1
|
Yao Q, Duan R, Feng Y, Duan D. Alternative splicing analysis of stress tolerance to Al and flg22 in Vitis quinquangularis. PLANTA 2025; 261:139. [PMID: 40366460 DOI: 10.1007/s00425-025-04713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
MAIN CONCLUSION Alternative splicing of transcriptomes after Al and flg22 treatment for 12 h in response to plant defense of Chinese wild Vitis quinquangularis: genes related to stress resistance and splicing factors were identified in response to Al and flg22 treatment. Alternative splicing (AS) is one of the major post-transcriptional regulation processes that potentially regulates the response to biotic and abiotic stresses in plants. So far, the insight into potential roles of AS in grapevine response to aluminium (Al) and flagellin 22 (flg22) stresses remains poorly understood. We performed transcriptome sequencing of grape leaves before and after Al treatment and flg22 treatment, respectively, to identify AS genes. In this study, a total of 11,805 AS events were identified in Al treatment, of which the skipped exon (SE; 88.72%) type was the most frequent. 9156 AS events were identified under flg22 treatment, of which the SE (88.52%) type was the most frequent. Compared with Al-treated and flg22-treated 0 h, there were 42 and 147 differential alternative splicing (DAS) genes differentially expressed (DASEGs) in Al-treated and flg22-treated 12 h, respectively. Functional analysis showed that DASEGs after Al treatment were mainly enriched in glutathione metabolism pathway; DASEGs after flg22 treatment were enriched in MAPK signaling and plant hormone signal transduction. We further verified seven resistance-related DASEGs with up-regulated expression in Al-treated 12 h, including beta-glucosidase, calcineurin B-like protein, synaptotagmin-3, cysteine synthase and glutathione reductase. Several genes function as leucine-rich repeats receptor-like serine/threonine protein kinase, BRI1 associated receptor kinase 1 and receptor-like protein kinase were also verified by RT-qPCR. We also verified four serine/arginine (SR)-rich proteins SCL30A, SCL28, RS2Z32 and SR45A, which were up-regulated in both Al and flg22 stresses. In conclusion, this study provides an in-depth analysis of the correlation between alternative splicing and grapevine stress tolerance, which helps to identify potential candidate genes for useful traits, provides a theoretical basis for grapevine breeding in plant stress tolerance, and offers new perspectives for understanding grapevine environmental adaptation strategies.
Collapse
Affiliation(s)
- Qian Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ruiwei Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yang Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Yu H, Shi X, Ning N, Wu H, Mei J, Gu X, Ruan H, Zhang M, Li Z, Ma S, Liu W. The Exserohilum turcicum effector EtEC81 reprograms alternative splicing in maize and activates immunity. Cell Rep 2025; 44:115501. [PMID: 40173045 DOI: 10.1016/j.celrep.2025.115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/26/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Some pathogen-derived effectors reprogram mRNA splicing in host plants to regulate plant immune responses. Whether effectors from Exserohilum turcicum, which causes northern corn leaf blight (NLB), interfere with RNA splicing remains unknown. We identify that the secreted protein EtEC81 (Exserohilum turcicum effector 81) modulates the alternative splicing (AS) of maize (Zea mays) pre-mRNAs and negatively regulates the pathogenicity of E. turcicum. EtEC81 physically interacts with MAIZE EtEC81-INTERACTING PROTEIN 1 (ZmEIP1), which associates with maize spliceosome components, modulates AS in host cells, and positively regulates defense responses against E. turcicum. Transcriptome analysis identifies 119 common events with altered AS in maize plants transiently overexpressing ZmEIP1 or EtEC81, suggesting that these factors cause the misregulation of cellular activities and thus induce immune responses. Together, our results suggest that the EtEC81 effector targets ZmEIP1 to reprogram pre-mRNA splicing in maize. These findings provide a mechanistic basis and potential target gene for preventing NLB.
Collapse
Affiliation(s)
- Haiyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuetao Shi
- Xianghu Laboratory, Hangzhou 311231, China
| | - Na Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongliang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongchun Ruan
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shoucai Ma
- Xianghu Laboratory, Hangzhou 311231, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Hernández-Urrieta J, Álvarez JM, O’Brien JA. Exploring Alternative Splicing in Response to Salinity: A Tissue-Level Comparative Analysis Using Arabidopsis thaliana Public Transcriptomic Data. PLANTS (BASEL, SWITZERLAND) 2025; 14:1064. [PMID: 40219132 PMCID: PMC11991229 DOI: 10.3390/plants14071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Increased soil salinity is a major threat to global agriculture and food security, caused mainly by anthropogenic activities and changing climatic cycles. Plants responses to salinity involve multiple regulatory layers, from transcriptome reprogramming to proteomic and metabolomic changes. Alternative splicing (AS) plays a role in coordinating the response to salinity, yet its extent, tissue, and condition specificity, remain poorly understood aspects. In this study, we used 52 publicly available RNA-seq datasets of salinity treatment to identify differential alternative splicing (DAS) events and genes participating in the response to this stimulus. Our findings reveal that either independently or coordinately, AS can regulate up to 20% of the transcriptome detected in Arabidopsis, with treatment intensity being the most determining factor. Moreover, we show that AS regulation was highly tissue-specific, with roots displaying strong AS-mediated stress responses. Furthermore, cross-stress comparisons showed that roots have a core set of AS-regulated genes associated with stress response and development, with functionally distinct sets of genes when comparing salt with other stresses, while also conserving a relevant condition-specific response. We demonstrate the need to integrate AS analysis to better understand plant adaptation mechanisms and highlight the key role of AS in salinity responses, revealing shared AS regulation between salt, heat, and drought responses.
Collapse
Affiliation(s)
- Jesús Hernández-Urrieta
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile
| | - José Miguel Álvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile;
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- ANID–Millenium Science Initiative Program–Millenium Nucleus in Data Science for Plant Resilience (Phytolearning), Santiago 8370186, Chile
| | - José Antonio O’Brien
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile
| |
Collapse
|
4
|
Chen X, Shao Y, Jiang Y, Seung D, Guzmán C, Xu Q, Zhang Y, Chen Q, Tang H, Qi P, Deng M, Ma J, Chen G, Wang J, Wei Y, Zheng Y, Jiang Q. Reducing amylose content in wheat (Triticum aestivum L.) using a novel Wx-D1 null allele generated by chemical mutagenesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2332-2341. [PMID: 39503064 DOI: 10.1002/jsfa.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Amylose has a major influence over starch properties and end-use quality in wheat. The granule-bound starch synthase I, encoded by Wx-1, is the single enzyme responsible for amylose synthesis. Natural null mutants of Wx-1 appear at extremely low frequencies, particularly in the Wx-D1 locus, where only four spontaneous null variants have been identified, with different geographic origins. The current study identified an induced Wx-D1 null mutant (M4-9484) from the M4 generation of an ethyl methanesulfonate-mutagenized population of wheat cv. 'SM126'. RESULTS The sequencing showed that the complete Wx-D1 ORF sequences of 'SM126' and M4-9484 were 2862 bp long and that there was one SNP mutation between them. The mutation was located at the RNA splice site within the junction of exon 8 and intron 8, which led to abnormal transcription of Wx-D1, with five different aberrant transcripts being identified in the mutant. The Wx-D1 null allele resulted in amylose and total starch content being decreased in M4-9484 in comparison with the wild-type 'SM126', with higher swelling capacity and being fully pasted at higher temperatures than the wild-type parent. CONCLUSION The mutation of the Wx-D1 null gene affects the formation of amylose directly, resulting in significantly altered starch properties. This discovery offers valuable insights for enhancing wheat starch quality and contributes to the diversification of starch characteristics. It also deepens our understanding of the genetic and molecular mechanisms underlying amylose synthesis, thereby supporting breeding programs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongchun Shao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Eswaran M, Shanmugavel S, Madhuvanthi CK, Thangaraj K, Aiyar B, Dev SA, Balakrishnan S, Ulaganathan K, Podicheti S, Dasgupta MG. Comparative transcriptomics reveals potential regulators of climate adaptation in Santalum album L. (Indian Sandalwood). 3 Biotech 2025; 15:64. [PMID: 39963148 PMCID: PMC11829887 DOI: 10.1007/s13205-025-04218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/19/2025] [Indexed: 02/20/2025] Open
Abstract
Santalum album L. (Indian Sandalwood), a valued tree species known for its fragrant heartwood and essential oil is facing increasing threat due to severe anthropogenic pressures compounded by climate change which has resulted in depletion of its adaptive gene pool. The present study investigates the transcriptome-level responses of nine sandalwood genotypes sourced from diverse climatic zones to identify adaptive genes in the species. Comparative transcriptomics predicted 727, 1141 and 479 differentially expressed transcripts (DETs) across wet vs. dry; monsoon vs. dry and wet vs. monsoon conditions, respectively, and majority of DETs were up-regulated in samples sourced from high rainfall areas. Transcripts including heat shock proteins, Zinc finger binding protein, ribosomal proteins, transcription factors and protein kinase were identified as probable regulators of climate adaptation in S. album. The expression changes of eight selected transcripts were further validated by real-time quantitative PCR. Protein-protein interaction analysis revealed key hub transcripts involved in climate response, while alternative splicing events in transcripts such as SURP and G-patch domain-containing protein 1-like protein, G-type lectin S-receptor-like serine/threonine protein kinase B120, Tetraspanin-3 and ARM repeat superfamily protein indicated the probable role of alternate splicing in increasing the transcript diversity during adaptation. This study presents the first insight into the molecular mechanisms of climate adaptation in the species and can form the basis for specific interventions such as selective breeding, genetic manipulation, and habitat management for conservation and long-term survival of sandalwood. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04218-4.
