1
|
Niu T, Qian H, Chen H, Luo Q, Chen J, Yang R, Zhang P, Wang T. H 2O 2 drives the transition from conchocelis to conchosporangia in the red alga Pyropia haitanensis with promotion facilitated by 1-Aminocyclopropane-1-carboxylic acid. FRONTIERS IN PLANT SCIENCE 2024; 15:1379428. [PMID: 38533401 PMCID: PMC10963560 DOI: 10.3389/fpls.2024.1379428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The Bangiales represent an ancient lineage within red algae that are characterized by a life history featuring a special transitional stage from diploid to haploid known as the conchosporangia stage. However, the regulatory mechanisms governing the initiation of this stage by changes in environmental conditions are not well understood. This study analyzed the changes in phytohormones and H2O2 content during the development of conchosporangia. It also compared the gene expression changes in the early development of conchosporangia through transcriptome analysis. The findings revealed that H2O2 was shown to be the key signal initiating the transition from conchocelis to conchosporangia in Pyropia haitanensis. Phytohormone analysis showed a significant increase in 1-aminocylopropane-1-carboxylic acid (ACC) levels during conchosporangia maturation, while changes in environmental conditions were found to promote the rapid release of H2O2. H2O2 induction led to conchosporangia development, and ACC enhanced both H2O2 production and conchosporangia development. This promotive effect was inhibited by the NADPH oxidase inhibitor diphenylene iodonium and the H2O2 scavenger N, N'-dimethylthiourea. The balance of oxidative-antioxidative mechanisms was maintained by regulating the activities and transcriptional levels of enzymes involved in H2O2 production and scavenging. Transcriptome analysis in conjunction with evaluation of enzyme and transcription level changes revealed upregulation of protein and sugar synthesis along with modulation of energy supply under the conditions that induced maturation, and exogenous ACC was found to enhance the entire process. Overall, this study demonstrates that ACC enhances H2O2 promotion of the life cycle switch responsible for the transition from a vegetative conchocelis to a meiosis-preceding conchosporangia stage in Bangiales species.
Collapse
Affiliation(s)
- Tingting Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Haike Qian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China
| | - Qijun Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China
| | - Peng Zhang
- Department of Genetic breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Tiegan Wang
- Department of Genetic breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| |
Collapse
|
2
|
Supajaruwong S, Porahong S, Wibowo A, Yu YS, Khan MJ, Pongchaikul P, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Scaling-up of carbon dots hydrothermal synthesis from sugars in a continuous flow microreactor system for biomedical application as in vitro antimicrobial drug nanocarrier. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2260298. [PMID: 37859865 PMCID: PMC10583617 DOI: 10.1080/14686996.2023.2260298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Carbon dots (CDs) are a new class of nanomaterials exhibiting high biocompatibility, water solubility, functionality, and tunable fluorescence (FL) property. Due to the limitations of batch hydrothermal synthesis in terms of low CDs yield and long synthesis duration, this work aimed to increase its production capacity through a continuous flow reactor system. The influence of temperature and time was first studied in a batch reactor for glucose, xylose, sucrose and table sugar precursors. CDs synthesized from sucrose precursor exhibited the highest quantum yield (QY) (175.48%) and the average diameter less than 10 nm (~6.8 ± 1.1 nm) when synthesized at 220°C for 9 h. For a flow reactor system, the best condition for CDs production from sucrose was 1 mL min-1 flow rate at 280°C, and 0.2 MPa pressure yielding 53.03% QY and ~ 6.5 ± 0.6 nm average diameter (6.6 mg min-1 of CDs productivity). CDs were successfully used as ciprofloxacin (CP) nanocarrier for antimicrobial activity study. The cytotoxicity study showed that no effect of CDs on viability of L-929 fibroblast cells was detected until 1000 µg mL-1 CDs concentration. This finding demonstrates that CDs synthesized via a flow reactor system have a high zeta potential and suitable surface properties for nano-theranostic applications.
