1
|
Sun YP, Zhao MW, Shi L. The orchestration of ectomycorrhizal symbiosis: a review of fungal-produced symbiotic regulators and their functions. Mycologia 2025:1-13. [PMID: 40423953 DOI: 10.1080/00275514.2025.2499439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/25/2025] [Indexed: 05/28/2025]
Abstract
Ectomycorrhiza is a mutualistic symbiotic association formed between fungi and plants, which enhances the host plant's stress resistance and promotes plant growth. It plays an important role in forest ecosystems. A plethora of symbiotically active regulatory molecules are secreted throughout the continuum of ectomycorrhizal development, encompassing the period before physical contact between the fungi and their host plant roots to the maturation of the ectomycorrhizal symbiosis. However, our understanding of these substances is still limited. In recent years, as research in this field has deepened, several studies have documented that fungi release symbiotic regulatory substances, including fungal-derived plant hormones and small secreted proteins, which participate in the regulation of mycorrhizal formation. This article, from a fungal perspective, elaborates on the symbiotic regulatory substances secreted by ectomycorrhizal fungi into the surrounding environment or within the host plant. It further discusses the role of these substances in establishing symbiotic relationships with plants, aiming to offer novel insights for researchers in this field.
Collapse
Affiliation(s)
- Yu-Peng Sun
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Wen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Liang Shi
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Vishwakarma K, Buckley S, Plett JM, Lundberg-Felten J, Jämtgård S, Plett KL. Pisolithus microcarpus isolates with contrasting abilities to colonise Eucalyptus grandis exhibit significant differences in metabolic signalling. Fungal Biol 2024; 128:2157-2166. [PMID: 39384285 DOI: 10.1016/j.funbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Biotic factors in fungal exudates impact plant-fungal symbioses establishment. Mutualistic ectomycorrhizal fungi play various ecological roles in forest soils by interacting with trees. Despite progress in understanding secreted fungal signals, dynamics of signal production in situ before or during direct host root contact remain unclear. We need to better understand how variability in intra-species fungal signaling at these stages impacts symbiosis with host tissues. Using the ECM model Pisolithus microcarpus, we selected two isolates (Si9 and Si14) with different abilities to colonize Eucalyptus grandis roots. Hypothesizing that distinct early signalling and metabolite profiles between these isolates would influence colonization and symbiosis, we used microdialysis to non-destructively collect secreted metabolites from either the fungus, host, or both, capturing the dynamic interplay of pre-symbiotic signalling over 48 hours. Our findings revealed significant differences in metabolite profiles between Si9 and Si14, grown alone or with a host root. Si9, with lower colonization efficiency than Si14, secreted a more diverse range of compounds, including lipids, oligopeptides, and carboxylic acids. In contrast, Si14's secretions, similar to the host's, included more aminoglycosides. This study emphasizes the importance of intra-specific metabolomic diversity in ectomycorrhizal fungi, suggesting that early metabolite secretion is crucial for establishing successful mutualistic relationships.
Collapse
Affiliation(s)
- Kanchan Vishwakarma
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Scott Buckley
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Judith Lundberg-Felten
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden.
| | - Krista L Plett
- NSW Department of Primary Industries and Regional Development, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| |
Collapse
|
3
|
Oliveira J, Yildirir G, Corradi N. From Chaos Comes Order: Genetics and Genome Biology of Arbuscular Mycorrhizal Fungi. Annu Rev Microbiol 2024; 78:147-168. [PMID: 38985977 DOI: 10.1146/annurev-micro-041522-105143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate mutualists that can enhance nutrition and growth of their plant hosts while providing protection against pathogens. AMF produce spores and hyphal networks that can carry thousands of nuclei in a continuous cytoplasm, with no evidence of sexual reproduction. This review examines the impact of genomic technologies on our view of AMF genetics and evolution. We highlight how the genetics, nuclear dynamics, and epigenetics of these prominent symbionts follow trends preserved in distant multinucleate fungal relatives. We also propose new avenues of research to improve our understanding of their nuclear biology and their intricate genetic interactions with plant hosts.