Collapse
Affiliation(s)
- Muthulakshmi Eswaran
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Senthilkumar Shanmugavel
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Chandramouli K. Madhuvanthi
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Karthick Thangaraj
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Balasubramanian Aiyar
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| | - Suma Arun Dev
- Kerala Forest Research Institute, Peechi, Thrissur, Kerala India
| | | | | | - Sneha Podicheti
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, Telangana India
| | - Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, ICFRE - Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 Tamil Nadu India
| |
Collapse
|
6
|
Li Y, Kou S. A Ralstonia solanacearum Effector Targets Splicing Factor SR34a to Reprogram Alternative Splicing and Regulate Plant Immunity. PLANTS (BASEL, SWITZERLAND) 2025; 14:534. [PMID: 40006793 PMCID: PMC11859261 DOI: 10.3390/plants14040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 02/27/2025]
Abstract
Alternative splicing is a critical post-transcriptional regulatory mechanism in eukaryotes. While infection with Ralstonia solanacearum GMI1000 significantly alters plant alternative splicing patterns, the underlying molecular mechanisms remain unclear. Herein, the effect of the GMI1000 Type III secretion system effectors on alternative splicing in the tomato cultivar Heinz 1706 was investigated. The RNA-seq analysis confirmed genome-wide alternative splicing changes induced by the Type III secretion system in tomato, including 1386 differential alternatively spliced events across 1023 genes, many of which are associated with plant defense. Seven nucleus-localized Type III effectors were transiently expressed in an RLPK splicing reporter system transgenic tobacco, identifying RipP2 as an effector that modulates alternative splicing levels. Sequence analysis, protein-protein interaction assays, and AlphaFold2 structural predictions revealed that RipP2 interacted with the tomato splicing factor SR34a. Furthermore, RipP2 acetylated a conserved lysine at position 132 within the SWQDLKD motif of SR34a, regulating its splicing pattern in defense-related genes and modulating plant immunity. This study elucidates how the "RipP2-SR34a module" influences plant immune responses by regulating the alternative splicing of immune-related genes, providing new insights into pathogen-plant interactions and splicing regulation.
Collapse
Affiliation(s)
- Yunyun Li
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Song Kou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| |
Collapse
|
7
|
Li L, Zhang Y, Zhang R, Cen X, Huang Y, Hu H, Jiang X, Ling Y. Splicing and expression dynamics of SR genes in hot pepper ( Capsicum annuum): regulatory diversity and conservation under stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1524163. [PMID: 39917603 PMCID: PMC11798799 DOI: 10.3389/fpls.2024.1524163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
In this study, we identified and characterized 23 genes encoding serine/arginine-rich (SR) protein in hot pepper (Capsicum annuum), named CaSR here. These CaSR proteins are grouped into seven subfamilies. Phylogenetic analysis revealed a high degree of similarity between CaSRs and their homologous proteins in other plants. Promoter regions of SR proteins are enriched with elements relating to light response, stress, hormone signaling, and plant growth. Notably, transcription levels of several proteins, including CaSR33, CaSR34, and CaSR34a, were upregulated by salt, drought, and cold stresses, suggesting potential roles of these proteins in stress tolerance. We also observed an increase of CaSR transcript population resulting from alternative splicing (AS) regulation, mainly intron retention. AS patterns of CaSR genes varied among tissues. Higher AS intensity was found in the RS subfamily, while some genes in the RSZ subfamily showed no AS regulation under the conditions used here. Interestingly, a cross-species comparative study with Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) showed that many AS events impact the region which codes the RNA recognition motif (RRM) domain of the protein, indicating a conserved regulatory mechanism of SR proteins in plants. Our findings reveal the functional diversity and evolutionary conservation of SR proteins in hot pepper and highlight AS as a mechanism enhancing plant adaptability, providing insights for future stress-resistant crop development.
Collapse
Affiliation(s)
- Lin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Rui Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Xiangtao Cen
- College of Agriculture and Food Engineering, Baise University, Baise, Guangxi, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| |
Collapse
|
8
|
Köster T, Venhuizen P, Lewinski M, Petrillo E, Marquez Y, Fuchs A, Ray D, Nimeth BA, Riegler S, Franzmeier S, Zheng H, Hughes T, Morris Q, Barta A, Staiger D, Kalyna M. At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626797. [PMID: 39677721 PMCID: PMC11643119 DOI: 10.1101/2024.12.04.626797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alternative splicing is essential for plants, enabling a single gene to produce multiple transcript variants to boost functional diversity and fine-tune responses to environmental and developmental cues. At-RS31, a plant-specific splicing factor in the Serine/Arginine (SR)-rich protein family, responds to light and the Target of Rapamycin (TOR) signaling pathway, yet its downstream targets and regulatory impact remain unknown.To identify At-RS31 targets, we applied individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) and RNAcompete assays. Transcriptomic analyses of At-RS31 mutant and overexpressing plants further revealed its effects on alternative splicing.iCLIP identified 4,034 At-RS31 binding sites across 1,421 genes, enriched in CU-rich and CAGA RNA motifs. Comparative iCLIP and RNAcompete data indicate that the RS domain of At-RS31 may influence its binding specificity in planta, underscoring the value of combining in vivo and in vitro approaches. Transcriptomic analysis showed that At-RS31 modulates diverse splicing events, particularly intron retention and exitron splicing, and influences other splicing modulators, acting as a hierarchical regulator.By regulating stress-response genes and genes in both TOR and abscisic acid (ABA) signaling pathways, At-RS31 may help integrate these signals, balancing plant growth with environmental adaptability through alternative splicing.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter Venhuizen
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Ezequiel Petrillo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yamile Marquez
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Armin Fuchs
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Barbara A. Nimeth
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Sophie Franzmeier
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Timothy Hughes
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Quaid Morris
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Computational Biology and Medicine, Weill-Cornell Graduate School, New York, NY, USA
| | - Andrea Barta
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
9
|
Wang Y, Wang X, Zhang R, Chen T, Xiao J, Li Q, Ding X, Sun X. Genome-Scale Identification of Wild Soybean Serine/Arginine-Rich Protein Family Genes and Their Responses to Abiotic Stresses. Int J Mol Sci 2024; 25:11175. [PMID: 39456959 PMCID: PMC11508973 DOI: 10.3390/ijms252011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Serine/arginine-rich (SR) proteins mostly function as splicing factors for pre-mRNA splicing in spliceosomes and play critical roles in plant development and adaptation to environments. However, detailed study about SR proteins in legume plants is still lacking. In this report, we performed a genome-wide investigation of SR protein genes in wild soybean (Glycine soja) and identified a total of 31 GsSR genes from the wild soybean genome. The analyses of chromosome location and synteny show that the GsSRs are unevenly distributed on 15 chromosomes and are mainly under the purifying selection. The GsSR proteins can be phylogenetically classified into six sub-families and are conserved in evolution. Prediction of protein phosphorylation sites indicates that GsSR proteins are highly phosphorylated proteins. The protein-protein interaction network implies that there exist numerous interactions between GsSR proteins. We experimentally confirmed their physical interactions with the representative SR proteins of spliceosome-associated components such as U1-70K or U2AF35 by yeast two-hybrid assays. In addition, we identified various stress-/hormone-responsive cis-acting elements in the promoter regions of these GsSR genes and verified their expression patterns by RT-qPCR analyses. The results show most GsSR genes are highly expressed in root and stem tissues and are responsive to salt and alkali stresses. Splicing analysis showed that the splicing patterns of GsSRs were in a tissue- and stress-dependent manner. Overall, these results will help us to further investigate the biological functions of leguminous plant SR proteins and shed new light on uncovering the regulatory mechanisms of plant SR proteins in growth, development, and stress responses.
Collapse
Affiliation(s)
- Yanping Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| | - Xiaomei Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| | - Rui Zhang
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Tong Chen
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (R.Z.); (T.C.); (J.X.); (Q.L.)
| | - Xiaohuan Sun
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China; (Y.W.); (X.W.)
| |
Collapse
|
10
|
Sybilska E, Collin A, Sadat Haddadi B, Mur LAJ, Beckmann M, Guo W, Simpson CG, Daszkowska-Golec A. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Sci Rep 2024; 14:18278. [PMID: 39107424 PMCID: PMC11303550 DOI: 10.1038/s41598-024-69373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.b displays ABA insensitivity, in stark contrast to the hypersensitivity observed in single mutants during germination. Our comprehensive transcriptome and metabolome analysis not only identified significant alterations in gene expression and splicing patterns but also underscored the regulatory nexus among CBC, ABA, and brassinosteroid (BR) signaling pathways.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Collin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | | | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
11
|
Weng Y, Mega R, Abe F, Tsujimoto H, Okamoto M. Metabolic profiles in drought-tolerant wheat with enhanced abscisic acid sensitivity. PLoS One 2024; 19:e0307393. [PMID: 39038025 PMCID: PMC11262632 DOI: 10.1371/journal.pone.0307393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Global warming has led to the expansion of arid lands and more frequent droughts, which are the largest cause of global food production losses. In our previous study, we developed TaPYLox wheat overexpressing the plant hormone abscisic acid (ABA) receptor, which is important for the drought stress response in plants. TaPYLox showed resistance to drought stress and acquired water-saving traits that enable efficient grain production with less water use. In this study, we used TaPYLox to identify ABA-dependent and -independent metabolites in response to drought stress. We compared the variation of metabolites in wheat under well-watered, ABA treatment, and drought stress conditions using the ABA-sensitive TaPYLox line and control lines. The results showed that tagatose and L-serine were ABA-dependently regulated metabolites, because their stress-induced accumulation was increased by ABA treatment in TaPYLox. In contrast, L-valine, L-leucine, and DL-isoleucine, which are classified as branched chain amino acids, were not increased by ABA treatment in TaPYLox, suggesting that they are metabolites regulated in an ABA-independent manner. Interestingly, the accumulation of L-valine, L-leucine, and DL-isoleucine was suppressed in drought-tolerant TaPYLox under drought stress, suggesting that drought-tolerant wheat might be low in these amino acids. 3-dehydroshikimic acid and α-ketoglutaric acid were decreased by drought stress in an ABA-independent manner. In this study, we have succeeded in identifying metabolites that are regulated by drought stress in an ABA-dependent and -independent manner. The findings of this study should be useful for future breeding of drought-tolerant wheat.