Collapse
Affiliation(s)
- Siriboon Supajaruwong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Sirawich Porahong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Zhang XH, Vichyavichien P, Nifakos N, Kaplan N, Jin XL, Wellman A, Spanoudis A, Klingler M. KED gene expression in early response to wounding stress in tomato plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13978. [PMID: 37616012 DOI: 10.1111/ppl.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The wounding-responsive KED gene, named for its coding for a lysine (K), glutamic acid (E), and aspartic acid (D)-rich protein, is widely present among land plants. However, little is known about its regulation or function. In this study, we found that transcription of the tomato (Solanum lycopersicum) KED gene, SlKED, was rapidly and transiently elevated by wounding or ethephon treatment. Compared to the wild-type plants, the CRISPR/Cas9-mediated SlKED knockout plants did not exhibit altered expression patterns for genes involved in hormone biosynthesis or stress signaling, suggesting a lack of pleiotropic effect on other stress-responsive genes. Conversely, jasmonic acid did not appear to directly regulate SlKED expression. Wounded leaves of the KED-lacking plants exhibited higher binding of Evans blue dye than the wild-type, indicating a possible role for KED in healing damaged tissues. The SlKED knockout plants showed a similar dietary effect as the wild-type on the larval growth of tobacco hornworm. But a higher frequency of larval mandible (mouth) movement was recorded during the first 2 minutes of feeding on the wounded KED-lacking SlKED knockout plants than on the wounded KED-producing wild-type plants, probably reflecting an initial differential response by the feeding larvae to the SlKED knockout plants. Our findings suggest that SlKED may be an ethylene-mediated early responder to mechanical stress in tomato, acting downstream of the wound stress response pathways. Although its possible involvement in response to other biotic and abiotic stresses is still unclear, we propose that SlKED may play a role in plant's rapid, short-term, early wounding responses, such as in cellular damage healing.
Collapse
Affiliation(s)
- Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Paveena Vichyavichien
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Nicholas Nifakos
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Noah Kaplan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Xiao-Lu Jin
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Annalise Wellman
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Alexander Spanoudis
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Marcos Klingler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
4
|
Prokopoviča V, Ievinsh G. Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020370. [PMID: 36679083 PMCID: PMC9862674 DOI: 10.3390/plants12020370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to develop an experimental system for an exploration of ethylene-dependent responses using intact growing Ranunculus sceleratus plants and to approbate the system for assessing the role of ethylene in salinity tolerance and ion accumulation. Plants were cultivated in sealed plastic containers in a modified gaseous atmosphere by introducing ethylene or 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. High humidity inside the containers induced a fast elongation of the leaf petioles of R. sceleratus. The effect was ethylene-dependent, as 1-MCP completely blocked it, but exogenous ethylene further promoted petiole elongation. Exogenous ethylene decreased (by 48%) but 1-MCP increased (by 48%) the Na+ accumulation in leaf blades of NaCl-treated plants. The experimental system was further calibrated with ethylene and silica xerogel, and the optimum concentrations were found for inducing leaf petiole elongation (10 μL L-1 ethylene) and preventing leaf petiole elongation (200 g silica xerogel per 24 L), respectively. The second experiment involved a treatment with NaCl in the presence of 1-MCP, ethylene, or 1-MCP + ethylene, both in normal and high air humidity conditions. In high humidity conditions, NaCl inhibited petiole elongation by 25% and ethylene treatment fully reversed this inhibition and stimulated elongation by 12% in comparison to the response of the control plants. Treatment with 1-MCP fully prevented this ethylene effect. In normal humidity conditions, NaCl inhibited petiole elongation by 20%, which was reversed by ethylene without additional elongation stimulation. However, 1-MCP only partially inhibited the ethylene effect on petiole elongation. In high humidity conditions, ethylene inhibited Na+ accumulation in NaCl-treated plants by 14%, but 1-MCP reversed this effect. In conclusion, the stimulation of endogenous ethylene production in R. sceleratus plants at a high air humidity or in flooded conditions reverses the inhibitory effect of salinity on plant growth and concomitantly inhibits the accumulation of Na+ in tissues. R. sceleratus is a highly promising model species for use in studies regarding ethylene-dependent salinity responses and ion accumulation potential involving the manipulation of a gaseous environment.
