1
|
de Oliveira Santos T, Teixeira do Amaral Junior A, Batista Pinto V, Barboza Bispo R, Campostrini E, Glowacka K, Rohem Simão B, de Paula Bernardo W, Nicácio Viana F, Silveira V, Apolinário de Souza Filho G. Morphophysiological and proteomic profiling unveiling mechanisms underlying nitrogen use efficiency in popcorn (Zea mays var. everta). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109581. [PMID: 40007371 DOI: 10.1016/j.plaphy.2025.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
In this study we hypothesize that the contrasting nitrogen use efficiency (NUE) between popcorn (Zea mays var. everta) inbred lines P2 (high NUE) and L80 (low NUE) is driven by distinct morphophysiological responses and proteomic profiles found in leaves and roots. To elucidate the mechanisms involved, plants were cultivated in a greenhouse under high (100% N) and low (10% N) nitrogen conditions, in a randomized complete block design with two factorial treatment arrangements and seven blocks. Morphological and physiological traits such as photochemical and non-photochemical quenching, quantum yield of photosystem II, and potential photosynthesis were evaluated. Compared to L80, under low N, P2 exhibited 25.9% greater leaf area, 22.4% taller plants, 21.7% thicker stems and 113% higher shoot dry mass, as well as higher values of photochemical and non-photochemical quenching and quantum yield of photosystem II that drove to a maximum photosynthesis 16.5% higher than L80. Comparative proteomic analysis of the leaves identified 215 differentially accumulated proteins (DAPs) in P2 and 168 DAPs in L80, while in roots, 127 DAPs were observed in P2 and 172 in L80. Notably, in leaves, the response to oxidative stress, energy metabolism, and photosynthesis represented the main differences between P2 and L80. In roots, the nitrate transport, ammonium assimilation, and amino acid metabolism appear to have contributed to the improved NUE in P2. Consequently, this study provides valuable insights into the molecular mechanisms underlying NUE and opens avenues for molecular breeding aimed at selecting superior genotypes for the development of a more sustainable agriculture.
Collapse
Affiliation(s)
- Talles de Oliveira Santos
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Antônio Teixeira do Amaral Junior
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rosimeire Barboza Bispo
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Eliemar Campostrini
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Katarzyna Glowacka
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Bruna Rohem Simão
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Wallace de Paula Bernardo
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Flávia Nicácio Viana
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Biotechnology Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | |
Collapse
|
2
|
Luo Y, Nan L. Genome-wide identification of high-affinity nitrate transporter 2 (NRT2) gene family under phytohormones and abiotic stresses in alfalfa (Medicago sativa). Sci Rep 2024; 14:31920. [PMID: 39738449 PMCID: PMC11685795 DOI: 10.1038/s41598-024-83438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
The high-affinity nitrate transporter 2 (NRT2) protein plays an important role in nitrate uptake and transport in plants. In this study, the NRT2s gene family were systematically analyzed in alfalfa. We identified three MsNRT2 genes from the genomic database. They were named MsNRT2.1-2.3 based on their chromosomal location. The phylogenetic tree revealed that NRT2 proteins were categorized into two main subgroups, which were further confirmed by their gene structure and conserved motifs. Three MsNRT2 genes distributed on 2 chromosomes. Furthermore, we studied the expression patterns of MsNRT2 genes in six tissues based on RNA-sequencing data from the Short Read Archive (SRA) database of NCBI, and the results showed that MsNRT2 genes were widely expressed in six tissues. After leaves and roots were treated with drought, salt, abscisic acid (ABA) and salicylic acid (SA) for 0-48 h, and we used quantitative RT-PCR to analyze the expression levels of MsNRT2 genes and the results showed that most of the MsNRT2 genes responded to these stresses. However, there are specific genes that play a role under specific treatment conditions. This result provides a basis for further research on the target genes. In summary, MsNRT2s play an irreplaceable role in the growth, development and stress response of alfalfa, and this study provides valuable information and theoretical basis for future research on MsNRT2 function.
Collapse
Affiliation(s)
- Yanyan Luo
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Lili Nan
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
3
|
Li G, Yang D, Hu Y, Xu J, Lu Z. Genome-Wide Identification and Expression Analysis of Nitrate Transporter (NRT) Gene Family in Eucalyptus grandis. Genes (Basel) 2024; 15:930. [PMID: 39062710 PMCID: PMC11275818 DOI: 10.3390/genes15070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Eucalyptus grandis is an important planted hardwood tree worldwide with fast growth and good wood performance. The nitrate transporter (NRT) gene family is a major core involved in nitrogen (N) absorption and utilization in plants, but the comprehensive characterization of NRT genes in E. grandis remains mostly elusive. In this study, a total of 75 EgNRT genes were identified from the genome of E. grandis that were distributed unevenly across ten chromosomes, except Chr9. A phylogenetic analysis showed that the EgNRT proteins could be divided into three classes, namely NRT1, NRT2 and NRT3, which contained 69, 4 and 2 members, respectively. The cis-regulatory elements in the promoter regions of EgNRT genes were mainly involved in phytohormone and stress response. The transcriptome analysis indicated that the differentially expressed genes of leaf and root in E. grandis under different N supply conditions were mainly involved in the metabolic process and plant hormone signal transduction. In addition, the transcriptome-based and RT-qPCR analysis revealed that the expression of 13 EgNRT genes, especially EgNRT1.3, EgNRT1.38, EgNRT1.39 and EgNRT1.52, was significantly upregulated in the root under low-N-supply treatment, suggesting that those genes might play a critical role in root response to nitrate deficiency. Taken together, these results would provide valuable information for characterizing the roles of EgNRTs and facilitate the clarification of the molecular mechanism underlying EgNRT-mediated N absorption and distribution in E. grandis.