Collapse
Affiliation(s)
- Yuanjie Weng
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryosuke Mega
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Fumitaka Abe
- Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Wang W, Wei Y, Xu Z, Shen C, Li A, Guan D, Zhang X, Liu B. Evidence Supporting a Role of Alternative Splicing Participates in Melon ( Cucumis melo L.) Fruit Ripening. Int J Mol Sci 2024; 25:5886. [PMID: 38892093 PMCID: PMC11172951 DOI: 10.3390/ijms25115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.
Collapse
Affiliation(s)
- Wenjiao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
| | - Yuping Wei
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Zhaoying Xu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Chengcheng Shen
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Ang Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Dailu Guan
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA;
| | - Xuejun Zhang
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| |
Collapse
|
13
|
Chen S, Zhang Y, Liu L, Mo Y, Li J, Chen B, Zhou Y, Lin J, Jiang X, Wei L, Ling Y. Transcription and splicing variations of SR genes accompany with genome-wide accumulation of long-introns in pine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112056. [PMID: 38438082 DOI: 10.1016/j.plantsci.2024.112056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/04/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Most of mRNAs in Eukaryote were matured after the removal of introns in their pre-mRNA transcripts. Serine/arginine-rich (SR) proteins are a group of splicing regulators regulating the splicing processes globally. Expressions of SR proteins themselves were extensively regulated, at both transcription and splicing levels, under different environmental conditions, specially heat stress conditions. The pine genome is characterized by super-long and easily methylated introns in a large number of genes that derived from the extensive accumulation of transposons (TEs). Here, we identified and analyzed the phylogenetic characteristics of 24 SR proteins and their encoding genes from the pine genome. Then we explored transcription and pre-mRNA splicing expression patterns of SR genes in P. massoniana seedlings under normal and heat stress temperature conditions. Our results showed that the transcription patterns of SR genes in pine exhibited significant changes compared to other plant species, and these changes were not strictly correlated with the intron length and DNA methylation intensity of the SR genes. Interestingly, none of the long introns of SR genes underwent alternative splicing (AS) in our experiment. Furthermore, the intensity of AS regulation may be related to the potential DNA methylation intensity of SR genes. Taken together, this study explores for the first time the characteristics of significant variations in the transcription and splicing patterns of SR proteins in a plant species with an over-accumulation of super-long introns.
Collapse
Affiliation(s)
- Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Junyi Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beibei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yi Zhou
- Guangdong Academy of Forestry/Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Coastal Shelter-belt Forest Ecosystem National Observation and Research Station Guangzhou, Guangdong 510520, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Long Wei
- Guangdong Academy of Forestry/Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Coastal Shelter-belt Forest Ecosystem National Observation and Research Station Guangzhou, Guangdong 510520, China.
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China.
| |
Collapse
|
14
|
Nouraei S, Mia MS, Liu H, Turner NC, Yan G. Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. Mol Genet Genomics 2024; 299:22. [PMID: 38430317 PMCID: PMC10908643 DOI: 10.1007/s00438-024-02104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024]
Abstract
Drought stress poses a severe threat to global wheat production, necessitating an in-depth exploration of the genetic basis for drought tolerance associated traits. This study employed a 90 K SNP array to conduct a genome-wide association analysis, unravelling genetic determinants of key traits related to drought tolerance in wheat, namely plant height, root length, and root and shoot dry weight. Using the mixed linear model (MLM) method on 125 wheat accessions subjected to both well-watered and drought stress treatments, we identified 53 SNPs significantly associated with stress susceptibility (SSI) and tolerance indices (STI) for the targeted traits. Notably, chromosomes 2A and 3B stood out with ten and nine associated markers, respectively. Across 17 chromosomes, 44 unique candidate genes were pinpointed, predominantly located on the distal ends of 1A, 1B, 1D, 2A, 3A, 3B, 4A, 6A, 6B, 7A, 7B, and 7D chromosomes. These genes, implicated in diverse functions related to plant growth, development, and stress responses, offer a rich resource for future investigation. A clustering pattern emerged, notably with seven genes associated with SSI for plant height and four genes linked to both STI of plant height and shoot dry weight, converging on specific regions of chromosome arms of 2AS and 3BL. Additionally, shared genes encoding polygalacturonase, auxilin-related protein 1, peptide deformylase, and receptor-like kinase underscored the interconnectedness between plant height and shoot dry weight. In conclusion, our findings provide insights into the molecular mechanisms governing wheat drought tolerance, identifying promising genomic loci for further exploration and crop improvement strategies.
Collapse
Affiliation(s)
- Sina Nouraei
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Md Sultan Mia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Neil C Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
15
|
Alhabsi A, Butt H, Kirschner GK, Blilou I, Mahfouz MM. SCR106 splicing factor modulates abiotic stress responses by maintaining RNA splicing in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:802-818. [PMID: 37924151 PMCID: PMC10837019 DOI: 10.1093/jxb/erad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gwendolyn K Kirschner
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Zhao J, Li S, Xu Y, Ahmad N, Kuang B, Feng M, Wei N, Yang X. The subgenome Saccharum spontaneum contributes to sugar accumulation in sugarcane as revealed by full-length transcriptomic analysis. J Adv Res 2023; 54:1-13. [PMID: 36781019 DOI: 10.1016/j.jare.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
INTRODUCTION Modern sugarcane cultivars (Saccharum spp. hybrids) derived from crosses between S. officinarum and S. spontaneum, with high-sugar traits and excellent stress tolerance inherited respectively. However, the contribution of the S. spontaneum subgenome to sucrose accumulation is still unclear. OBJECTIVE To compensate for the absence of a high-quality reference genome, a transcriptome analysis method is needed to analyze the molecular basis of differential sucrose accumulation in sugarcane hybrids and to find clues to the contribution of the S. spontaneum subgenome to sucrose accumulation. METHODS PacBio full-length sequencing was used to complement genome annotation, followed by the identification of differential genes between the high and low sugar groups using differential alternative splicing analysis and differential expression analysis. At the subgenomic level, the factors responsible for differential sucrose accumulation were investigated from the perspective of transcriptional and post-transcriptional regulation. RESULTS A full-length transcriptome annotated at the subgenomic level was provided, complemented by 263,378 allele-defined transcript isoforms and 139,405 alternative splicing (AS) events. Differential alternative splicing (DA) analysis and differential expression (DE) analysis identified differential genes between high and low sugar groups and explained differential sucrose accumulation factors by the KEGG pathways. In some gene models, different or even opposite expression patterns of alleles from the same gene were observed, reflecting the potential evolution of these alleles toward novel functions in polyploid sugarcane. Among DA and DE genes in the sucrose source-sink complex pathway, we found some alleles encoding sucrose accumulation-related enzymes derived from the S. spontaneum subgenome were differentially expressed or had DA events between the two contrasting sugarcane hybrids. CONCLUSION Full-length transcriptomes annotated at the subgenomic level could better characterize sugarcane hybrids, and the S. spontaneum subgenome was found to contribute to sucrose accumulation.
Collapse
Affiliation(s)
- Jihan Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuzhi Xu
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Bowen Kuang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mengfan Feng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ni Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
17
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
18
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
19
|
Pagano A, Kunz L, Dittmann A, Araújo SDS, Macovei A, Shridhar Gaonkar S, Sincinelli F, Wazeer H, Balestrazzi A. Changes in Medicago truncatula seed proteome along the rehydration-dehydration cycle highlight new players in the genotoxic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1188546. [PMID: 37409306 PMCID: PMC10319343 DOI: 10.3389/fpls.2023.1188546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023]
Abstract
Introduction Several molecular aspects underlying the seed response to priming and the resulting vigor profile are still poorly understood. Mechanisms involved in genome maintenance deserve attention since the balance between stimulation of germination and DNA damage accumulation versus active repair is a key determinant for designing successful seed priming protocols. Methods Changes in the Medicago truncatula seed proteome were investigated in this study, using discovery mass spectrometry and label-free quantification, along the rehydration-dehydration cycle of a standard vigorization treatment (hydropriming plus dry-back), and during post-priming imbibition. Resuts and discussion From 2056 to 2190 proteins were detected in each pairwise comparison, among which six were differentially accumulated and 36 were detected only in one condition. The following proteins were selected for further investigation: MtDRP2B (DYNAMIN-RELATED PROTEIN), MtTRXm4 (THIOREDOXIN m4), and MtASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) showing changes in seeds under dehydration stress; MtITPA (INOSINE TRIPHOSPHATE PYROPHOSPHORYLASE), MtABA2 (ABSCISIC ACID DEFICIENT 2), MtRS2Z32 (SERINE/ARGININE-RICH SPLICING FACTOR RS2Z32), and MtAQR (RNA HELICASE AQUARIUS) that were differentially regulated during post-priming imbibition. Changes in the corresponding transcript levels were assessed by qRT-PCR. In animal cells, ITPA hydrolyses 2'-deoxyinosine triphosphate and other inosine nucleotides, preventing genotoxic damage. A proof of concept was performed by imbibing primed and control M. truncatula seeds in presence/absence of 20 mM 2'-deoxyinosine (dI). Results from comet assay highlighted the ability of primed seeds to cope with dI-induced genotoxic damage. The seed repair response was assessed by monitoring the expression profiles of MtAAG (ALKYL-ADENINE DNA GLYCOSILASE) and MtEndoV (ENDONUCLEASE V) genes that participate in the repair of the mismatched I:T pair in BER (base excision repair) and AER (alternative excision repair) pathways, respectively.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Kunz
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Antje Dittmann
- Functional Genomics Center Zurich (FGCZ), University of Zurich/Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Susana De Sousa Araújo
- Association BLC3 - Campus of Technology and Innovation, Centre BIO R&D Unit | North Delegation, Macedo de Cavaleiros, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | | | - Federico Sincinelli
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Hisham Wazeer
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
20
|
Mateos JL, Staiger D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. THE PLANT CELL 2023; 35:1708-1726. [PMID: 36461946 PMCID: PMC10226577 DOI: 10.1093/plcell/koac345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 05/30/2023]
Abstract
RNA-binding proteins (RBPs) have a broad impact on most biochemical, physiological, and developmental processes in a plant's life. RBPs engage in an on-off relationship with their RNA partners, accompanying virtually every stage in RNA processing and function. While the function of a plethora of RBPs in plant development and stress responses has been described, we are lacking a systems-level understanding of components in RNA-based regulation. Novel techniques have substantially enlarged the compendium of proteins with experimental evidence for binding to RNAs in the cell, the RNA-binding proteome. Furthermore, ribonomics methods have been adapted for use in plants to profile the in vivo binding repertoire of RBPs genome-wide. Here, we discuss how recent technological achievements have provided novel insights into the mode of action of plant RBPs at a genome-wide scale. Furthermore, we touch upon two emerging topics, the connection of RBPs to phase separation in the cell and to extracellular RNAs. Finally, we define open questions to be addressed to move toward an integrated understanding of RBP function.