Collapse
|
5
|
Zhang C, Shang D, Zhang Y, Gao X, Liu D, Gao Y, Li Y, Qi Y, Qiu L. Two Hybrid Histidine Kinases Involved in the Ethylene Regulation of the Mycelial Growth and Postharvest Fruiting Body Maturation and Senescence of Agaricus bisporus. Microbiol Spectr 2022; 10:e0241122. [PMID: 36125274 PMCID: PMC9603746 DOI: 10.1128/spectrum.02411-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/02/2022] [Indexed: 01/04/2023] Open
Abstract
Ethylene regulates mycelial growth, primordium formation, and postharvest mushroom maturation and senescence in the white button mushroom, Agaricus bisporus. However, it remains unknown how ethylene is detected by the mushroom. In this study, we found that two hybrid histidine kinases in the mushroom, designated AbETR1 and AbETR2, showed domain structures similar to those of plant ethylene receptors. The transmembrane helices of AbETR1 and AbETR2 were expressed in yeast cells and showed ethylene-binding activities. Mushroom strains with downregulated expressions of AbETR1 and AbETR2 showed reduced sensitivity to the ethylene inhibition of mycelial growth, ethylene regulation of their own synthesis, postharvest mushroom maturation, and senescence and expression of maturation- and senescence-related genes. Therefore, AbETR1 and AbETR2 are expected to be biologically functional ethylene receptors and exhibit a different mode of action from that of the receptors of plants. Here, we fill gaps in the knowledge pertaining to higher fungus ethylene receptors, discover a novel mode of action of ethylene receptors, confirm ethylene as a novel fungal hormone, and provide a facilitated approach for preventing the maturation and senescence of postharvest button mushrooms. IMPORTANCE Ethylene regulates diverse physiological activities in bacteria, cyanobacteria, fungi, and plants, but how to perceive ethylene by fungi only remains unknown. In this study, we identify two biologically functional ethylene receptors in the basidiomycete fungus Agaricus bisporus, which fills the gaps of deficient fungal ethylene receptors. Furthermore, we found that decreased expression of the ethylene receptors facilitates preventing the maturation and senescence of postharvest button mushrooms, indicating that the two fungal ethylene receptors positively regulate the ethylene response, in contrast to that in plants.
Collapse
Affiliation(s)
- Chaohui Zhang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Di Shang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Yan Zhang
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Xiyang Gao
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Dehai Liu
- Institute of Biology Co., Ltd., Henan Academy of Science, Zhengzhou, China
| | - Yuqian Gao
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Yanan Li
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Yuancheng Qi
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| | - Liyou Qiu
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
| |
Collapse
|
6
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
7
|
Lee BR, Zaman R, La VH, Park SH, Kim TH. Ethephon-Induced Ethylene Enhances Protein Degradation in Source Leaves, but Its High Endogenous Level Inhibits the Development of Regenerative Organs in Brassica napus. PLANTS 2021; 10:plants10101993. [PMID: 34685802 PMCID: PMC8537263 DOI: 10.3390/plants10101993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
To investigate the regulatory role of ethylene in the source-sink relationship for nitrogen remobilization, short-term effects of treatment with different concentrations (0, 25, 50, and 75 ppm) of ethephon (2-chloroethylphosphonic acid, an ethylene inducing agent) for 10 days (EXP 1) and long-term effects at 20 days (Day 30) after treatment with 100 ppm for 10 days (EXP 2) on protein degradation and amino acid transport in foliar sprayed mature leaves of Brassica napus (cv. Mosa) were determined. In EXP 1, endogenous ethylene concentration gradually increased in response to the treated ethephon concentration, leading to the upregulation of senescence-associated gene 12 (SAG12) expression and downregulation of chlorophyll a/b-binding protein (CAB) expression. Further, the increase in ethylene concentration caused a reduction in protein, Rubisco, and amino acid contents in the mature leaves. However, the activity of protease and expression of amino acid transporter (AAP6), an amino acid transport gene, were not significantly affected or slightly suppressed between the treatments with 50 and 75 ppm. In EXP 2, the enhanced ethylene level reduced photosynthetic pigments, leading to an inhibition of flower development without any pod development. A significant increase in protease activity, confirmed using in-gel staining of protease, was also observed in the ethephon-treated mature leaves. Ethephon application enhanced the expression of four amino acid transporter genes (AAP1, AAP2, AAP4, and AAP6) and the phloem loading of amino acids. Significant correlations between ethylene level, induced by ethephon application, and the descriptive parameters of protein degradation and amino acid transport were revealed. These results indicated that an increase in ethylene upregulated nitrogen remobilization in the mature leaves (source), which was accompanied by an increase in proteolytic activity and amino acid transport, but had no benefit to pod (sink) development.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (R.Z.); (V.H.L.); (S.-H.P.)