Collapse
Affiliation(s)
- Jordana Oliveira
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
| |
Collapse
|
4
|
Stange P, Kersting J, Sivaprakasam Padmanaban PB, Schnitzler JP, Rosenkranz M, Karl T, Benz JP. The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. Fungal Biol Biotechnol 2024; 11:14. [PMID: 39252125 PMCID: PMC11384713 DOI: 10.1186/s40694-024-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.g. nutrient translocation, hormone production, induction of plant systemic resistance, but also direct antagonism of other fungi. However, the mycotrophic nature of the genus bears the risk of possible interference with other native plant-beneficial fungi, such as ectomycorrhiza, in the rhizosphere. Such interference could yield unpredictable consequences for the host plants of these ecosystems. So far, it remains unclear, whether Trichoderma is able to differentiate between plant-beneficial and plant-pathogenic fungi during the process of plant colonization. RESULTS We investigated whether Trichoderma spp. can differentiate between beneficial ectomycorrhizal fungi (represented by Laccaria bicolor and Hebeloma cylindrosporum) and pathogenic fungi (represented by Fusarium graminearum and Alternaria alternata) in different confrontation scenarios, including a newly developed olfactometer "race tube"-like system. Using two independent species, T. harzianum and T. atrobrunneum, with plant-growth-promoting and immune-stimulating properties towards Populus x canescens, our study revealed robustly accelerated growth towards phytopathogens, while showing a contrary response to ectomycorrhizal fungi. Transcriptomic analyses identified distinct genetic programs during interaction corresponding to the lifestyles, emphasizing the expression of mycoparasitism-related genes only in the presence of phytopathogens. CONCLUSION The findings reveal a critical mode of fungal community interactions belowground and suggest that Trichoderma spp. can distinguish between fungal partners of different lifestyles already at a distance. This sheds light on the entangled interactions of fungi in the rhizosphere and emphasizes the potential benefits of using Trichoderma spp. as a biocontrol agent and bio-fertilizer in tree plantations.
Collapse
Affiliation(s)
- Pia Stange
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Tanja Karl
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
5
|
Furtado ANM, de Farias ST, Maia MDS. Structural analyzes suggest that MiSSP13 and MiSSP16.5 may act as proteases inhibitors during ectomycorrhiza establishment in Laccaria bicolor. Biosystems 2024; 238:105194. [PMID: 38513884 DOI: 10.1016/j.biosystems.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.
Collapse
Affiliation(s)
- Ariadne N M Furtado
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-900, Brazil.
| | - Sávio Torres de Farias
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-900, Brazil; Network of Researchers on Chemical Emergence of Life (NoRCEL), Leeds, LS7 3RB, UK
| | - Mayara Dos Santos Maia
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-900, Brazil
| |
Collapse
|
6
|
Tao Y, Li C, Liu Y, Xu C, Okabe S, Matsushita N, Lian C. Identification of microRNAs involved in ectomycorrhizal formation in Populus tomentosa. TREE PHYSIOLOGY 2023; 43:2012-2030. [PMID: 37777191 DOI: 10.1093/treephys/tpad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/17/2023] [Indexed: 10/02/2023]
Abstract
The majority of woody plants are able to form ectomycorrhizal (ECM) symbioses with fungi. During symbiotic development, plants undergo a complex re-programming process involving a series of physiological and morphological changes. MicroRNAs (miRNAs) are important components of the regulatory network underlying symbiotic development. To elucidate the mechanisms of miRNAs and miRNA-mediated mRNA cleavage during symbiotic development, we conducted high-throughput sequencing of small RNAs and degradome tags from roots of Populus tomentosa inoculated with Cenococcum geophilum. This process led to the annotation of 51 differentially expressed miRNAs between non-mycorrhizal and mycorrhizal roots of P. tomentosa, including 13 novel miRNAs. Increased or decreased accumulation of several novel and conserved miRNAs in ECM roots, including miR162, miR164, miR319, miR396, miR397, miR398, novel-miR44 and novel-miR47, suggests essential roles for these miRNAs in ECM formation. The degradome analysis identified root transcripts as miRNA-mediated mRNA cleavage targets, which was confirmed using real-time quantitative PCR. Several of the identified miRNAs and corresponding targets are involved in arbuscular mycorrhizal symbioses. In summary, increased or decreased accumulation of specific miRNAs and miRNA-mediated cleavage of symbiosis-related genes indicate that miRNAs play important roles in the regulatory network underlying symbiotic development.
Collapse
Affiliation(s)
- Yuanxun Tao
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Chaofeng Li
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
- Maize Research Institute, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Ying Liu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Shin Okabe
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| |
Collapse
|
7
|
Chen J, Ye Y, Qu J, Wu C. PIIN_05330 transgenic Arabidopsis plants enhanced drought-stress tolerance. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W, Cornell C, Corradi N. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2022; 233:1097-1107. [PMID: 34747029 DOI: 10.1111/nph.17842] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.