Collapse
Affiliation(s)
- Julieta L Mateos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
21
|
Jia ZC, Das D, Zhang Y, Fernie AR, Liu YG, Chen M, Zhang J. Plant serine/arginine-rich proteins: versatile players in RNA processing. PLANTA 2023; 257:109. [PMID: 37145304 DOI: 10.1007/s00425-023-04132-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
MAIN CONCLUSION Serine/arginine-rich (SR) proteins participate in RNA processing by interacting with precursor mRNAs or other splicing factors to maintain plant growth and stress responses. Alternative splicing is an important mechanism involved in mRNA processing and regulation of gene expression at the posttranscriptional level, which is the main reason for the diversity of genes and proteins. The process of alternative splicing requires the participation of many specific splicing factors. The SR protein family is a splicing factor in eukaryotes. The vast majority of SR proteins' existence is an essential survival factor. Through its RS domain and other unique domains, SR proteins can interact with specific sequences of precursor mRNA or other splicing factors and cooperate to complete the correct selection of splicing sites or promote the formation of spliceosomes. They play essential roles in the composition and alternative splicing of precursor mRNAs, providing pivotal functions to maintain growth and stress responses in animals and plants. Although SR proteins have been identified in plants for three decades, their evolutionary trajectory, molecular function, and regulatory network remain largely unknown compared to their animal counterparts. This article reviews the current understanding of this gene family in eukaryotes and proposes potential key research priorities for future functional studies.
Collapse
Affiliation(s)
- Zi-Chang Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences and Technology, 52 Agricultural Building, University of Missouri, Columbia, MO, 65201, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
22
|
Wang L, Wang L, Tan M, Wang L, Zhao W, You J, Wang L, Yan X, Wang W. The pattern of alternative splicing and DNA methylation alteration and their interaction in linseed (Linum usitatissimum L.) response to repeated drought stresses. Biol Res 2023; 56:12. [PMID: 36922868 PMCID: PMC10018860 DOI: 10.1186/s40659-023-00424-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Drought stress has significantly hampered agricultural productivity worldwide and can also result in modifications to DNA methylation levels. However, the dynamics of DNA methylation and its association with the changes in gene transcription and alternative splicing (AS) under drought stress are unknown in linseed, which is frequently cultivated in arid and semiarid regions. RESULTS We analysed AS events and DNA methylation patterns in drought-tolerant (Z141) and drought-sensitive (NY-17) linseed under drought stress (DS) and repeated drought stress (RD) treatments. We found that the number of intron-retention (IR) and alternative 3' splice site (Alt3'SS) events were significantly higher in Z141 and NY-17 under drought stress. We found that the linseed response to the DS treatment was mainly regulated by transcription, while the response to the RD treatment was coregulated by transcription and AS. Whole genome-wide DNA methylation analysis revealed that drought stress caused an increase in the overall methylation level of linseed. Although we did not observe any correlation between differentially methylated genes (DMGs) and differentially spliced genes (DSGs) in this study, we found that the DSGs whose gene body region was hypermethylated in Z141 and hypomethylated in NY-17 were enriched in abiotic stress response Gene Ontology (GO) terms. This finding implies that gene body methylation plays an important role in AS regulation in some specific genes. CONCLUSION Our study is the first comprehensive genome-wide analysis of the relationship between linseed methylation changes and AS under drought and repeated drought stress. Our study revealed different interaction patterns between differentially expressed genes (DEGs) and DSGs under DS and RD treatments and differences between methylation and AS regulation in drought-tolerant and drought-sensitive linseed varieties. The findings will probably be of interest in the future. Our results provide interesting insights into the association between gene expression, AS, and DNA methylation in linseed under drought stress. Differences in these associations may account for the differences in linseed drought tolerance.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Meilian Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Zhao
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | | | - Xingchu Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China.
| |
Collapse
|
23
|
Albuquerque-Martins R, Szakonyi D, Rowe J, Jones AM, Duque P. ABA signaling prevents phosphodegradation of the SR45 splicing factor to alleviate inhibition of early seedling development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100495. [PMID: 36419364 PMCID: PMC10030365 DOI: 10.1016/j.xplc.2022.100495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Serine/arginine-rich (SR) proteins are conserved splicing regulators that play important roles in plant stress responses, namely those mediated by the abscisic acid (ABA) hormone. The Arabidopsis thaliana SR-like protein SR45 is a described negative regulator of the ABA pathway during early seedling development. How the inhibition of growth by ABA signaling is counteracted to maintain plant development under stress conditions remains largely unknown. Here, we show that SR45 overexpression reduces Arabidopsis sensitivity to ABA during early seedling development. Biochemical and confocal microscopy analyses of transgenic plants expressing fluorescently tagged SR45 revealed that exposure to ABA dephosphorylates the protein at multiple amino acid residues and leads to its accumulation, due to SR45 stabilization via reduced ubiquitination and proteasomal degradation. Using phosphomutant and phosphomimetic transgenic Arabidopsis lines, we demonstrate the functional relevance of ABA-mediated dephosphorylation of a single SR45 residue, T264, in antagonizing SR45 ubiquitination and degradation to promote its function as a repressor of seedling ABA sensitivity. Our results reveal a mechanism that negatively autoregulates ABA signaling and allows early plant growth under stress via posttranslational control of the SR45 splicing factor.
Collapse
Affiliation(s)
- Rui Albuquerque-Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - James Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge B2 1LR, UK.
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
24
|
Liang G, Hou Y, Wang H, Wang P, Mao J, Chen B. VaBAM1 weakens cold tolerance by interacting with the negative regulator VaSR1 to suppress β-amylase expression. Int J Biol Macromol 2023; 225:1394-1404. [PMID: 36436609 DOI: 10.1016/j.ijbiomac.2022.11.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Cold stress is a key climatic factor that limits grape productivity and quality. Although β-amylase (BAM) is known to play an important role as a mediator of starch degradation under conditions of cold stress, the mechanism by which BAM regulates cold tolerance in grape remains unclear. Here, we identified VaBAM1 from Vitis amurensis and characterized its interactive regulating mechanism under cold stress in Arabidopsis thaliana and grape. VaBAM1-overexpressing A. thaliana plants (OEs) exhibited high freezing tolerance. Soluble sugar content and amylase activity were increased in OEs and VaBAM1-overexpressing grape calli (VaBAM1-OEs) under cold stress; however, they were decreased in grape calli in which VaBAM1 was edited using CRISPR/Cas9. The results of yeast two-hybrid, bimolecular fluorescence complementation, and pull-down experiments showed that serine/arginine-rich splicing factor 1 (VaSR1) interacted with VaBAM1. Furthermore, the expression of VaSR1 was opposite that of VaBAM1 in phloem tissue of Vitis amurensis during winter dormancy. In VaSR1-overexpressing grape calli (VaSR1-OEs), BAM activity and the expression levels of C-repeat binding transcription factor and cold response genes were all significantly lower than that in untransformed calli subjected to cold stress. Moreover, VvBAM1 was downregulated in VaSR1-OEs under cold stress. Overall, we identified that VaSR1 interacts with VaBAM1, negatively regulating BAM activity and resulting in decreased plant cold tolerance.
Collapse
Affiliation(s)
- Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yingjun Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Han Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
25
|
Ai G, Li T, Zhu H, Dong X, Fu X, Xia C, Pan W, Jing M, Shen D, Xia A, Tyler BM, Dou D. BPL3 binds the long non-coding RNA nalncFL7 to suppress FORKED-LIKE7 and modulate HAI1-mediated MPK3/6 dephosphorylation in plant immunity. THE PLANT CELL 2023; 35:598-616. [PMID: 36269178 PMCID: PMC9806616 DOI: 10.1093/plcell/koac311] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
RNA-binding proteins (RBPs) participate in a diverse set of biological processes in plants, but their functions and underlying mechanisms in plant-pathogen interactions are largely unknown. We previously showed that Arabidopsis thaliana BPA1-LIKE PROTEIN3 (BPL3) belongs to a conserved plant RBP family and negatively regulates reactive oxygen species (ROS) accumulation and cell death under biotic stress. In this study, we demonstrate that BPL3 suppresses FORKED-LIKE7 (FL7) transcript accumulation and raises levels of the cis-natural antisense long non-coding RNA (lncRNA) of FL7 (nalncFL7). FL7 positively regulated plant immunity to Phytophthora capsici while nalncFL7 negatively regulated resistance. We also showed that BPL3 directly binds to and stabilizes nalncFL7. Moreover, nalncFL7 suppressed accumulation of FL7 transcripts. Furthermore, FL7 interacted with HIGHLY ABA-INDUCED PP2C1 (HAI1), a type 2C protein phosphatase, and inhibited HAI1 phosphatase activity. By suppressing HAI1 activity, FL7 increased the phosphorylation levels of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6, thus enhancing immunity responses. BPL3 and FL7 are conserved in all plant species tested, but the BPL3-nalncFL7-FL7 cascade was specific to the Brassicaceae. Thus, we identified a conserved BPL3-nalncFL7-FL7 cascade that coordinates plant immunity.