Collapse
Affiliation(s)
- Guangyou Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| | - Deming Yang
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| | - Yang Hu
- Xinhui Research Institute of Forestry Science, Jiangmen 529100, China;
| | - Jianmin Xu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| | - Zhaohua Lu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| |
Collapse
|
4
|
Khramov DE, Rostovtseva EI, Matalin DA, Konoshenkova AO, Nedelyaeva OI, Volkov VS, Balnokin YV, Popova LG. Novel Proteins of the High-Affinity Nitrate Transporter Family NRT2, SaNRT2.1 and SaNRT2.5, from the Euhalophyte Suaeda altissima: Molecular Cloning and Expression Analysis. Int J Mol Sci 2024; 25:5648. [PMID: 38891835 PMCID: PMC11171637 DOI: 10.3390/ijms25115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Two genes of nitrate transporters SaNRT2.1 and SaNRT2.5, putative orthologs of high-affinity nitrate transporter genes AtNRT2.1 and AtNRT2.5 from Arabidopsis thaliana, were cloned from the euhalophyte Suaeda altissima. Phylogenetic bioinformatic analysis demonstrated that the proteins SaNRT2.1 and SaNRT2.5 exhibited higher levels of homology to the corresponding proteins from the plants of family Amaranthaceae; the similarity of amino acid sequences between proteins SaNRT2.1 and SaNRT2.5 was lower (54%). Both SaNRT2.1 and SaNRT2.5 are integral membrane proteins forming 12 transmembrane helices as predicted by topological modeling. An attempt to demonstrate nitrate transporting activity of SaNRT2.1 or SaNRT2.5 by heterologous expression of the genes in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the only yeast nitrate transporter was not successful. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied in S. altissima plants that were grown in hydroponics under either low (0.5 mM) or high (15 mM) nitrate and salinity from 0 to 750 mM NaCl. The growth of the plants was strongly inhibited by low nitrogen supply while stimulated by NaCl; it peaked at 250 mM NaCl for high nitrate and at 500 mM NaCl for low nitrate. Under low nitrate supply, nitrate contents in S. altissima roots, leaves and stems were reduced but increased in leaves and stems as salinity in the medium increased. Potassium contents remained stable under salinity treatment from 250 to 750 mM NaCl. Quantitative real-time PCR demonstrated that without salinity, SaNRT2.1 was expressed in all organs, its expression was not influenced by nitrate supply, while SaNRT2.5 was expressed exclusively in roots-its expression rose about 10-fold under low nitrate. Salinity increased expression of both SaNRT2.1 and SaNRT2.5 under low nitrate. SaNRT2.1 peaked in roots at 500 mM NaCl with 15-fold increase; SaNRT2.5 peaked in roots at 500 mM NaCl with 150-fold increase. It is suggested that SaNRT2.5 ensures effective nitrate uptake by roots and functions as an essential high-affinity nitrate transporter to support growth of adult S. altissima plants under nitrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (E.I.R.); (D.A.M.); (A.O.K.); (O.I.N.); (Y.V.B.)
| | | | - Larissa G. Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia; (D.E.K.); (E.I.R.); (D.A.M.); (A.O.K.); (O.I.N.); (Y.V.B.)
| |
Collapse
|
5
|
Xu N, Cheng L, Kong Y, Chen G, Zhao L, Liu F. Functional analyses of the NRT2 family of nitrate transporters in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1351998. [PMID: 38501135 PMCID: PMC10944928 DOI: 10.3389/fpls.2024.1351998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Nitrogen is an essential macronutrient for plant growth and development. Nitrate is the major form of nitrogen acquired by most crops and also serves as a vital signaling molecule. Nitrate is absorbed from the soil into root cells usually by the low-affinity NRT1 NO3 - transporters and high-affinity NRT2 NO3 - transporters, with NRT2s serving to absorb NO3 - under NO3 -limiting conditions. Seven NRT2 members have been identified in Arabidopsis, and they have been shown to be involved in various biological processes. In this review, we summarize the spatiotemporal expression patterns, localization, and biotic and abiotic responses of these transporters with a focus on recent advances in the current understanding of the functions of the seven AtNRT2 genes. This review offers beneficial insight into the mechanisms by which plants adapt to changing environmental conditions and provides a theoretical basis for crop research in the near future.