- Asian Pear Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Rashed Zaman
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (R.Z.); (V.H.L.); (S.-H.P.)
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Van Hien La
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (R.Z.); (V.H.L.); (S.-H.P.)
- Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Quyet Thang Commune, Thai Nguyen City 24119, Vietnam
| | - Sang-Hyun Park
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (R.Z.); (V.H.L.); (S.-H.P.)
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Korea; (B.-R.L.); (R.Z.); (V.H.L.); (S.-H.P.)
- Correspondence: ; Tel.: +82-62-530-2126
| |
Collapse
|
8
|
Uji T, Endo H, Mizuta H. Sexual Reproduction via a 1-Aminocyclopropane-1-Carboxylic Acid-Dependent Pathway Through Redox Modulation in the Marine Red Alga Pyropia yezoensis (Rhodophyta). FRONTIERS IN PLANT SCIENCE 2020; 11:60. [PMID: 32117396 PMCID: PMC7028691 DOI: 10.3389/fpls.2020.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 05/07/2023]
Abstract
The transition from the vegetative to sexually reproductive phase is the most dynamic change to occur during a plant's life cycle. In the present study, we showed that the ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) induces sexual reproduction in the marine red alga Pyropia yezoensis independently from ethylene. Exogenous application of ACC, which contains a three membered carbocyclic ring, promoted the formation of spermatia and carporspores in gametophytes, whereas ethephon, an ethylene-releasing compound, did not stimulate sexual reproduction. In addition, an ACC analog, 1-aminocyclobutane-1-carboxylic acid (ACBC), which contains a four membered carbocyclic ring, promoted sexual reproduction and enhanced tolerance to oxidative stress in the same manner as ACC, but 1-aminocyclopentane-1-carboxylic acid (cycloleucine; which contains a cyclopentane ring) did not. The application of ACC increased the generation of reactive oxygen species (ROS) and induced the expression of PyRboh gene encoding NADPH oxidase. ACC also stimulated the synthesis of ascorbate (AsA) by inducing transcripts of PyGalLDH, which encodes galactono-1,4-lactone dehydrogenase, the catalyst for the final enzymatic step of the AsA biosynthetic pathway. Conversely, ACC caused a decrease in the synthesis of glutathione (GSH) by repressing transcripts of PyGCL, which encodes glutamate cysteine ligase, the catalyst for the rate-limiting step in the formation of GSH. These results suggest a possible role played by ACC as a signaling molecule independent from ethylene in the regulation of sexual reproduction through alterations to the redox state in P. yezoensis.
Collapse
|
9
|
Robison JD, Yamasaki Y, Randall SK. The Ethylene Signaling Pathway Negatively Impacts CBF/DREB-Regulated Cold Response in Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2019; 10:121. [PMID: 30853961 PMCID: PMC6396728 DOI: 10.3389/fpls.2019.00121] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/24/2019] [Indexed: 05/18/2023]
Abstract
During cold stress, soybean CBF/DREB1 transcript levels increase rapidly; however, expected downstream targets appear unresponsive. Here, we asked whether the ethylene signaling pathway, which is enhanced in the cold can negatively regulate the soybean CBF/DREB1 cold responsive pathway; thus contributing to the relatively poor cold tolerance of soybean. Inhibition of the ethylene signaling pathway resulted in a significant increase in GmDREB1A;1 and GmDREB1A;2 transcripts, while stimulation led to decreased GmDREB1A;1 and GmDREB1B;1 transcripts. A cold responsive reporter construct (AtRD29Aprom::GFP/GUS), as well as predicted downstream targets of soybean CBF/DREB1 [Glyma.12g015100 (ADH), Glyma.14g212200 (ubiquitin ligase), Glyma.05g186700 (AP2), and Glyma.19g014600 (CYP)] were impacted by the modulation of the ethylene signaling pathway. Photosynthetic parameters were affected by ethylene pathway stimulation, but only at control temperatures. Freezing tolerance (as measured by electrolyte leakage), free proline, and MDA; in both acclimated and non-acclimated plants were increased by silver nitrate but not by other ethylene pathway inhibitors. This work provides evidence that the ethylene signaling pathway, possibly through the action of EIN3, transcriptionally inhibits the CBF/DREB1 pathway in soybean.
