symbiotic nitrogen fixation. Current genomic resources for M. truncatula include a completed whole genome sequence information for R108 and Jemalong A17 accessions along with the sparse draft genome sequences for other 226 M. truncatula accessions. These genomic resources are complemented by the availability of mutant resources such as retrotransposon (Tnt1) insertion mutants in R108 and fast neutron bombardment (FNB) mutants in A17. In addition, several M. truncatula databases such as small secreted peptides (SSPs) database, transporter protein database, gene expression atlas, proteomic atlas, and metabolite atlas are available to the research community. This review describes these resources and provide information regarding how to access these resources.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
| | - Kirankumar S. Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States
| |
Collapse
|
3
|
Chaudhary R, Singh S, Kaur K, Tiwari S. Genome-wide identification and expression profiling of WUSCHEL-related homeobox ( WOX) genes confer their roles in somatic embryogenesis, growth and abiotic stresses in banana. 3 Biotech 2022; 12:321. [PMID: 36276441 PMCID: PMC9556689 DOI: 10.1007/s13205-022-03387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-specific WUSCHEL-related homeobox (WOX) transcription factors are known to be involved in plant developmental processes, especially in embryogenesis. In this study, a total of thirteen WOX members were identified in the banana (Musa acuminata) genome (MaWOX) and characterized for in-silico analysis. Phylogenetic analysis revealed that these genes were divided into three clades (ancient, intermediate and modern) which reflected the evolutionary history of WOX families. Furthermore, modern clade members have shown higher variations in gene structural features and carried unique conserved motifs (motif 3 and motif 4) when compared to the members of other clades. The differential expression of all 13 MaWOX was observed in early (embryogenic cell suspension (ECS), multiplying ECS, germinating embryos, young leaflet and node of germinated plantlets) and late (unripe fruit peel and pulp, ripe fruit peel and pulp) developmental stages of banana cultivar Grand Naine. The maximum expression of MaWOX6 (18 fold) and MaWOX13 (120 fold) was found during somatic embryogenesis and in unripe fruit pulp, respectively. Moreover, numerous cis-elements responsive to drought, cold, ethylene, methyl jasmonate (MeJA), abscisic acid (ABA) and gibberellic acid (GA) were observed in all MaWOX promoter regions. The subsequent expression analysis under various abiotic stresses (cold, drought and salt) revealed maximum expression of the MaWOX3 (830 fold), MaWOX8a (30 fold) and MaWOX11b (105 fold) in salt stress. It gives evidence about their possible role in salt stress tolerance in banana. Hence, the present study provides precise information on the MaWOX gene family and their expression in various tissues and stressful environmental conditions that may help to develop climate-resilient banana plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03387-w.
Collapse
Affiliation(s)
- Roni Chaudhary
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| | - Surender Singh
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001 India
| | - Karambir Kaur
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab 140306 India
| |
Collapse
|
4
|
Ren H, Chen S, Hou J, Li H. Genome-wide identification, expression analyses of Wuschel-related homeobox (WOX) genes in Brachypodium distachyon and functional characterization of BdWOX12. Gene X 2022; 836:146691. [PMID: 35738446 DOI: 10.1016/j.gene.2022.146691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
As one kind of plant-specific transcription factors (TFs), WOX (Wuschel-related homeobox) plays an essential role in plant growth and development. In this study, 21 WOX TFs were identified in Brachypodium distachyon. They were divided into ancient, intermediate, and WUS clades based on phylogenetic analysis. These 21 BdWOX genes are mapped on 5 chromosomes unevenly. In the promoters, the most abundant cis-elements are ABRE, TGACG-motif, and G-box. qRT-PCR results showed that most BdWOX genes are expressed in vegetative and reproductive organs. Meanwhile, the expression of 14, 12, and 15 BdWOX genes are up-regulated by exogenous 6-BA, NAA, and GA, respectively. These results indicated that BdWOX genes participate in hormone signaling and regulate plant growth and development. Overexpression of BdWOX12 in Arabidopsis improved the root system, further indicating the functions of BdWOX genes in growth and development. This study provided a basis for the functional elucidation of BdWOX genes.