Collapse
Affiliation(s)
- Na Xu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Li Cheng
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yuan Kong
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Guiling Chen
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Lufei Zhao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, Shandong, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
6
|
Zhang Z, Diao R, Sun J, Liu Y, Zhao M, Wang Q, Xu Z, Zhong B. Diversified molecular adaptations of inorganic nitrogen assimilation and signaling machineries in plants. THE NEW PHYTOLOGIST 2024; 241:2108-2123. [PMID: 38155438 DOI: 10.1111/nph.19508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Plants evolved sophisticated machineries to monitor levels of external nitrogen supply, respond to nitrogen demand from different tissues and integrate this information for coordinating its assimilation. Although roles of inorganic nitrogen in orchestrating developments have been studied in model plants and crops, systematic understanding of the origin and evolution of its assimilation and signaling machineries remains largely unknown. We expanded taxon samplings of algae and early-diverging land plants, covering all main lineages of Archaeplastida, and reconstructed the evolutionary history of core components involved in inorganic nitrogen assimilation and signaling. Most components associated with inorganic nitrogen assimilation were derived from the ancestral Archaeplastida. Improvements of assimilation machineries by gene duplications and horizontal gene transfers were evident during plant terrestrialization. Clusterization of genes encoding nitrate assimilation proteins might be an adaptive strategy for algae to cope with changeable nitrate availability in different habitats. Green plants evolved complex nitrate signaling machinery that was stepwise improved by domains shuffling and regulation co-option. Our study highlights innovations in inorganic nitrogen assimilation and signaling machineries, ranging from molecular modifications of proteins to genomic rearrangements, which shaped developmental and metabolic adaptations of plants to changeable nutrient availability in environments.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jingyan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yannan Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zilong Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Feng J, Zhu C, Cao J, Liu C, Zhang J, Cao F, Zhou X. Genome-wide identification and expression analysis of the NRT genes in Ginkgo biloba under nitrate treatment reveal the potential roles during calluses browning. BMC Genomics 2023; 24:633. [PMID: 37872493 PMCID: PMC10594704 DOI: 10.1186/s12864-023-09732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.
Collapse
Affiliation(s)
- Jin Feng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Can Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Chen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Fuliang Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
8
|
Munir R, Jan M, Muhammad S, Afzal M, Jan N, Yasin MU, Munir I, Iqbal A, Yang S, Zhou W, Gan Y. Detrimental effects of Cd and temperature on rice and functions of microbial community in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121371. [PMID: 36878274 DOI: 10.1016/j.envpol.2023.121371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal (HM) contamination and high environmental temperature (HT) are caused by anthropogenic activities that negatively impact soil microbial communities and agricultural productivity. Although HM contaminations have deleterious effects on microbes and plants; there are hardly any reports on the combined effects of HM and HT. Here, we reported that HT coupled with cadmium (Cd) accumulation in soil and irrigated water could seriously affect crop growth and productivity, alternatively influencing the microbial community and nutrient cycles of paddy soils in rice fields. We analyzed different mechanisms of plants and microflora in the rhizospheric region, such as plant rhizospheric nitrification, endophytes colonization, nutrient uptake, and physiology of temperature-sensitive (IR64) and temperature-resistant Huanghuazhan (HZ) rice cultivars against different Cd levels (2, 5 and 10 mg kg-1) with rice plants grown under 25 °C and 40 °C temperatures. Consequently, an increment in Cd accumulation was observed with rising temperature leading to enhanced expression of OsNTRs. In contrast, a greater decline in the microbial community was detected in IR64 cultivar than HZ. Similarly, ammonium oxidation, root-IAA, shoot-ABA production, and 16S rRNA gene abundance in the rhizosphere and endosphere were significantly influenced by HT and Cd levels, resulting in a significant decrease in the colonization of endophytes and the surface area of roots, leading to a decreased N uptake from the soil. Overall, the outcomes of this study unveiled the novel effects of Cd, temperature, and their combined effect on rice growth and functions of the microbial community. These results provide effective strategies to overcome Cd-phytotoxicity on the health of endophytes and rhizospheric bacteria in Cd-contaminated soil by using temperature-tolerant rice cultivars.