Collapse
Affiliation(s)
| | | | - Stephen K. Randall
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
10
|
Mira MM, Huang S, Kapoor K, Hammond C, Hill RD, Stasolla C. Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5653-5668. [PMID: 29059380 PMCID: PMC5853930 DOI: 10.1093/jxb/erx371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Maintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1). The death program experienced by the suppression of AtPgb1 in stressed roots was mediated by reactive oxygen species (ROS) and ethylene. Suppression of ROS synthesis or ethylene perception reduced PCD and partially restored root growth. The PEG-induced cessation of root growth was preceded by structural changes in the root apical meristem (RAM), including the loss of cell and tissue specification, possibly as a result of alterations in PIN1- and PIN4-mediated auxin accumulation at the root pole. These events were attenuated by the overexpression of AtPgb1 and aggravated when AtPgb1 was suppressed. Specifically, suppression of AtPgb1 compromised the functionality of the WOX5-expressing quiescent cells (QCs), leading to the early and premature differentiation of the adjacent columella stem cells and to a rapid reduction in meristem size. The expression and localization of other root domain markers, such as SCARECROW (SCR), which demarks the endodermis and QCs, and WEREWOLF (WER), which specifies the lateral root cap, were also most affected in PEG-treated roots with suppressed AtPgb1. Collectively, the results demonstrate that AtPgb1 exercises a protective role in roots exposed to lethal levels of PEG, and suggest a novel function of this gene in ensuring meristem functionality through the retention of cell fate specification.
Collapse
Affiliation(s)
- Mohamed M Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Karuna Kapoor
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cassandra Hammond
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Correspondence:
| |
Collapse
|
11
|
Augimeri RV, Strap JL. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582. Front Microbiol 2015; 6:1459. [PMID: 26733991 PMCID: PMC4686702 DOI: 10.3389/fmicb.2015.01459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/04/2015] [Indexed: 01/22/2023] Open
Abstract
Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature.
Collapse
Affiliation(s)
| | - Janice L. Strap
- Molecular Microbial Biochemistry Laboratory, Faculty of Science, University of Ontario Institute of Technology, OshawaON, Canada
| |
Collapse
|
12
|
Catinot J, Huang JB, Huang PY, Tseng MY, Chen YL, Gu SY, Lo WS, Wang LC, Chen YR, Zimmerli L. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes. PLANT, CELL & ENVIRONMENT 2015; 38:2721-34. [PMID: 26038230 DOI: 10.1111/pce.12583] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/26/2015] [Indexed: 05/02/2023]
Abstract
The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens.