Collapse
Affiliation(s)
- Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Dong
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowei Fu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuyan Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiye Pan
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Brett M Tyler
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Li J, Gao X, Chen X, Fan Z, Zhang Y, Wang Z, Shi J, Wang C, Zhang H, Wang L, Zhao Q. Comparative transcriptome responses of leaf and root tissues to salt stress in wheat strains with different salinity tolerances. Front Genet 2023; 14:1015599. [PMID: 36911411 PMCID: PMC9996022 DOI: 10.3389/fgene.2023.1015599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Salinity stress is a major adverse environmental factor that can limit crop yield and restrict normal land use. The selection of salt-tolerant strains and elucidation of the underlying mechanisms by plant breeding scientists are urgently needed to increase agricultural production in arid and semi-arid regions. Results: In this study, we selected the salt-tolerant wheat (Triticum aestivum) strain ST9644 as a model to study differences in expression patterns between salt-tolerant and salt-sensitive strains. High-throughput RNA sequencing resulted in more than 359.10 Gb of clean data from 54 samples, with an average of 6.65 Gb per sample. Compared to the IWGSC reference annotation, we identified 50,096 new genes, 32,923 of which have functional annotations. Comparisons of abundances between salt-tolerant and salt-sensitive strains revealed 3,755, 5,504, and 4,344 genes that were differentially expressed at 0, 6, and 24 h, respectively, in root tissue under salt stress. KEGG pathway analysis of these genes showed that they were enriched for phenylpropanoid biosynthesis (ko00940), cysteine and methionine metabolism (ko00270), and glutathione metabolism (ko00480). We also applied weighted gene co-expression network analysis (WGCNA) analysis to determine the time course of root tissue response to salt stress and found that the acute response lasts >6 h and ends before 12 h. We also identified key alternative splicing factors showing different splicing patterns in salt-sensitive and salt-tolerant strains; however, only few of them were differentially expressed in the two groups. Conclusion: Our results offer a better understanding of wheat salt tolerance and improve wheat breeding.
Collapse
Affiliation(s)
- Jianfeng Li
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Xin Gao
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Xunji Chen
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Zheru Fan
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Yueqiang Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Zhong Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Jia Shi
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Chunsheng Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Hongzhi Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Lihong Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| | - Qi Zhao
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urummqi, China
| |
Collapse
|
27
|
Ruggiero A, Punzo P, Van Oosten MJ, Cirillo V, Esposito S, Costa A, Maggio A, Grillo S, Batelli G. Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress. FRONTIERS IN PLANT SCIENCE 2022; 13:974048. [PMID: 36507383 PMCID: PMC9732681 DOI: 10.3389/fpls.2022.974048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Paola Punzo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | | | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Salvatore Esposito
- CREA-CI, Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Antonello Costa
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Stefania Grillo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Giorgia Batelli
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| |
Collapse
|
28
|
Feng X, Rahman MM, Hu Q, Wang B, Karim H, Guzmán C, Harwood W, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. HvGBSSI mutation at the splicing receptor site affected RNA splicing and decreased amylose content in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1003333. [PMID: 36212333 PMCID: PMC9538149 DOI: 10.3389/fpls.2022.1003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Granule-bound starch synthase I (HvGBSSI) is encoded by the barley waxy (Wx-1) gene and is the sole enzyme in the synthesis of amylose. Here, a Wx-1 mutant was identified from an ethyl methane sulfonate (EMS)-mutagenized barley population. There were two single-base mutations G1086A and A2424G in Wx-1 in the mutant (M2-1105). The G1086A mutation is located at the 3' splicing receptor (AG) site of the fourth intron, resulting in an abnormal RNA splicing. The A2424G mutation was a synonymous mutation in the ninth intron. The pre-mRNA of Wx-1 was incorrectly spliced and transcribed into two abnormal transcripts. The type I transcript had a 6 bp deletion in the 5' of fifth exon, leading to a translated HvGBSSI protein lacking two amino acids with a decreased starch-binding capacity. In the type II transcript, the fourth intron was incorrectly cleaved and retained, resulting in the premature termination of the barley Wx-1 gene. The mutations in the Wx-1 decreased the enzymatic activity of the HvGBSSI enzyme and resulted in a decreased level in amylose content. This work sheds light on a new Wx-1 gene inaction mechanism.
Collapse
Affiliation(s)
- Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Md. Mostafijur Rahman
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Cordoba, Spain
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Chen S, Mo Y, Zhang Y, Zhu H, Ling Y. Insights into sweet potato SR proteins: from evolution to species-specific expression and alternative splicing. PLANTA 2022; 256:72. [PMID: 36083517 DOI: 10.1007/s00425-022-03965-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
SR proteins from sweet potato have conserved functional domains and similar gene structures as that of Arabidopsis and rice in general. However, expression patterns and alternative splicing regulations of SR genes from different species have changed under stresses. Novel alternative splicing regulations were found in sweet potato SR genes. Serine/arginine-rich (SR) proteins play important roles in plant development and stress response by regulating the pre-mRNA splicing process. However, SR proteins have not been identified so far from an important crop sweet potato. Through bioinformatics analysis, our study identified 24 SR proteins from sweet potato, with comprehensively analyzing of protein characteristics, gene structure, chromosome localization, and cis-acting elements in promotors. Salt, heat, and mimic drought stresses triggered extensive but different expressional regulations on sweet potato SR genes. Interestingly, heat stress caused the most active disturbances in both gene transcription and pre-mRNA alternative splicing (AS). Tissue and species-specific transcriptional and pre-mRNA AS regulations in response to stresses were found in sweet potato, in comparison with Arabidopsis and rice. Moreover, novel patterns of pre-mRNA alternative splicing were found in SR proteins from sweet potato. Our study provided an insight into similarities and differences of SR proteins in different plant species from gene sequences to gene structures and stress responses, indicating SR proteins may regulate their downstream genes differently between different species and tissues by varied transcriptional and pre-mRNA AS regulations.
Collapse
Affiliation(s)
- Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Hongbao Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
30
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
31
|
Tang C, Xu Q, Zhao J, Yue M, Wang J, Wang X, Kang Z, Wang X. A rust fungus effector directly binds plant pre-mRNA splice site to reprogram alternative splicing and suppress host immunity. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1167-1181. [PMID: 35247281 PMCID: PMC9129083 DOI: 10.1111/pbi.13800] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 05/26/2023]
Abstract
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism in plant resistance. However, whether and how plant pathogens target splicing in their host remains mostly unknown. For example, although infection by Puccinia striiformis f. sp. tritici (Pst), a pathogenic fungus that severely affects the yield of wheat worldwide, has been shown to significantly influence the levels of alternatively spliced transcripts in the host, the mechanisms that govern this process, and its functional consequence have not been examined. Here, we identified Pst_A23 as a new Pst arginine-rich effector that localizes to host nuclear speckles, nuclear regions enriched in splicing factors. We demonstrated that transient expression of Pst_A23 suppresses plant basal defence dependent on the Pst_A23 nuclear speckle localization and that this protein plays an important role in virulence, stable silencing of which improves wheat stripe rust resistance. Remarkably, RNA-Seq data revealed that AS patterns of 588 wheat genes are altered in Pst_A23-overexpressing lines compared to control plants. To further examine the direct relationship between Pst_A23 and AS, we confirmed direct binding between two RNA motifs predicted from these altered splicing sites and Pst_A23 in vitro. The two RNA motifs we chose occur in the cis-element of TaXa21-H and TaWRKY53, and we validated that Pst_A23 overexpression results in decreased functional transcripts of TaXa21-H and TaWRKY53 while silencing of TaXa21-H and TaWRKY53 impairs wheat resistance to Pst. Overall, this represents formal evidence that plant pathogens produce 'splicing' effectors, which regulate host pre-mRNA splicing by direct engagement of the splicing sites, thereby interfering with host immunity.
Collapse
Affiliation(s)
- Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qiang Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jinren Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Mingxing Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
32
|
Zhang J, Sun Y, Zhou Z, Zhang Y, Yang Y, Zan X, Li X, Wan J, Gao X, Chen R, Huang Z, Li L, Xu Z. OsSCL30 overexpression reduces the tolerance of rice seedlings to low temperature, drought and salt. Sci Rep 2022; 12:8385. [PMID: 35589923 PMCID: PMC9120446 DOI: 10.1038/s41598-022-12438-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/19/2023] Open
Abstract
Rice is one of the main food crops for the world population. Various abiotic stresses, such as low temperature, drought, and high salinity, affect rice during the entire growth period, determining its yield and quality, and even leading to plant death. In this study, by constructing overexpression vectors D-163 + 1300:OsSCL30 and D-163 + 1300-AcGFP:OsSCL30-GFP, the mechanism of action of OsSCL30 in various abiotic stresses was explored. Bioinformatics analysis showed that OsSCL30 was located on the chromosome 12 of rice Nipponbare, belonging to the plant-specific SCL subfamily of the SR protein family. The 1500 bp section upstream of the open reading frame start site contains stress-related cis-acting elements such as ABRE, MYC, and MYB. Under normal conditions, the expression of OsSCL30 was higher in leaves and leaf sheaths. The results of reverse transcription polymerase chain reaction showed that the expression of OsSCL30 decreased after low temperature, drought and salt treatment. In root cells OsSCL30 was localized in the nuclei. The results of the rice seedling tolerance and recovery tests showed that overexpression of OsSCL30 diminished the resistance to low temperature, drought and salt stresses in transgenic rice and resulted in larger accumulation of reactive oxygen species. This study is of great significance for exploring the response mechanisms of SR proteins under abiotic stresses.