Collapse
Affiliation(s)
- Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Afzal
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nazia Jan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Sinsirimongkol K, Buasong A, Teppabut Y, Pholmanee N, Chen Y, Miller AJ, Punyasuk N. EgNRT2.3 and EgNAR2 expression are controlled by nitrogen deprivation and encode proteins that function as a two-component nitrate uptake system in oil palm. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153833. [PMID: 36257088 DOI: 10.1016/j.jplph.2022.153833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is an important crop for oil and biodiesel production. Oil palm plantations require extensive fertilizer additions to achieve a high yield. Fertilizer application decisions and management for oil palm farming rely on leaf tissue and soil nutrient analyses with little information available to describe the key players for nutrient uptake. A molecular understanding of how nutrients, especially nitrogen (N), are taken up in oil palm is very important to improve fertilizer use and formulation practice in oil palm plantations. In this work, two nitrate uptake genes in oil palm, EgNRT2.3 and EgNAR2, were cloned and characterized. Spatial expression analysis showed high expression of these two genes was mainly found in un-lignified young roots. Interestingly, EgNRT2.3 and EgNAR2 were up-regulated by N deprivation, but their expression pattern depended on the form of N source. Promoter analysis of these two genes confirmed the presence of regulatory elements that support these expression patterns. The Xenopus oocyte assay showed that EgNRT2.3 and EgNAR2 had to act together to take up nitrate. The results suggest that EgNRT2.3 and EgNAR2 act as a two-component nitrate uptake system in oil palm.
Collapse
Affiliation(s)
| | - Atcharaporn Buasong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yada Teppabut
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nutthida Pholmanee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yi Chen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anthony J Miller
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Napassorn Punyasuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
10
|
Kumar A, Sandhu N, Kumar P, Pruthi G, Singh J, Kaur S, Chhuneja P. Genome-wide identification and in silico analysis of NPF, NRT2, CLC and SLAC1/SLAH nitrate transporters in hexaploid wheat (Triticum aestivum). Sci Rep 2022; 12:11227. [PMID: 35781289 PMCID: PMC9250930 DOI: 10.1038/s41598-022-15202-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Nitrogen transport is one of the most important processes in plants mediated by specialized transmembrane proteins. Plants have two main systems for nitrogen uptake from soil and its transport within the system—a low-affinity transport system and a high-affinity transport system. Nitrate transporters are of special interest in cereal crops because large amount of money is spent on N fertilizers every year to enhance the crop productivity. Till date four gene families of nitrate transporter proteins; NPF (nitrate transporter 1/peptide transporter family), NRT2 (nitrate transporter 2 family), the CLC (chloride channel family), and the SLAC/SLAH (slow anion channel-associated homologues) have been reported in plants. In our study, in silico mining of nitrate transporter genes along with their detailed structure, phylogenetic and expression analysis was carried out. A total of 412 nitrate transporter genes were identified in hexaploid wheat genome using HMMER based homology searches in IWGSC Refseq v2.0. Out of those twenty genes were root specific, 11 leaf/shoot specific and 17 genes were grain/spike specific. The identification of nitrate transporter genes in the close proximity to the previously identified 67 marker-traits associations associated with the nitrogen use efficiency related traits in nested synthetic hexaploid wheat introgression library indicated the robustness of the reported transporter genes. The detailed crosstalk between the genome and proteome and the validation of identified putative candidate genes through expression and gene editing studies may lay down the foundation to improve nitrogen use efficiency of cereal crops.
Collapse
Affiliation(s)
- Aman Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Nitika Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gomsie Pruthi
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jasneet Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
11
|
Zhao Z, Li M, Xu W, Liu JH, Li C. Genome-Wide Identification of NRT Gene Family and Expression Analysis of Nitrate Transporters in Response to Salt Stress in Poncirus trifoliata. Genes (Basel) 2022; 13:genes13071115. [PMID: 35885900 PMCID: PMC9323722 DOI: 10.3390/genes13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
The uptake and transportation of nitrate play a crucial role in plant growth and development. These processes mostly depend on nitrate transporters (NRT), which guarantee the supplement of nutrition in the plant. In this study, genes encoding NRT with Major Facilitator Superfamily (MFS) domain were identified in trifoliate orange (Poncirus trifoliata (L.) Raf.). Totally, 56 NRT1s, 6 NRT2s, and 2 NAR2s were explored. The bioinformation analysis, including protein characteristics, conserved domain, motif, phylogenetic relationship, cis-acting element, and synteny correlation, indicated the evolutionary conservation and functional diversity of NRT genes. Additionally, expression profiles of PtrNRTs in different tissues demonstrated that NRT genes possessed spatio-temporal expression specificity. Further, the salt condition was certified to induce the expression of some NRT members, like PtrNPF2.1, PtrNPF7.4, and PtrNAR2.1, proposing the potential role of these NRTs in salt stress response. The identification of NRT genes and the expression pattern analysis in various tissues and salt stress lay a foundation for future research between nitrogen transport and salt resistance in P. trifoliata.