Collapse
Affiliation(s)
- Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 260, Australia
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
9
|
Novel Microdialysis Technique Reveals a Dramatic Shift in Metabolite Secretion during the Early Stages of the Interaction between the Ectomycorrhizal Fungus Pisolithus microcarpus and Its Host Eucalyptus grandis. Microorganisms 2021; 9:microorganisms9091817. [PMID: 34576712 PMCID: PMC8465077 DOI: 10.3390/microorganisms9091817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
The colonisation of tree roots by ectomycorrhizal (ECM) fungi is the result of numerous signalling exchanges between organisms, many of which occur before physical contact. However, information is lacking about these exchanges and the compounds that are secreted by each organism before contact. This is in part due to a lack of low disturbance sampling methods with sufficient temporal and spatial resolution to capture these exchanges. Using a novel in situ microdialysis approach, we sampled metabolites released from Eucalyptus grandis and Pisolithus microcarpus independently and during indirect contact over a 48-h time-course using UPLC-MS. A total of 560 and 1530 molecular features (MFs; ESI- and ESI+ respectively) were identified with significant differential abundance from control treatments. We observed that indirect contact between organisms altered the secretion of MFs to produce a distinct metabolomic profile compared to either organism independently. Many of these MFs were produced within the first hour of contact and included several phenylpropanoids, fatty acids and organic acids. These findings show that the secreted metabolome, particularly of the ECM fungus, can rapidly shift during the early stages of pre-symbiotic contact and highlight the importance of observing these early interactions in greater detail. We present microdialysis as a useful tool for examining plant–fungal signalling with high temporal resolution and with minimal experimental disturbance.
Collapse
|
10
|
R. Cope K, B. Irving T, Chakraborty S, Ané JM. Perception of lipo-chitooligosaccharides by the bioenergy crop Populus. PLANT SIGNALING & BEHAVIOR 2021; 16:1903758. [PMID: 33794743 PMCID: PMC8143229 DOI: 10.1080/15592324.2021.1903758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Populus sp. is a developing feedstock for second-generation biofuel production. To ensure its success as a sustainable biofuel source, it is essential to capitalize on the ability of Populus sp. to associate with beneficial plant-associated microbes (e.g., mycorrhizal fungi) and engineer Populus sp. to associate with non-native symbionts (e.g., rhizobia). Here, we review recent research into the molecular mechanisms that control ectomycorrhizal associations in Populus sp. with particular emphasis on the discovery that ectomycorrhizal fungi produce lipochitooligosaccharides capable of activating the common symbiosis pathway. We also present new evidence that lipo-chitooligosaccharides produced by both ectomycorrhizal fungi and various species of rhizobia that do not associate with Populus sp. can induce nuclear calcium spiking in the roots of Populus sp. Thus, we argue Populus sp. already possesses the molecular machinery necessary for perceiving rhizobia, and the next step in engineering symbiosis with rhizobia should be focused on inducing bacterial accommodation and nodule organogenesis. The gene Nodule INception is central to these processes, and several putative orthologs are present in Populus sp. Manipulating the promoters of these genes to match that of plants in the nitrogen-fixing clade may be sufficient to introduce nodulation in Populus sp.
Collapse
Affiliation(s)
- Kevin R. Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Thomas B. Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| |
Collapse
|
11
|
Bouffaud ML, Herrmann S, Tarkka MT, Bönn M, Feldhahn L, Buscot F. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics 2020; 21:399. [PMID: 32532205 PMCID: PMC7291512 DOI: 10.1186/s12864-020-06806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Associations of tree roots with diverse symbiotic mycorrhizal fungi have distinct effects on whole plant functioning. An untested explanation might be that such effect variability is associated with distinct impacts of different fungi on gene expression in local and distant plant organs. Using a large scale transcriptome sequencing approach, we compared the impact of three ectomycorrhizal (EMF) and one orchid mycorrhizal fungi (OMF) on gene regulation in colonized roots (local), non-colonized roots (short distance) and leaves (long distance) of the Quercus robur clone DF159 with reference to the recently published oak genome. Since different mycorrhizal fungi form symbiosis in a different time span and variable extents of apposition structure development, we sampled inoculated but non-mycorrhizal plants, for which however markedly symbiotic effects have been reported. Local root colonization by the fungi was assessed by fungal transcript analysis. RESULTS The EMF induced marked and species specific effects on plant development in the analysed association stage, but the OMF did not. At local level, a common set of plant differentially expressed genes (DEG) was identified with similar patterns of responses to the three EMF, but not to the OMF. Most of these core DEG were down-regulated and correspond to already described but also new functions related to establishment of EMF symbiosis. Analysis of the fungal transcripts of two EMF in highly colonized roots also revealed onset of a symbiosis establishment. In contrast, in the OMF, the DEG were mainly related to plant defence. Already at short distances, high specificities in transcriptomic responses to the four fungi were detected, which were further enhanced at long distance in leaves, where almost no common DEG were found between the treatments. Notably, no correlation between phylogeny of the EMF and gene expression patterns was observed. CONCLUSIONS Use of clonal oaks allowed us to identify a core transcriptional program in roots colonized by three different EMF, supporting the existence of a common EMF symbiotic pathway. Conversely, the specific responses in non-colonized organs were more closely related to the specific impacts of the different of EMF on plant performance.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany.