Collapse
Affiliation(s)
- Jia Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yihao Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhanmei Zhou
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanmei Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaofei Zan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaohong Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiale Wan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Gao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Rongjun Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengjian Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lihua Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Zhengjun Xu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
33
|
Jeon J, Kim KT, Choi J, Cheong K, Ko J, Choi G, Lee H, Lee GW, Park SY, Kim S, Kim ST, Min CW, Kang S, Lee YH. Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biol 2022; 19:373-385. [PMID: 35311472 PMCID: PMC8942408 DOI: 10.1080/15476286.2022.2043040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alternative splicing (AS) contributes to diversifying and regulating cellular responses to environmental conditions and developmental cues by differentially producing multiple mRNA and protein isoforms from a single gene. Previous studies on AS in pathogenic fungi focused on profiling AS isoforms under a limited number of conditions. We analysed AS profiles in the rice blast fungus Magnaporthe oryzae, a global threat to rice production, using high-quality transcriptome data representing its vegetative growth (mycelia) and multiple host infection stages. We identified 4,270 AS isoforms derived from 2,413 genes, including 499 genes presumably regulated by infection-specific AS. AS appears to increase during infection, with 32.7% of the AS isoforms being produced during infection but absent in mycelia. Analysis of the isoforms observed at each infection stage showed that 636 AS isoforms were more abundant than corresponding annotated mRNAs, especially after initial hyphal penetration into host cell. Many such dominant isoforms were predicted to encode regulatory proteins such as transcription factors and phospho-transferases. We also identified the genes encoding distinct proteins via AS and confirmed the translation of some isoforms via a proteomic analysis, suggesting potential AS-mediated neo-functionalization of some genes during infection. Comprehensive profiling of the pattern of genome-wide AS during multiple stages of rice-M. oryzae interaction established a foundational resource that will help investigate the role and regulation of AS during rice infection.
Collapse
Affiliation(s)
- Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
- Life and Energy Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA USA
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
34
|
Singh P, Kumar K, Jha AK, Yadava P, Pal M, Rakshit S, Singh I. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.). Sci Rep 2022; 12:4211. [PMID: 35273237 PMCID: PMC8913646 DOI: 10.1038/s41598-022-07709-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Maize is a heavy consumer of fertilizer nitrogen (N) which not only results in the high cost of cultivation but may also lead to environmental pollution. Therefore, there is a need to develop N-use efficient genotypes, a prerequisite for which is a greater understanding of N-deficiency stress adaptation. In this study, comparative transcriptome analysis was performed using leaf and root tissues from contrasting inbred lines, viz., DMI 56 (tolerant to N stress) and DMI 81 (susceptible to N stress) to delineate the differentially expressed genes (DEGs) under low-N stress. The contrasting lines were grown hydroponically in modified Hoagland solution having either sufficient- or deficient-N, followed by high-throughput RNA-sequencing. A total of 8 sequencing libraries were prepared and 88–97% of the sequenced raw reads were mapped to the reference B73 maize genome. Genes with a p value ≤ 0.05 and fold change of ≥ 2.0 or ≤ − 2 were considered as DEGs in various combinations performed between susceptible and tolerant genotypes. DEGs were further classified into different functional categories and pathways according to their putative functions. Gene Ontology based annotation of these DEGs identified three different functional categories: biological processes, molecular function, and cellular component. The KEGG and Mapman based analysis revealed that most of the DEGs fall into various metabolic pathways, biosynthesis of secondary metabolites, signal transduction, amino acid metabolism, N-assimilation and metabolism, and starch metabolism. Some of the key genes involved in N uptake (high-affinity nitrate transporter 2.2 and 2.5), N assimilation and metabolism (glutamine synthetase, asparagine synthetase), redox homeostasis (SOD, POX), and transcription factors (MYB36, AP2-EREBP) were found to be highly expressed in the tolerant genotype compared to susceptible one. The candidate genes identified in the present study might be playing a pivotal role in low-N stress adaptation in maize and hence could be useful in augmenting further research on N metabolism and development of N-deficiency tolerant maize cultivars.
Collapse
Affiliation(s)
- Prabha Singh
- Indian Council of Agricultural Research-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India.,Indian Council of Agricultural Research-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.,Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Krishan Kumar
- Indian Council of Agricultural Research-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Abhishek Kumar Jha
- Indian Council of Agricultural Research-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Pranjal Yadava
- Indian Council of Agricultural Research-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Madan Pal
- Indian Council of Agricultural Research-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Sujay Rakshit
- Indian Council of Agricultural Research-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Ishwar Singh
- Indian Council of Agricultural Research-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
35
|
Nayak S, Bhandari H, Saha MC, Ali S, Sams C, Pantalone V. Identification of QTL Associated with Regrowth Vigor Using the Nested Association Mapping Population in Switchgrass. PLANTS 2022; 11:plants11040566. [PMID: 35214899 PMCID: PMC8874488 DOI: 10.3390/plants11040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Switchgrass (Panicum virgatum L.) is a warm-season perennial grass species that is utilized as forage for livestock and biofuel feedstock. The stability of biomass yield and regrowth vigor under changing harvest frequency would help manage potential fluctuations in the feedstock market and would provide a continuous supply of quality forage for livestock. This study was conducted to (i) assess the genetic variation and (ii) identify the quantitative trait loci (QTL) associated with regrowth vigor after multiple cuttings in lowland switchgrass. A nested association mapping (NAM) population comprising 2000 pseudo F2 progenies was genotyped with single nucleotide polymorphism (SNP) markers derived from exome-capture sequencing and was evaluated for regrowth vigor in 2017 and 2018. The results showed significant variation among the NAM families in terms of regrowth vigor (p < 0.05). A total of 10 QTL were detected on 6 chromosomes: 1B, 5A, 5B, 6B, 7B, and 8A, explaining the phenotypic variation by up to 4.7%. The additive genetic effects of an individual QTL ranged from −0.13 to 0.26. No single QTL showed a markedly large effect, suggesting complex genetics underlying regrowth vigor in switchgrass. The homologs of candidate genes that play a variety of roles in developmental processes, including plant hormonal signal transduction, nucleotide biosynthesis, secondary metabolism, senescence, and responses to both biotic and abiotic stresses, were identified in the vicinity of QTL.
Collapse
Affiliation(s)
- Santosh Nayak
- Department of Plant Sciences, The University of Tennessee, 2505 E J Chapman Drive, Knoxville, TN 37996, USA; (H.B.); (C.S.); (V.P.)
- Correspondence: or ; Tel.: +1-831-755-2867
| | - Hem Bhandari
- Department of Plant Sciences, The University of Tennessee, 2505 E J Chapman Drive, Knoxville, TN 37996, USA; (H.B.); (C.S.); (V.P.)
| | - Malay C. Saha
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA; (M.C.S.); (S.A.)
| | - Shahjahan Ali
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA; (M.C.S.); (S.A.)
| | - Carl Sams
- Department of Plant Sciences, The University of Tennessee, 2505 E J Chapman Drive, Knoxville, TN 37996, USA; (H.B.); (C.S.); (V.P.)
| | - Vince Pantalone
- Department of Plant Sciences, The University of Tennessee, 2505 E J Chapman Drive, Knoxville, TN 37996, USA; (H.B.); (C.S.); (V.P.)
| |
Collapse
|
36
|
Xu Z, Zhang N, Fu H, Wang F, Wen M, Chang H, Wu J, Abdelaala WB, Luo Q, Li Y, Li C, Wang Q, Wang ZY. Salt Stress Modulates the Landscape of Transcriptome and Alternative Splicing in Date Palm ( Phoenix dactylifera L.). FRONTIERS IN PLANT SCIENCE 2022; 12:807739. [PMID: 35126432 PMCID: PMC8810534 DOI: 10.3389/fpls.2021.807739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 05/14/2023]
Abstract
Date palm regards as a valuable genomic resource for exploring the tolerance genes due to its ability to survive under the sever condition. Although a large number of differentiated genes were identified in date palm responding to salt stress, the genome-wide study of alternative splicing (AS) landscape under salt stress conditions remains unknown. In the current study, we identified the stress-related genes through transcriptomic analysis to characterize their function under salt. A total of 17,169 genes were differentially expressed under salt stress conditions. Gene expression analysis confirmed that the salt overly sensitive (SOS) pathway genes, such as PdSOS2;1, PdSOS2;2, PdSOS4, PdSOS5, and PdCIPK11 were involved in the regulation of salt response in date palm, which is consistent with the physiological analysis that high salinity affected the Na+/K+ homeostasis and amino acid profile of date palm resulted in the inhibition of plant growth. Interestingly, the pathway of "spliceosome" was enriched in the category of upregulation, indicating their potential role of AS in date palm response to salt stress. Expectedly, many differentially alternative splicing (DAS) events were found under salt stress conditions, and some splicing factors, such as PdRS40, PdRSZ21, PdSR45a, and PdU2Af genes were abnormally spliced under salt, suggesting that AS-related proteins might participated in regulating the salt stress pathway. Moreover, the number of differentially DAS-specific genes was gradually decreased, while the number of differentially expressed gene (DEG)-specific genes was increased with prolonged salt stress treatment, suggesting that AS and gene expression could be distinctively regulated in response to salt stress. Therefore, our study highlighted the pivotal role of AS in the regulation of salt stress and provided novel insights for enhancing the resistance to salt in date palm.
Collapse
Affiliation(s)
- Zhongliang Xu
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Ning Zhang
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Haiquan Fu
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Fuyou Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Mingfu Wen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Jiantao Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Walid Badawy Abdelaala
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Central Laboratory for Date Palm Research and Development of Agriculture Research Center, Giza, Egypt
| | - Qingwen Luo
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Yang Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Cong Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qinnan Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| |
Collapse
|
37
|
Chen Y, Weng X, Zhou X, Gu J, Hu Q, Luo Q, Wen M, Li C, Wang ZY. Overexpression of cassava RSZ21b enhances drought tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153574. [PMID: 34890846 DOI: 10.1016/j.jplph.2021.153574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Drought is one of the major environmental constraints affecting crop productivity. Plants have to adjust their developmental and physiological processes to cope with drought. We previously identified 18 cassava serine/arginine-rich (SR) proteins that had a pivotal role in alternative splicing in response to environmental stress. However, functional characterization of SR proteins is rarely explored. Here, we characterized the RSZ subfamily gene MeRSZ21b in cassava. The RSZ21b belongs to the RSZ subfamily, which was widely distributed in major crops and was highly conserved. Quantitative RT-PCR assay showed that the expression of MeRSZ21b was significantly induced by drought. Moreover, overexpression of MeRSZ21b in Arabidopsis was hypersensitive to abscisic acid (ABA) in the phases of seed germination and post-germination seedling growth. Meantime, MeRSZ21b overexpression lines were resistant to sorbitol treatment, and quickly closed the stomata when compared with Col-0 under drought condition. Importantly, overexpression of MeRSZ21b resulted in improved drought tolerance through modulating ABA-dependent signaling. Therefore, our findings refine our knowledge of the SR protein-coding genes and provide novel insights for enhancing plant resistance to environmental stress.