Collapse
Affiliation(s)
- Zeqi Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Mengdi Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Weiwei Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (M.L.); (W.X.); (J.-H.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
12
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
13
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
14
|
Kuo CC, Lin YC, Chen LH, Lin MY, Shih MC, Lee MH. CaNRT2.1 Is Required for Nitrate but Not Nitrite Uptake in Chili Pepper Pathogen Colletotrichum acutatum. Front Microbiol 2021; 11:613674. [PMID: 33469454 PMCID: PMC7813687 DOI: 10.3389/fmicb.2020.613674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Chili peppers are an important food additive used in spicy cuisines worldwide. However, the yield and quality of chilis are threatened by anthracnose disease caused by Colletotrichum acutatum. Despite the impact of C. acutatum on chili production, the genes involved in fungal development and pathogenicity in this species have not been well characterized. In this study, through T-DNA insertional mutagenesis, we identified a mutant strain termed B7, which is defective for the growth of C. acutatum on a minimal nutrient medium. Our bioinformatics analysis revealed that a large fragment DNA (19.8 kb) is deleted from the B7 genome, thus resulting in the deletion of three genes, including CaGpiP1 encoding a glycosylphosphatidyl-inisotol (GPI)-anchored protein, CaNRT2.1 encoding a membrane-bound nitrate/nitrite transporter, and CaRQH1 encoding a RecQ helicase protein. In addition, T-DNA is inserted upstream of the CaHP1 gene encoding a hypothetical protein. Functional characterization of CaGpiP1, CaNRT2.1, and CaHP1 by targeted gene disruption and bioassays indicated that CaNRT2.1 is responsible for the growth-defective phenotype of B7. Both B7 and CaNRT2.1 mutant strains cannot utilize nitrate as nitrogen sources, thus restraining the fungal growth on a minimal nutrient medium. In addition to CaNRT2.1, our results showed that CaGpiP1 is a cell wall-associated GPI-anchored protein. However, after investigating the functions of CaGpiP1 and CaHP1 in fungal pathogenicity, growth, development and stress tolerance, we were unable to uncover the roles of these two genes in C. acutatum. Collectively, in this study, our results identify the growth-defective strain B7 via T-DNA insertion and reveal the critical role of CaNRT2.1 in nitrate transportation for the fungal growth of C. acutatum.
Collapse
Affiliation(s)
- Chia-Chi Kuo
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Chu Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Yi Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academic Sinica, Taipei, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
16
|
Li W, He X, Chen Y, Jing Y, Shen C, Yang J, Teng W, Zhao X, Hu W, Hu M, Li H, Miller AJ, Tong Y. A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. THE NEW PHYTOLOGIST 2020; 225:1667-1680. [PMID: 31581317 PMCID: PMC7004088 DOI: 10.1111/nph.16234] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/22/2019] [Indexed: 05/12/2023]
Abstract
Seed vigour and early establishment are important factors determining the yield of crops. A wheat nitrate-inducible NAC transcription factor, TaNAC2, plays a critical role in promoting crop growth and nitrogen use efficiency (NUE), and now its role in seed vigour is revealed. A TaNAC2 regulated gene was identified that is a NRT2-type nitrate transporter TaNRT2.5 with a key role in seed vigour. Overexpressing TaNAC2-5A increases grain nitrate concentration and seed vigour by directly binding to the promoter of TaNRT2.5-3B and positively regulating its expression. TaNRT2.5 is expressed in developing grain, particularly the embryo and husk. In Xenopus oocyte assays TaNRT2.5 requires a partner protein TaNAR2.1 to give nitrate transport activity, and the transporter locates to the tonoplast in a tobacco leaf transient expression system. Furthermore, in the root TaNRT2.5 and TaNRT2.1 function in post-anthesis acquisition of soil nitrate. Overexpression of TaNRT2.5-3B increases seed vigour, grain nitrate concentration and yield, whereas RNA interference of TaNRT2.5 has the opposite effects. The TaNAC2-NRT2.5 module has a key role in regulating grain nitrate accumulation and seed vigour. Both genes can potentially be used to improve grain yield and NUE in wheat.
Collapse
Affiliation(s)
- Wenjing Li
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
| | - Xue He
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
| | - Yi Chen
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
- Department of Metabolic BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Yanfu Jing
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chuncai Shen
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junbo Yang
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wan Teng
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Xueqiang Zhao
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Weijuan Hu
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Mengyun Hu
- The Institute for Cereal and Oil CropsHebei Academy of Agriculture and Forestry SciencesShijiazhuang050035China
| | - Hui Li
- The Institute for Cereal and Oil CropsHebei Academy of Agriculture and Forestry SciencesShijiazhuang050035China
| | - Anthony J. Miller
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
- Department of Metabolic BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Yiping Tong
- The State Key Laboratory for Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- CAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)Shanghai Institutes for Biological SciencesChinese Academy of Sciences (CAS)Shanghai200032China
| |
Collapse
|
17
|
Li L, Gong H, Sun Z, Li T. Identification of conserved genes involved in nitrogen metabolic activities in wheat. PeerJ 2019; 7:e7281. [PMID: 31328042 PMCID: PMC6625498 DOI: 10.7717/peerj.7281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/06/2019] [Indexed: 11/26/2022] Open
Abstract
Nitrogen (N) plays a very important role in crop growth and development. Many N-metabolism-related genes responsive to N application have been identified in many plants such as Arabidopsis, rice and maize; however, few genes have been reported in wheat, which is one of the most widely grown crops in the world. In this study, a wheat wild type with N dependent lesion mimic (LM) and its mutants without LM were used to identify conserved N-metabolism-related genes. TaPAP, TaUPS and TaNMR were differentially expressed among N levels both in the wild type and two of its mutants, and the expression patterns of these genes were further studied under application of three chemotypes of N (NH4+, NO3- and NH4NO3). The results showed that these genes are conserved N-metabolism-related genes and TaNMR is a novel player in N-metabolism.