Collapse
Affiliation(s)
- Hongyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Jiayuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712000, China.
| |
Collapse
|
5
|
Zeng RF, Fu LM, Deng L, Liu MF, Gan ZM, Zhou H, Hu SF, Hu CG, Zhang JZ. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:828-848. [PMID: 35165956 DOI: 10.1111/tpj.15707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luo Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Feng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Pathak PK, Zhang F, Peng S, Niu L, Chaturvedi J, Elliott J, Xiang Y, Tadege M, Deng J. Structure of the unique tetrameric STENOFOLIA homeodomain bound with target promoter DNA. Acta Crystallogr D Struct Biol 2021; 77:1050-1063. [PMID: 34342278 PMCID: PMC8329861 DOI: 10.1107/s205979832100632x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Homeobox transcription factors are key regulators of morphogenesis and development in both animals and plants. In plants, the WUSCHEL-related homeobox (WOX) family of transcription factors function as central organizers of several developmental programs ranging from embryo patterning to meristematic stem-cell maintenance through transcriptional activation and repression mechanisms. The Medicago truncatula STENOFOLIA (STF) gene is a master regulator of leaf-blade lateral development. Here, the crystal structure of the homeodomain (HD) of STF (STF-HD) in complex with its promoter DNA is reported at 2.1 Å resolution. STF-HD binds DNA as a tetramer, enclosing nearly the entire bound DNA surface. The STF-HD tetramer is partially stabilized by docking of the C-terminal tail of one protomer onto a conserved hydrophobic surface on the head of another protomer in a head-to-tail manner. STF-HD specifically binds TGA motifs, although the promoter sequence also contains TAAT motifs. Helix α3 not only serves a canonical role as a base reader in the major groove, but also provides DNA binding in the minor groove through basic residues located at its C-terminus. The structural and functional data in planta reported here provide new insights into the DNA-binding mechanisms of plant-specific HDs from the WOX family of transcription factors.
Collapse
Affiliation(s)
- Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Juhi Chaturvedi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Justin Elliott
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
7
|
Wang H, Kong F, Zhou C. From genes to networks: The genetic control of leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1181-1196. [PMID: 33615731 DOI: 10.1111/jipb.13084] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 05/15/2023]
Abstract
Substantial diversity exists for both the size and shape of the leaf, the main photosynthetic organ of flowering plants. The two major forms of leaf are simple leaves, in which the leaf blade is undivided, and compound leaves, which comprise several leaflets. Leaves form at the shoot apical meristem from a group of undifferentiated cells, which first establish polarity, then grow and differentiate. Each of these processes is controlled by a combination of transcriptional regulators, microRNAs and phytohormones. The present review documents recent advances in our understanding of how these various factors modulate the development of both simple leaves (focusing mainly on the model plant Arabidopsis thaliana) and compound leaves (focusing mainly on the model legume species Medicago truncatula).
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
| |
Collapse
|
8
|
Wolabu TW, Wang H, Tadesse D, Zhang F, Behzadirad M, Tvorogova VE, Abdelmageed H, Liu Y, Chen N, Chen J, Allen RD, Tadege M. WOX9 functions antagonistic to STF and LAM1 to regulate leaf blade expansion in Medicago truncatula and Nicotiana sylvestris. THE NEW PHYTOLOGIST 2021; 229:1582-1597. [PMID: 32964420 DOI: 10.1111/nph.16934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
WOX family transcription factors regulate multiple developmental programs. The intermediate clade transcriptional activator WOX9 functions together with the modern clade transcriptional repressor WOX genes in embryogenesis and meristems maintenance, but the mechanism of this interaction is unclear. STF and LAM1 are WOX1 orthologs required for leaf blade outgrowth in Medicago truncatula and Nicotiana sylvestris, respectively. Using biochemical methods and genome editing technology, here we show that WOX9 is an abaxial factor and functions antagonistically to STF and LAM1 to regulate leaf blade development. While NsWOX9 ectopic expression enhances the lam1 mutant phenotype, and antisense expression partially rescues the lam1 mutant, both overexpression and knockout of NsWOX9 in N. sylvestris resulted in a range of severe leaf blade distortions, indicating important role in blade development. Our results indicate that direct repression of WOX9 by WUS clade repressor STF/LAM1 is required for correct blade architecture and patterning in M. truncatula and N. sylvestris. These findings suggest that controlling transcriptional activation and repression mechanisms by direct interaction of activator and repressor WOX genes may be required for cell proliferation and differentiation homeostasis, and could be an evolutionarily conserved mechanism for the development of complex and diverse morphology in flowering plants.