Collapse
Affiliation(s)
- Jérémy Catinot
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Jing-Bo Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pin-Yao Huang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Min-Yuan Tseng
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ying-Lan Chen
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Long-Chi Wang
- Department of Life Science and Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Khan MIR, Khan NA. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. PROTOPLASMA 2014; 251:1007-19. [PMID: 24477804 DOI: 10.1007/s00709-014-0610-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/03/2014] [Indexed: 05/18/2023]
Abstract
We investigated the influence of exogenously sourced ethylene (200 μL L(-1) ethephon) in the protection of photosynthesis against 200 mg kg(-1) soil each of nickel (Ni)- and zinc (Zn)-accrued stress in mustard (Brassica juncea L.). Plants grown with Ni or Zn but without ethephon exhibited increased activity of 1-aminocyclopropane carboxylic acid synthase, and ethylene with increased oxidative stress measured as H2O2 content and lipid peroxidation compared with control plants. The oxidative stress in Ni-grown plants was higher than Zn-grown plants. Under metal stress, ethylene protected photosynthetic potential by efficient PS II activity and through increased activity of ribulose-1,5-bisphosphate carboxylase and photosynthetic nitrogen use efficiency (P-NUE). Application of 200 μL L(-1) ethephon to Ni- or Zn-grown plants significantly alleviated toxicity and reduced the oxidative stress to a greater extent together with the improved net photosynthesis due to induced activity of ascorbate peroxidase and glutathione (GSH) reductase, resulting in increased production of reduced GSH. Ethylene formation resulting from ethephon application alleviated Ni and Zn stress by reducing oxidative stress caused by stress ethylene production and maintained increased GSH pool. The involvement of ethylene in reversal of photosynthetic inhibition by Ni and Zn stress was related to the changes in PS II activity, P-NUE, and antioxidant capacity was confirmed using ethylene action inhibitor, norbornadiene.
Collapse
Affiliation(s)
- M Iqbal R Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | | |
Collapse
|
14
|
Xu A, Zhang W, Wen CK. ENHANCING ctr1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:48. [PMID: 24529183 PMCID: PMC3933193 DOI: 10.1186/1471-2229-14-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/12/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND The signal output of ethylene receptor family members is mediated by unknown mechanisms to activate the Raf-like protein CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) in negatively regulating ethylene signaling. The physical interaction between the ethylene receptor histidine kinase (HK) domain and CTR1 N terminus is essential to the CTR1-mediated receptor signal output. To advance our knowledge of the involvement of CTR1-mediated ethylene receptor signaling, we performed a genetic screen for mutations that enhanced the constitutive ethylene response in the weak ctr1-10 allele. RESULTS We isolated a loss-of-function allele of ENHANCING ctr1-10 ETHYLENE RESPONSE2 (ECR2) and found that ecr2-1 ctr1-10 and the strong allele ctr1-1 conferred a similar, typical constitutive ethylene response phenotype. Genetic analyses and transformation studies suggested that ECR2 acts downstream of the ethylene receptors and upstream of the transcription factors ETHYLENE INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1), which direct the expression of ethylene response genes. Signal output by the N terminus of the ethylene receptor ETHYLENE RESPONSE1 (ETR1) can be mediated by a pathway independent of CTR1. Expression of the N terminus of the ethylene-insensitive etr1-1 but not the full-length isoform rescued the ecr2-1 ctr1-10 phenotype, which indicates the involvement of ECR2 in CTR1-mediated but not -independent, ethylene receptor signaling. ECR2 was mapped to the centromere region on chromosome 2. With incomplete sequence and annotation information and rare chromosome recombination events in this region, the cloning of ECR2 is challenging and still in progress. CONCLUSIONS ECR2 is a novel allele involved in the ethylene receptor signaling that is mediated by CTR1. CTR1 activation by ethylene receptors may require ECR2 for suppressing the ethylene response.
Collapse
Affiliation(s)
- Aibei Xu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai 200032, China
| |
Collapse
|
15
|
Wang Q, Zhang W, Yin Z, Wen CK. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4863-75. [PMID: 24006427 PMCID: PMC3830475 DOI: 10.1093/jxb/ert272] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the ethylene-receptor signal output occurs at the endoplasmic reticulum and is mediated by the Raf-like protein CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) but is prevented by overexpression of the CTR1 N terminus. A phylogenic analysis suggested that rice OsCTR2 is closely related to CTR1, and ectopic expression of CTR1p:OsCTR2 complemented Arabidopsis ctr1-1. Arabidopsis ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE SENSOR1 physically interacted with OsCTR2 on yeast two-hybrid assay, and green fluorescence protein-tagged OsCTR2 was localized at the endoplasmic reticulum. The osctr2 loss-of-function mutation and expression of the 35S:OsCTR2 (1-513) transgene that encodes the OsCTR2 N terminus (residues 1-513) revealed several and many aspects, respectively, of ethylene-induced growth alteration in rice. Because the osctr2 allele did not produce all aspects of ethylene-induced growth alteration, the ethylene-receptor signal output might be mediated in part by OsCTR2 and by other components in rice. Yield-related agronomic traits, including flowering time and effective tiller number, were altered in osctr2 and 35S:OsCTR2 (1-513) transgenic lines. Applying prolonged ethylene treatment to evaluate ethylene effects on rice without compromising rice growth is technically challenging. Our understanding of roles of ethylene in various aspects of growth and development in japonica rice varieties could be advanced with the use of the osctr2 and 35S:OsCTR2 (1-513) transgenic lines.