Collapse
Affiliation(s)
- Lei Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Hao Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Zhengxi Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Fan K, Wang M, Gao Y, Ning Q, Shi Y. Transcriptomic and ionomic analysis provides new insight into the beneficial effect of Al on tea roots' growth and nutrient uptake. PLANT CELL REPORTS 2019; 38:715-729. [PMID: 30911819 DOI: 10.1007/s00299-019-02401-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Transcriptome profiling of roots indicated that genes involved in cell wall modification, cytoskeleton, H+ exchange and K+ influx played important roles in tea root growth under Al addition. Tea (Camellia sinensis) is considered as an Al accumulator species. It can accumulate a high concentration of Al in mature leaves without any symptom of toxicity, even improve roots' growth and nutrient uptake. However, the molecular mechanisms underlying this tolerance remain unclear. Here, we investigated the accumulation of elements and transcriptional profiles in tea roots treated with various Al doses. The results showed that the growth of tea plants was improved by a low dose of Al (0.2, 0.4, 0.6, 1 mM); however, this beneficial effect disappeared when higher concentrations of Al were supplied (2, 4, 10 mM). Ionomic analysis suggested that accumulation of P and K increased under a low Al supply (< 1 mM), while Ca and Mg contents were negatively correlated with external Al doses. The RNA seq obtained 523,391 unigenes, among which 20,448 were annotated in all databases. In total, 1876 unigenes were expressed significantly different in any Al treatment. A large number of DEGs involved in cell growth and division, such as those linked to cell wall-modifying enzymes, actin cytoskeleton, cyclin and H+-ATPase were identified, suggesting that these pathways were involved in root growth under different Al supply. Furthermore, expression of transporters significantly changed in roots supplied with Al. Among them, HAK5, which is involved in K uptake by plants, had a significant positive correlation with the K content.
Collapse
Affiliation(s)
- Kai Fan
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Min Wang
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Yaoyao Gao
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Qiuyan Ning
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Yuanzhi Shi
- Tea research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Xu Y, Ren Y, Li J, Li L, Chen S, Wang Z, Xin Z, Chen F, Lin T, Cui D, Tong Y. Comparative Proteomic Analysis Provides New Insights Into Low Nitrogen-Promoted Primary Root Growth in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:151. [PMID: 30842781 PMCID: PMC6391680 DOI: 10.3389/fpls.2019.00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/29/2019] [Indexed: 05/08/2023]
Abstract
Nitrogen deficient environments can promote wheat primary root growth (PRG) that allows for nitrogen uptake in deep soil. However, the mechanisms of low nitrogen-promoted root growth remain largely unknown. Here, an integrated comparative proteome study using iTRAQ analysis on the roots of two wheat varieties and their descendants with contrasting response to low nitrogen (LN) stress was performed under control (CK) and LN conditions. In total, 84 differentially abundant proteins (DAPs) specifically involved in the process of LN-promoted PRG were identified and 11 pathways were significantly enriched. The Glutathione metabolism, endocytosis, lipid metabolism, and phenylpropanoid biosynthesis pathways may play crucial roles in the regulation of LN-promoted PRG. We also identified 59 DAPs involved in the common response to LN stress in different genetic backgrounds. The common responsive DAPs to LN stress were mainly involved in nitrogen uptake, transportation and remobilization, and LN stress tolerance. Taken together, our results provide new insights into the metabolic and molecular changes taking place in contrasting varieties under LN conditions, which provide useful information for the genetic improvement of root traits and nitrogen use efficiency in wheat.
Collapse
Affiliation(s)
- Yanhua Xu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Life Sciences, Shangqiu Normal University, Shangqiu, China
| | - Yongzhe Ren
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Yongzhe Ren
| | - Jingjing Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Le Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shulin Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiqiang Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Tongbao Lin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Tongbao Lin
| | - Dangqun Cui
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Dangqun Cui
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A, Samavedam S, Bonomo G, Hersh DS, Coruzzi GM, Burroughs NJ, Gifford ML. Changes in Gene Expression in Space and Time Orchestrate Environmentally Mediated Shaping of Root Architecture. THE PLANT CELL 2017; 29:2393-2412. [PMID: 28893852 PMCID: PMC5774560 DOI: 10.1105/tpc.16.00961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 05/02/2023]
Abstract
Shaping of root architecture is a quintessential developmental response that involves the concerted action of many different cell types, is highly dynamic, and underpins root plasticity. To determine to what extent the environmental regulation of lateral root development is a product of cell-type preferential activities, we tracked transcriptomic responses to two different treatments that both change root development in Arabidopsis thaliana at an unprecedented level of temporal detail. We found that individual transcripts are expressed with a very high degree of temporal and spatial specificity, yet biological processes are commonly regulated, in a mechanism we term response nonredundancy. Using causative gene network inference to compare the genes regulated in different cell types and during responses to nitrogen and a biotic interaction, we found that common transcriptional modules often regulate the same gene families but control different individual members of these families, specific to response and cell type. This reinforces that the activity of a gene cannot be defined simply as molecular function; rather, it is a consequence of spatial location, expression timing, and environmental responsiveness.