Collapse
Affiliation(s)
- Tezera W Wolabu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Hui Wang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dimiru Tadesse
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Fei Zhang
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Marjan Behzadirad
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Varvara E Tvorogova
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, 199034, Russia
| | - Haggag Abdelmageed
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Agricultural Botany, Faculty of Agriculture, Cairo University, Giza,, 12613, Egypt
| | - Ye Liu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Naichong Chen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Randy D Allen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
9
|
Jha P, Ochatt SJ, Kumar V. WUSCHEL: a master regulator in plant growth signaling. PLANT CELL REPORTS 2020; 39:431-444. [PMID: 31984435 DOI: 10.1007/s00299-020-02511-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 05/24/2023]
Abstract
This review summarizes recent knowledge on functions of WUS and WUS-related homeobox (WOX) transcription factors in diverse signaling pathways governing shoot meristem biology and several other aspects of plant dynamics. Transcription factors (TFs) are master regulators involved in controlling different cellular and biological functions as well as diverse signaling pathways in plant growth and development. WUSCHEL (WUS) is a homeodomain transcription factor necessary for the maintenance of the stem cell niche in the shoot apical meristem, the differentiation of lateral primordia, plant cell totipotency and other diverse cellular processes. Recent research about WUS has uncovered several unique features including the complex signaling pathways that further improve the understanding of vital network for meristem biology and crop productivity. In addition, several reports bridge the gap between WUS expression and plant signaling pathway by identifying different WUS and WUS-related homeobox (WOX) genes during the formation of shoot (apical and axillary) meristems, vegetative-to-embryo transition, genetic transformation, and other aspects of plant growth and development. In this respect, the WOX family of TFs comprises multiple members involved in diverse signaling pathways, but how these pathways are regulated remains to be elucidated. Here, we review the current status and recent discoveries on the functions of WUS and newly identified WOX family members in the regulatory network of various aspects of plant dynamics.
Collapse
Affiliation(s)
- Priyanka Jha
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, Action Area II, Kolkata, West Bengal, India
| | - Sergio J Ochatt
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Vijay Kumar
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
10
|
Satterlee JW, Scanlon MJ. Coordination of Leaf Development Across Developmental Axes. PLANTS 2019; 8:plants8100433. [PMID: 31652517 PMCID: PMC6843618 DOI: 10.3390/plants8100433] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Leaves are initiated as lateral outgrowths from shoot apical meristems throughout the vegetative life of the plant. To achieve proper developmental patterning, cell-type specification and growth must occur in an organized fashion along the proximodistal (base-to-tip), mediolateral (central-to-edge), and adaxial–abaxial (top-bottom) axes of the developing leaf. Early studies of mutants with defects in patterning along multiple leaf axes suggested that patterning must be coordinated across developmental axes. Decades later, we now recognize that a highly complex and interconnected transcriptional network of patterning genes and hormones underlies leaf development. Here, we review the molecular genetic mechanisms by which leaf development is coordinated across leaf axes. Such coordination likely plays an important role in ensuring the reproducible phenotypic outcomes of leaf morphogenesis.
Collapse
Affiliation(s)
- James W Satterlee
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Michael J Scanlon
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Zhang F, Wang H, Kalve S, Wolabu TW, Nakashima J, Golz JF, Tadege M. Control of leaf blade outgrowth and floral organ development by LEUNIG, ANGUSTIFOLIA3 and WOX transcriptional regulators. THE NEW PHYTOLOGIST 2019; 223:2024-2038. [PMID: 31087654 DOI: 10.1111/nph.15921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 05/27/2023]
Abstract
Plant lateral organ development is a complex process involving both transcriptional activation and repression mechanisms. The WOX transcriptional repressor WOX1/STF, the LEUNIG (LUG) transcriptional corepressor and the ANGUSTIFOLIA3 (AN3) transcriptional coactivator play important roles in leaf blade outgrowth and flower development, but how these factors coordinate their activities remains unclear. Here we report physical and genetic interactions among these key regulators of leaf and flower development. We developed a novel in planta transcriptional activation/repression assay and suggest that LUG could function as a transcriptional coactivator during leaf blade development. MtLUG physically interacts with MtAN3, and this interaction appears to be required for leaf and flower development. A single amino acid substitution at position 61 in the SNH domain of MtAN3 protein abolishes its interaction with MtLUG, and its transactivation activity and biological function. Mutations in lug and an3 enhanced each other's mutant phenotypes. Both the lug and the an3 mutations enhanced the wox1 prs leaf and flower phenotypes in Arabidopsis. Our findings together suggest that transcriptional repression and activation mediated by the WOX, LUG and AN3 regulators function in concert to promote leaf and flower development, providing novel mechanistic insights into the complex regulation of plant lateral organ development.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Hui Wang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Shweta Kalve
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Tezera W Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jin Nakashima
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Vic, 3010, Australia
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
12
|
Meng Y, Liu H, Wang H, Liu Y, Zhu B, Wang Z, Hou Y, Zhang P, Wen J, Yang H, Mysore KS, Chen J, Tadege M, Niu L, Lin H. HEADLESS, a WUSCHEL homolog, uncovers novel aspects of shoot meristem regulation and leaf blade development in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:149-163. [PMID: 30272208 PMCID: PMC6305195 DOI: 10.1093/jxb/ery346] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 05/10/2023]
Abstract
The formation and maintenance of the shoot apical meristem (SAM) are critical for plant development. However, the underlying molecular mechanism of regulating meristematic cell activity is poorly understood in the model legume Medicago truncatula. Using forward genetic approaches, we identified HEADLESS (HDL), a homolog of Arabidopsis WUSCHEL, required for SAM maintenance and leaf development in M. truncatula. Disruption of HDL led to disorganized specification and arrest of the SAM and axillary meristems, resulting in the hdl mutant being locked in the vegetative phase without apparent stem elongation. hdl mutant leaves are shorter in the proximal-distal axis due to reduced leaf length elongation, which resulted in a higher blade width/length ratio and altered leaf shape, uncovering novel phenotypes undescribed in the Arabidopsis wus mutant. HDL functions as a transcriptional repressor by recruiting MtTPL through its conserved WUS-box and EAR-like motif. Further genetic analysis revealed that HDL and STENOFOLIA (STF), a key regulator of M. truncatula lamina outgrowth, act independently in leaf development although HDL could recruit MtTPL in the same manner as STF does. Our results indicate that HDL has conserved and novel functions in regulating shoot meristems and leaf shape in M. truncatula, providing new avenues for understanding meristem biology and plant development.