Collapse
Affiliation(s)
- Qin Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Zhongming Yin
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| |
Collapse
|
16
|
Iqbal N, Masood A, Khan MIR, Asgher M, Fatma M, Khan NA. Cross-talk between sulfur assimilation and ethylene signaling in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e22478. [PMID: 23104111 PMCID: PMC3745555 DOI: 10.4161/psb.22478] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 05/06/2023]
Abstract
Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the influence of S on ethylene signaling is meagre although it is a constituent of cysteine (Cys) required for the synthesis of reduced glutathione (GSH) and S-adenosyl methionine (SAM), a precursor of ethylene biosynthesis. Thus, there may be an interaction between S assimilation, ethylene signaling and plant responses under optimal and stressful environmental conditions. The present review emphasizes that responses of plants to S involve ethylene action. This evaluation will provide an insight into the details of interactive role of S and ethylene signaling in regulating plant processes and prove profitable for developing sustainability under changing environmental conditions.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Asim Masood
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | | | - Mohd Asgher
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Mehar Fatma
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Nafees A. Khan
- Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
17
|
Qiu L, Xie F, Yu J, Wen CK. Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. PLANT PHYSIOLOGY 2012; 159:1263-76. [PMID: 22566492 PMCID: PMC3387708 DOI: 10.1104/pp.112.193979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/03/2012] [Indexed: 05/20/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) ethylene receptor Ethylene Response1 (ETR1) can mediate the receptor signal output via its carboxyl terminus interacting with the amino (N) terminus of Constitutive Triple Response1 (CTR1) or via its N terminus (etr1¹⁻³⁴⁹ or the dominant ethylene-insensitive etr1-1¹⁻³⁴⁹) by an unknown mechanism. Given that CTR1 is essential to ethylene receptor signaling and that overexpression of Reversion To Ethylene Sensitivity1 (RTE1) promotes ETR1 N-terminal signaling, we evaluated the roles of CTR1 and RTE1 in ETR1 N-terminal signaling. The mutant phenotype of ctr1-1 and ctr1-2 was suppressed in part by the transgenes etr1¹⁻³⁴⁹ and etr1-1¹⁻³⁴⁹, with etr1-1 conferring ethylene insensitivity. Coexpression of 35S:RTE1 and etr1¹⁻³⁴⁹ conferred ethylene insensitivity in ctr1-1, whereas suppression of the ctr1-1 phenotype by etr1¹⁻³⁴⁹ was prevented by rte1-2. Thus, RTE1 was essential to ETR1 N-terminal signaling independent of the CTR1 pathway. An excess amount of the CTR1 N terminus CTR1⁷⁻⁵⁶⁰ prevented ethylene receptor signaling, and the CTR1⁷⁻⁵⁶⁰ overexpressor CTR1-Nox showed a constitutive ethylene response phenotype. Expression of the ETR1 N terminus suppressed the CTR1-Nox phenotype. etr1¹⁻³⁴⁹ restored the ethylene insensitivity conferred by dominant receptor mutant alleles in the ctr1-1 background. Therefore, ETR1 N-terminal signaling was not mediated by full-length ethylene receptors; rather, full-length ethylene receptors acted cooperatively with the ETR1 N terminus to mediate the receptor signal independent of CTR1. ETR1 N-terminal signaling may involve RTE1, receptor cooperation, and negative regulation by the ETR1 carboxyl terminus.
Collapse
|