Collapse
Affiliation(s)
- Liam Walker
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Clare Boddington
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Dafyd Jenkins
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Ying Wang
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Jesper T Grønlund
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jo Hulsmans
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Sanjeev Kumar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dhaval Patel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan D Moore
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Anthony Carter
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
| | - Siva Samavedam
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Giovanni Bonomo
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - David S Hersh
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003
| | - Nigel J Burroughs
- Warwick Systems Biology Centre, University of Warwick, Senate House, Coventry CV4 7AL, United Kingdom
- Warwick Mathematics Institute, University of Warwick, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
21
|
He X, Ma H, Zhao X, Nie S, Li Y, Zhang Z, Shen Y, Chen Q, Lu Y, Lan H, Zhou S, Gao S, Pan G, Lin H. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. PLoS One 2016; 11:e0151697. [PMID: 26990640 PMCID: PMC4798287 DOI: 10.1371/journal.pone.0151697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs) related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach, we identified DEGs related to root development that also participated in the N-deficiency response in maize. These findings will increase our understanding of the molecular regulatory networks controlling root development and N-stress responses.
Collapse
Affiliation(s)
- Xiujing He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haixia Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Xiongwei Zhao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shujun Nie
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yuhua Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhiming Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qi Chen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Hai Lan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shufeng Zhou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Haijian Lin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture; Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, China
- * E-mail:
| |
Collapse
|
22
|
Huang S, Chen S, Liang Z, Zhang C, Yan M, Chen J, Xu G, Fan X, Zhang Y. Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Sci Rep 2015; 5:18192. [PMID: 26644084 PMCID: PMC4672285 DOI: 10.1038/srep18192] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/16/2015] [Indexed: 01/03/2023] Open
Abstract
The morphological plasticity of root systems is critical for plant survival, and understanding the mechanisms underlying root adaptation to nitrogen (N) fluctuation is critical for sustainable agriculture; however, the molecular mechanism of N-dependent root growth in rice remains unclear. This study aimed to identify the role of the complementary high-affinity NO3− transport protein OsNAR2.1 in NO3−-regulated rice root growth. Comparisons with wild-type (WT) plants showed that knockdown of OsNAR2.1 inhibited lateral root (LR) formation under low NO3− concentrations, but not under low NH4+ concentrations. 15N-labelling NO3− supplies (provided at concentrations of 0–10 mM) demonstrated that (i) defects in LR formation in mutants subjected to low external NO3− concentrations resulted from impaired NO3− uptake, and (ii) the mutants had significantly fewer LRs than the WT plants when root N contents were similar between genotypes. LR formation in osnar2.1 mutants was less sensitive to localised NO3− supply than LR formation in WT plants, suggesting that OsNAR2.1 may be involved in a NO3−-signalling pathway that controls LR formation. Knockdown of OsNAR2.1 inhibited LR formation by decreasing auxin transport from shoots to roots. Thus, OsNAR2.1 probably functions in both NO3− uptake and NO3−-signalling.