Collapse
Affiliation(s)
- Yanhang Chen
- Institute of Nanfan&Seed Industry, Guangdong Academy of Sciences, Guangdong, 510316, China
| | - Xun Weng
- College of Life Sciences, South China Agricultural University, Guangdong, 510642, China
| | - Xiaoxia Zhou
- Institute of Nanfan&Seed Industry, Guangdong Academy of Sciences, Guangdong, 510316, China
| | - Jinbao Gu
- Institute of Nanfan&Seed Industry, Guangdong Academy of Sciences, Guangdong, 510316, China
| | - Qing Hu
- Institute of Nanfan&Seed Industry, Guangdong Academy of Sciences, Guangdong, 510316, China
| | - Qingwen Luo
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Zhanjiang, Guangdong, 524300, China
| | - Mingfu Wen
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Zhanjiang, Guangdong, 524300, China
| | - Cong Li
- Institute of Nanfan&Seed Industry, Guangdong Academy of Sciences, Guangdong, 510316, China.
| | - Zhen-Yu Wang
- Institute of Nanfan&Seed Industry, Guangdong Academy of Sciences, Guangdong, 510316, China; Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Zhanjiang, Guangdong, 524300, China.
| |
Collapse
|
38
|
Arico DS, Beati P, Wengier DL, Mazzella MA. A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:592. [PMID: 34906086 PMCID: PMC8670200 DOI: 10.1186/s12870-021-03377-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribution of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set (GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distribution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested due to the lack of a comprehensive phosphoproteome database. RESULTS In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thaliana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphoproteomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms that are specifically enriched in a particular condition. To overcome this limitation, we present an additional comparison of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are important processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings. CONCLUSIONS This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabidopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation pathways that take place during dark-grown Arabidopsis development.
Collapse
Affiliation(s)
- Denise S Arico
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
| | - Paula Beati
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
| | - Diego L Wengier
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
| | - Maria Agustina Mazzella
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina.
| |
Collapse
|
39
|
Zhao X, Tan L, Wang S, Shen Y, Guo L, Ye X, Liu S, Feng Y, Wu W. The SR Splicing Factors: Providing Perspectives on Their Evolution, Expression, Alternative Splicing, and Function in Populus trichocarpa. Int J Mol Sci 2021; 22:ijms222111369. [PMID: 34768799 PMCID: PMC8583155 DOI: 10.3390/ijms222111369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are important splicing factors in plant development and abiotic/hormone-related stresses. However, evidence that SR proteins contribute to the process in woody plants has been lacking. Using phylogenetics, gene synteny, transgenic experiments, and RNA-seq analysis, we identified 24 PtSR genes and explored their evolution, expression, and function in Popolus trichocarpa. The PtSR genes were divided into six subfamilies, generated by at least two events of genome triplication and duplication. Notably, they were constitutively expressed in roots, stems, and leaves, demonstrating their fundamental role in P. trichocarpa. Additionally, most PtSR genes (~83%) responded to at least one stress (cold, drought, salt, SA, MeJA, or ABA), and, especially, cold stress induced a dramatic perturbation in the expression and/or alternative splicing (AS) of 18 PtSR genes (~75%). Evidentially, the overexpression of PtSCL30 in Arabidopsis decreased freezing tolerance, which probably resulted from AS changes of the genes (e.g., ICE2 and COR15A) critical for cold tolerance. Moreover, the transgenic plants were salt-hypersensitive at the germination stage. These indicate that PtSCL30 may act as a negative regulator under cold and salt stress. Altogether, this study sheds light on the evolution, expression, and AS of PtSR genes, and the functional mechanisms of PtSCL30 in woody plants.
Collapse
Affiliation(s)
- Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
| | - Ying Feng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Correspondence: (Y.F.); (W.W.)
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (X.Z.); (L.T.); (S.W.); (Y.S.); (L.G.); (S.L.)
- Correspondence: (Y.F.); (W.W.)
| |
Collapse
|
40
|
Ma T, Gao H, Zhang D, Sun W, Yin Q, Wu L, Zhang T, Xu Z, Wei J, Su Y, Shi Y, Ding D, Yuan L, Dong G, Leng L, Xiang L, Chen S. Genome-Wide Analysis of Light-Regulated Alternative Splicing in Artemisia annua L. FRONTIERS IN PLANT SCIENCE 2021; 12:733505. [PMID: 34659300 PMCID: PMC8511310 DOI: 10.3389/fpls.2021.733505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Artemisinin is currently the most effective ingredient in the treatment of malaria, which is thus of great significance to study the genetic regulation of Artemisia annua. Alternative splicing (AS) is a regulatory process that increases the complexity of transcriptome and proteome. The most common mechanism of alternative splicing (AS) in plant is intron retention (IR). However, little is known about whether the IR isoforms produced by light play roles in regulating biosynthetic pathways. In this work we would explore how the level of AS in A. annua responds to light regulation. We obtained a new dataset of AS by analyzing full-length transcripts using both Illumina- and single molecule real-time (SMRT)-based RNA-seq as well as analyzing AS on various tissues. A total of 5,854 IR isoforms were identified, with IR accounting for the highest proportion (48.48%), affirming that IR is the most common mechanism of AS. We found that the number of up-regulated IR isoforms (1534/1378, blue and red light, respectively) was more than twice that of down-regulated (636/682) after treatment of blue or red light. In the artemisinin biosynthetic pathway, 10 genes produced 16 differentially expressed IR isoforms. This work demonstrated that the differential expression of IR isoforms induced by light has the potential to regulate sesquiterpenoid biosynthesis. This study also provides high accuracy full-length transcripts, which can be a valuable genetic resource for further research of A. annua, including areas of development, breeding, and biosynthesis of active compounds.
Collapse
Affiliation(s)
- Tingyu Ma
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yanyan Su
- Amway (China) Botanical R&D Center, Wuxi, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Ding
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | | | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Study of Triticum aestivum Resistome in Response to Wheat dwarf India Virus Infection. Life (Basel) 2021; 11:life11090955. [PMID: 34575104 PMCID: PMC8469153 DOI: 10.3390/life11090955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Susceptible and resistant germplasm respond differently to pathogenic attack, including virus infections. We compared the transcriptome changes between a resistant wheat cultivar, Sonalika, and a susceptible cultivar, WL711, to understand this process in wheat against wheat dwarf India virus (WDIV) infection. A total of 2760 and 1853 genes were differentially expressed in virus-infected and mock-inoculated Sonalika, respectively, compared to WL711. The overrepresentation of genes involved in signaling, hormone metabolism, enzymes, secondary metabolites, proteolysis, and transcription factors was documented, including the overexpression of multiple PR proteins. We hypothesize that the virus resistance in Sonalika is likely due to strong intracellular surveillance via the action of multiple PR proteins (PR1, RAR1, and RPM1) and ChiB. Other genes such as PIP1, LIP1, DnaJ, defensins, oxalate oxidase, ankyrin repeat protein, serine-threonine kinase, SR proteins, beta-1,3-glucanases, and O-methyltransferases had a significant differential expression and play roles in stress tolerance, may also be contributing towards the virus resistance in Sonalika. In addition, we identified putative genes with unknown functions, which are only expressed in response to WDIV infection in Sonalika. The role of these genes could be further validated and utilized in engineering resistance in wheat and other crops.
Collapse
|
42
|
Alternative splicing in plant abiotic stress responses. Biochem Soc Trans 2021; 48:2117-2126. [PMID: 32869832 DOI: 10.1042/bst20200281] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Modifications of the cellular proteome pool upon stress allow plants to tolerate environmental changes. Alternative splicing is the most significant mechanism responsible for the production of multiple protein isoforms from a single gene. The spliceosome, a large ribonucleoprotein complex, together with several associated proteins, controls this pre-mRNA processing, adding an additional level of regulation to gene expression. Deep sequencing of transcriptomes revealed that this co- or post-transcriptional mechanism is highly induced by abiotic stress, and concerns vast numbers of stress-related genes. Confirming the importance of splicing in plant stress adaptation, key players of stress signaling have been shown to encode alternative transcripts, whereas mutants lacking splicing factors or associated components show a modified sensitivity and defective responses to abiotic stress. Here, we examine recent literature on alternative splicing and splicing alterations in response to environmental stresses, focusing on its role in stress adaptation and analyzing the future perspectives and directions for research.
Collapse
|
43
|
Hamzelou S, Melino VJ, Plett DC, Kamath KS, Nawrocki A, Larsen MR, Atwell BJ, Haynes PA. The phosphoproteome of rice leaves responds to water and nitrogen supply. Mol Omics 2021; 17:706-718. [PMID: 34291261 DOI: 10.1039/d1mo00137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scarcity of freshwater is an increasing concern in flood-irrigated rice, whilst excessive use of nitrogen fertilizers is costly and contributes to environmental pollution. To co-ordinate growth adaptation under prolonged exposure to limited water or excess nitrogen supply, plants employ complex systems for signalling and regulation of metabolic processes. There is limited information on the involvement of one of the most important post-translational modifications (PTMs), protein phosphorylation, in plant adaptation to long-term changes in resource supply. Oryza sativa cv. Nipponbare was grown under two regimes of nitrogen from the time of germination to final harvest. Twenty-five days after germination, water was withheld from half the pots in each nitrogen treatment and low water supply continued for an additional 26 days, while the remaining pots were well watered. Leaves from all four groups of plants were harvested after 51 days in order to test whether phosphorylation of leaf proteins responded to prior abiotic stress events. The dominant impact of these resources is exerted in leaves, where PTMs have been predicted to occur. Proteins were extracted and phosphopeptides were analysed by nanoLC-MS/MS analysis, coupled with label-free quantitation. Water and nitrogen regimes triggered extensive changes in phosphorylation of proteins involved in membrane transport, such as the aquaporin OsPIP2-6, a water channel protein. Our study reveals phosphorylation of several peptides belonging to proteins involved in RNA-processing and carbohydrate metabolism, suggesting that phosphorylation events regulate the signalling cascades that are required to optimize plant response to resource supply.