Collapse
Affiliation(s)
- Yingying Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Sam Noble Parkway, Ardmore, OK, USA
| | - Ye Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Butuo Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zuoyi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaling Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengcheng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangqi Wen
- Noble Research Institute, LLC, Sam Noble Parkway, Ardmore, OK, USA
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | | | - Jianghua Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Sam Noble Parkway, Ardmore, OK, USA
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|
13
|
Identification and Functional Divergence Analysis of WOX Gene Family in Paper Mulberry. Int J Mol Sci 2017; 18:ijms18081782. [PMID: 28813005 PMCID: PMC5578171 DOI: 10.3390/ijms18081782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023] Open
Abstract
The WOX (WUSCHEL-related homeobox) is a plant-specific transcription factor involved in plant development and stress response. However, few studies have been reported on the WOX gene in woody plants. In this study, 10 BpWOX genes were isolated from paper mulberry by RACE-PCR and categorized into three clades through phylogenetic analysis, ancient, intermediate and WUS clade. Among them, five members had the transcriptional activity detected by yeast one-hybrid and seven were uniquely localized to the nucleus through green fluorescent protein (GFP) observation. The expression patterns of BpWOX genes in different tissues and under diverse treatments were quantified by the qRT-PCR method. Results showed that BpWUS was expressed in the apical bud, stem and root, BpWOX5 and BpWOX7 functioned only in the root tip, and three BpWOXs regulated leaf development redundantly. BpWOX9 and BpWOX10 were induced by indole-3-acetic acid (IAA) or jasmonic acid (JA), while BpWOX2 was repressed by five phytohormones. Interestingly, most BpWOX genes were responsive to the abiotic stress stimuli of drought, salt, cold, and cadmium (CdCl2). Together, our study revealed that BpWOXs were functionally divergent during paper mulberry development and environmental adaptation, which might be related to their evolutionary relationships. Our work will benefit the systematic understanding of the precise function of WOX in plant development and environmental stress responses.
Collapse
|
14
|
Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis. PLoS Genet 2017; 13:e1006649. [PMID: 28264034 PMCID: PMC5358894 DOI: 10.1371/journal.pgen.1006649] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/20/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs.
Collapse
|
15
|
Niu L, Lin H, Zhang F, Watira TW, Li G, Tang Y, Wen J, Ratet P, Mysore KS, Tadege M. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:480-92. [PMID: 25492397 DOI: 10.1111/tpj.12743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/03/2014] [Indexed: 05/09/2023]
Abstract
The Medicago truncatula WOX gene, STENOFOLIA (STF), and its orthologs in Petunia, pea, and Nicotiana sylvestris are required for leaf blade outgrowth and floral organ development as demonstrated by severe phenotypes in single mutants. But the Arabidopsis wox1 mutant displays a narrow leaf phenotype only when combined with the prs/wox3 mutant. In maize and rice, WOX3 homologs are major regulators of leaf blade development. Here we investigated the role of WOX3 in M. truncatula development by isolating the lfl/wox3 loss-of-function mutant and performing genetic crosses with the stf mutant. Lack of WOX3 function in M. truncatula leads to a loose-flower (lfl) phenotype, where defects are observed in sepal and petal development, but leaf blades are apparently normal. The stf lfl double mutant analysis revealed that STF and LFL act mainly independently with minor redundant functions in flower development, but LFL has no obvious role in leaf blade outgrowth in M. truncatula on its own or in combination with STF. Interestingly, LFL acts as a transcriptional repressor by recruiting TOPLESS in the same manner as STF does, and can substitute for STF function in leaf blade and flower development if expressed under the STF promoter. STF also complements the lfl mutant phenotype in the flower if expressed under the LFL promoter. Our data suggest that the STF/WOX1 and LFL/WOX3 genes of M. truncatula employ a similar mechanism of action in organizing cell proliferation for lateral outgrowth but may have evolved different cis elements to acquire distinct functions.
Collapse
Affiliation(s)
- Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|