Collapse
Affiliation(s)
- Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Si Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhihao Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chenming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ming Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
23
|
Liu X, Feng H, Huang D, Song M, Fan X, Xu G. Two short sequences in OsNAR2.1 promoter are necessary for fully activating the nitrate induced gene expression in rice roots. Sci Rep 2015; 5:11950. [PMID: 26150107 PMCID: PMC4493634 DOI: 10.1038/srep11950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/09/2015] [Indexed: 11/09/2022] Open
Abstract
Nitrate is an essential nitrogen source and serves as a signal to control growth and gene expression in plants. In rice, OsNAR2.1 is an essential partner of multiple OsNRT2 nitrate transporters for nitrate uptake over low and high concentration range. Previously, we have reported that -311 bp upstream fragment from the translational start site in the promoter of OsNAR2.1 gene is the nitrate responsive region. To identify the cis-acting DNA elements necessary for nitrate induced gene expression, we detected the expression of beta-glucuronidase (GUS) reporter in the transgenic rice driven by the OsNAR2.1 promoter with different lengths and site mutations of the 311 bp region. We found that -129 to -1 bp region is necessary for the nitrate-induced full activation of OsNAR2.1. Besides, the site mutations showed that the 20 bp fragment between -191 and -172 bp contains an enhancer binding site necessary to fully drive the OsNAR2.1 expression. Part of the 20 bp fragment is commonly presented in the sequences of different promoters of both the nitrate induced NAR2 genes and nitrite reductase NIR1 genes from various higher plants. These findings thus reveal the presence of conserved cis-acting element for mediating nitrate responses in plants.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Daimin Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Miaoquan Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Liu X, Huang D, Tao J, Miller AJ, Fan X, Xu G. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. THE NEW PHYTOLOGIST 2014; 204:74-80. [PMID: 25103875 PMCID: PMC4232926 DOI: 10.1111/nph.12986] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 05/21/2023]
Abstract
A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the conserved regions of NAR2 homologs in plants were generated to explore the essential motifs involved in the interaction with OsNRT2.3a. Screening using the membrane yeast two-hybrid system and Xenopus oocytes for nitrogen-15 ((15)N) uptake demonstrated that either R100G or D109N point mutations impaired the OsNAR2.1 interaction with OsNRT2.3a. Western blotting and visualization using green fluorescent protein fused to either the N- or C-terminus of OsNAR2.1 indicated that OsNAR2.1 is expressed in both the PM and cytoplasm. The split-yellow fluorescent protein (YFP)/BiFC analyses indicated that OsNRT2.3a was targeted to the PM in the presence of OsNAR2.1, while either R100G or D109N mutation resulted in the loss of OsNRT2.3a-YFP signal in the PM. Based on these results, arginine 100 and aspartic acid 109 of the OsNAR2.1 protein are key amino acids in the interaction with OsNRT2.3a, and their interaction occurs in the PM but not cytoplasm.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Daimin Huang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Jinyuan Tao
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Anthony J Miller
- Metabolic Biology Department, John Innes CentreNorwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural UniversityNanjing, 210095, China
| |
Collapse
|
25
|
Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics 2014; 15:179. [PMID: 24597475 PMCID: PMC4029069 DOI: 10.1186/1471-2164-15-179] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sorghum is an important cereal crop, which requires large quantities of nitrogen fertilizer for achieving commercial yields. Identification of the genes responsible for low-N tolerance in sorghum will facilitate understanding of the molecular mechanisms of low-N tolerance, and also facilitate the genetic improvement of sorghum through marker-assisted selection or gene transformation. In this study we compared the transcriptomes of root tissues from seven sorghum genotypes having differential response to low-N stress. RESULTS Illumina RNA-sequencing detected several common differentially expressed genes (DEGs) between four low-N tolerant sorghum genotypes (San Chi San, China17, KS78 and high-NUE bulk) and three sensitive genotypes (CK60, BTx623 and low-NUE bulk). In sensitive genotypes, N-stress increased the abundance of DEG transcripts associated with stress responses including oxidative stress and stimuli were abundant. The tolerant genotypes adapt to N deficiency by producing greater root mass for efficient uptake of nutrients. In tolerant genotypes, higher abundance of transcripts related to high affinity nitrate transporters (NRT2.2, NRT2.3, NRT2.5, and NRT2.6) and lysine histidine transporter 1 (LHT1), may suggest an improved uptake efficiency of inorganic and organic forms of nitrogen. Higher abundance of SEC14 cytosolic factor family protein transcript in tolerant genotypes could lead to increased membrane stability and tolerance to N-stress. CONCLUSIONS Comparison of transcriptomes between N-stress tolerant and sensitive genotypes revealed several common DEG transcripts. Some of these DEGs were evaluated further by comparing the transcriptomes of genotypes grown under full N. The DEG transcripts showed higher expression in tolerant genotypes could be used for transgenic over-expression in sensitive genotypes of sorghum and related crops for increased tolerance to N-stress, which results in increased nitrogen use efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Malleswari Gelli
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Yongchao Duo
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Anji Reddy Konda
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - David Holding
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
26
|
Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate. TRENDS IN PLANT SCIENCE 2012; 17:458-67. [PMID: 22658680 DOI: 10.1016/j.tplants.2012.04.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/20/2012] [Accepted: 04/26/2012] [Indexed: 05/18/2023]
Abstract
Plants need to acquire nitrogen (N) efficiently from the soil for growth. Nitrate is one of the major N sources for higher plants. Therefore, nitrate uptake and allocation are key factors in efficient N utilization. Membrane-bound transporters are required for nitrate uptake from the soil and for the inter- and intracellular movement of nitrate inside the plants. Four gene families, nitrate transporter 1/peptide transporter (NRT1/PTR), NRT2, chloride channel (CLC), and slow anion channel-associated 1 homolog 3 (SLAC1/SLAH), are involved in nitrate uptake, allocation, and storage in higher plants. Recent studies of these transporters or channels have provided new insights into the molecular mechanisms of nitrate uptake and allocation. Interestingly, several of these transporters also play versatile roles in nitrate sensing, plant development, pathogen defense, and/or stress response.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|