Collapse
Affiliation(s)
- Sara Hamzelou
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Vanessa J Melino
- King Abdullah University for Science and Technology, 2955-6990, Kingdom of Saudi Arabia
| | - Darren C Plett
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Karthik Shantharam Kamath
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia. and Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
44
|
Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. Int J Mol Sci 2021; 22:ijms22136731. [PMID: 34201749 PMCID: PMC8269355 DOI: 10.3390/ijms22136731] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.
Collapse
|
45
|
Wang H, Liu S, Dai X, Yang Y, Luo Y, Gao Y, Liu X, Wei W, Wang H, Xu X, Reddy ASN, Jaiswal P, Li W, Liu B, Gu L. PSDX: A Comprehensive Multi-Omics Association Database of Populus trichocarpa With a Focus on the Secondary Growth in Response to Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:655565. [PMID: 34122478 PMCID: PMC8195342 DOI: 10.3389/fpls.2021.655565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
Populus trichocarpa (P. trichocarpa) is a model tree for the investigation of wood formation. In recent years, researchers have generated a large number of high-throughput sequencing data in P. trichocarpa. However, no comprehensive database that provides multi-omics associations for the investigation of secondary growth in response to diverse stresses has been reported. Therefore, we developed a public repository that presents comprehensive measurements of gene expression and post-transcriptional regulation by integrating 144 RNA-Seq, 33 ChIP-seq, and six single-molecule real-time (SMRT) isoform sequencing (Iso-seq) libraries prepared from tissues subjected to different stresses. All the samples from different studies were analyzed to obtain gene expression, co-expression network, and differentially expressed genes (DEG) using unified parameters, which allowed comparison of results from different studies and treatments. In addition to gene expression, we also identified and deposited pre-processed data about alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI). The post-transcriptional regulation, differential expression, and co-expression network datasets were integrated into a new P. trichocarpa Stem Differentiating Xylem (PSDX) database (http://forestry.fafu.edu.cn/db/SDX), which further highlights gene families of RNA-binding proteins and stress-related genes. The PSDX also provides tools for data query, visualization, a genome browser, and the BLAST option for sequence-based query. Much of the data is also available for bulk download. The availability of PSDX contributes to the research related to the secondary growth in response to stresses in P. trichocarpa, which will provide new insights that can be useful for the improvement of stress tolerance in woody plants.
Collapse
Affiliation(s)
- Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yongkang Yang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunjun Luo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Bo Liu,
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Lianfeng Gu,
| |
Collapse
|
46
|
Feng W, Zhao P, Zheng X, Hu Z, Liu J. Profiling Novel Alternative Splicing within Multiple Tissues Provides Useful Insights into Porcine Genome Annotation. Genes (Basel) 2020; 11:genes11121405. [PMID: 33255998 PMCID: PMC7760890 DOI: 10.3390/genes11121405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) is a process during gene expression that results in a single gene coding for different protein variants. AS contributes to transcriptome and proteome diversity. In order to characterize AS in pigs, genome-wide transcripts and AS events were detected using RNA sequencing of 34 different tissues in Duroc pigs. In total, 138,403 AS events and 29,270 expressed genes were identified. An alternative donor site was the most common AS form and accounted for 44% of the total AS events. The percentage of the other three AS forms (exon skipping, alternative acceptor site, and intron retention) was approximately 19%. The results showed that the most common AS events involving alternative donor sites could produce different transcripts or proteins that affect the biological processes. The expression of genes with tissue-specific AS events showed that gene functions were consistent with tissue functions. AS increased proteome diversity and resulted in novel proteins that gained or lost important functional domains. In summary, these findings extend porcine genome annotation and highlight roles that AS could play in determining tissue identity.
Collapse
|
47
|
Pitzalis N, Amari K, Graindorge S, Pflieger D, Donaire L, Wassenegger M, Llave C, Heinlein M. Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun Biol 2020; 3:702. [PMID: 33230160 PMCID: PMC7683744 DOI: 10.1038/s42003-020-01425-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves. We show that the induction of host-encoded, virus-activated small interfering RNAs (vasiRNAs) observed in virus-infected tissues is accompanied by site-specific cleavage events on both viral and host RNAs that recalls the activity of small RNA-induced silencing complexes (RISC). Cleavage events also involve virus-derived siRNA (vsiRNA)–directed cleavage of target host transcripts as well as cleavage of viral RNA by both host vasiRNAs and vsiRNAs. Furthermore, certain coding genes act as virus-activated regulatory hubs to produce vasiRNAs for the targeting of other host genes. The observations draw an advanced model of plant-virus interactions and provide insights into the complex regulatory networking at the plant-virus interface within cells undergoing early stages of infection. Pitzalis et al. use replicative RNAseq, small RNA (sRNA)seq, and parallel analysis of RNA ends (PARE)seq analysis to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus infection sites. This study provides insights into the complex regulatory networking at the plantvirus interface within cells undergoing early stages of infection.
Collapse
Affiliation(s)
- Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Khalid Amari
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.,Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Livia Donaire
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100, Murcia, Spain
| | - Michael Wassenegger
- RLP Agroscience, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.,Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.
| |
Collapse
|
48
|
Rajamäki ML, Sikorskaite-Gudziuniene S, Sarmah N, Varjosalo M, Valkonen JPT. Nuclear proteome of virus-infected and healthy potato leaves. BMC PLANT BIOLOGY 2020; 20:355. [PMID: 32727361 PMCID: PMC7392702 DOI: 10.1186/s12870-020-02561-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/20/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. RESULTS In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. CONCLUSIONS Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | - Sidona Sikorskaite-Gudziuniene
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Street 30, Babtai, LT-54333, Kaunas District, Lithuania
| | - Nandita Sarmah
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
49
|
Marondedze C, Thomas L, Lilley KS, Gehring C. Drought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components. Front Mol Biosci 2020; 6:163. [PMID: 32039234 PMCID: PMC6985371 DOI: 10.3389/fmolb.2019.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
The spliceosome processes RNAs from a pre-RNA state to a mature mRNA thereby influencing RNA availability for translation, localization, and turnover. It consists of complex structures containing RNA-binding proteins (RBPs) essential for post-transcriptional gene expression control. Here we investigate the dynamic modifications of spliceosomal RBPs under stress and in particular drought stress. We do so by mRNA interactome capture in Arabidopsis thaliana using label free quantitation. This approach identified 44 proteins associated with the spliceosome and further 32 proteins associated with stress granules. We noted a high enrichment in the motifs RDRR and RSRSRS that are characteristic of RNA interacting proteins. Identification of splicing factors reflect direct and/or indirect stress induced splicing events that have a direct effect on transcriptome and proteome changes under stress. Furthermore, detection of stress granule components is consistent with transcriptional arrest. Identification of drought induced stress granule components is critical in determining common abiotic stress-induced foci that can have biotechnological applications. This study may therefore open ways to modify plant stress responses at a systems level through the modification of key spliceosome components.
Collapse
Affiliation(s)
- Claudius Marondedze
- Department of Biochemistry, Cambridge Centre for Proteomics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ludivine Thomas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
50
|
Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R. The Effect of Drought on Transcriptome and Hormonal Profiles in Barley Genotypes With Contrasting Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:618491. [PMID: 33424910 PMCID: PMC7786106 DOI: 10.3389/fpls.2020.618491] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 05/21/2023]
Abstract
Like many cereal crops, barley is also negatively affected by drought stress. However, due to its simple genome as well as enhanced stress resilient nature compared to rice and wheat, barley has been considered as a model to decipher drought tolerance in cereals. In the present study, transcriptomic and hormonal profiles along with several biochemical features were compared between drought-tolerant (Otis) and drought-sensitive (Baronesse) barley genotypes subjected to drought to identify molecular and biochemical differences between the genotypes. The drought-induced decrease in the leaf relative water content, net photosynthesis, and biomass accumulation was relatively low in Otis compared to Baronesse. The hormonal profiles did not reveal significant differences for majority of the compounds other than the GA20 and the cis-zeatin-o-glucoside (c-ZOG), whose levels were greatly increased in Otis compared to Baronesse under drought. The major differences that emerged from the transcriptome analysis are; (1), the overall number of differentially expressed genes was relatively low in drought-tolerant Otis compared to drought-sensitive Baronesse; (2), a wax biosynthesis gene (CER1), and NAC transcription factors were specifically induced in Otis but not in Baronesse; (3), the degree of upregulation of betaine aldehyde dehydrogenase and a homeobox transcription factor (genes with proven roles in imparting drought tolerance), was greater in Otis compared to Baronesse; (4) the extent of downregulation of gene expression profiles for proteins of the reaction center photosystem II (PSII) (D1 and D2) was low in Otis compared to Baronesse; and, (5), alternative splicing (AS) was also found to differ between the genotypes under drought. Taken together, the overall transcriptional responses were low in drought-tolerant Otis but the genes that could confer drought tolerance were either specifically induced or greatly upregulated in the tolerant genotype and these differences could be important for drought tolerance in barley.
Collapse
Affiliation(s)
- Amal Harb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
- *Correspondence: Amal Harb ;
| | - Craig Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Wenbin Guo
- Informatics and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK, United States
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Ramanjulu Sunkar
| |
Collapse
|