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Markus Bönn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| |
Collapse
|
12
|
Kang H, Chen X, Kemppainen M, Pardo AG, Veneault-Fourrey C, Kohler A, Martin FM. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ Microbiol 2020; 22:1435-1446. [PMID: 32090429 DOI: 10.1111/1462-2920.14959] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
To establish and maintain a symbiotic relationship, the ectomycorrhizal fungus Laccaria bicolor releases mycorrhiza-induced small secreted proteins (MiSSPs) into host roots. Here, we have functionally characterized the MYCORRHIZA-iNDUCED SMALL SECRETED PROTEIN OF 7.6 kDa (MiSSP7.6) from L. bicolor by assessing its induced expression in ectomycorrhizae, silencing its expression by RNAi, and tracking in planta subcellular localization of its protein product. We also carried out yeast two-hybrid assays and bimolecular fluorescence complementation analysis to identify possible protein targets of the MiSSP7.6 effector in Populus roots. We showed that MiSSP7.6 expression is upregulated in ectomycorrhizal rootlets and associated extramatrical mycelium during the late stage of symbiosis development. RNAi mutants with a decreased MiSSP7.6 expression have a lower mycorrhization rate, suggesting a key role in the establishment of the symbiosis with plants. MiSSP7.6 is secreted, and it localizes both to the nuclei and cytoplasm in plant cells. MiSSP7.6 protein was shown to interact with two Populus Trihelix transcription factors. Furthermore, when coexpressed with one of the Trihelix transcription factors, MiSSP7.6 is localized to plant nuclei only. Our data suggest that MiSSP7.6 is a novel secreted symbiotic effector and is a potential determinant for ectomycorrhiza formation.
Collapse
Affiliation(s)
- Heng Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Xin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Alejandro G Pardo
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Claire Veneault-Fourrey
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Annegret Kohler
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Francis M Martin
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| |
Collapse
|
13
|
Cope KR, Bascaules A, Irving TB, Venkateshwaran M, Maeda J, Garcia K, Rush TA, Ma C, Labbé J, Jawdy S, Steigerwald E, Setzke J, Fung E, Schnell KG, Wang Y, Schlief N, Bücking H, Strauss SH, Maillet F, Jargeat P, Bécard G, Puech-Pagès V, Ané JM. The Ectomycorrhizal Fungus Laccaria bicolor Produces Lipochitooligosaccharides and Uses the Common Symbiosis Pathway to Colonize Populus Roots. THE PLANT CELL 2019; 31:2386-2410. [PMID: 31416823 PMCID: PMC6790088 DOI: 10.1105/tpc.18.00676] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.
Collapse
Affiliation(s)
- Kevin R Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Adeline Bascaules
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Junko Maeda
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kevin Garcia
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomás A Rush
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Edward Steigerwald
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jonathan Setzke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Emmeline Fung
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Kimberly G Schnell
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Yunqian Wang
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathaniel Schlief
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Heike Bücking
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331
| | - Fabienne Maillet
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Patricia Jargeat
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, UPS, CNRS, IRD, 31077 Toulouse, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
14
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
16
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
17
|
Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 2017; 18:16. [PMID: 28201981 PMCID: PMC5310080 DOI: 10.1186/s12863-017-0481-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/07/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. RESULTS We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. CONCLUSIONS Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Mario Iván Alemán-Duarte
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Luis Delaye
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Vianey Olmedo-Monfil
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| |
Collapse
|
18
|
Doré J, Kohler A, Dubost A, Hundley H, Singan V, Peng Y, Kuo A, Grigoriev IV, Martin F, Marmeisse R, Gay G. The ectomycorrhizal basidiomyceteHebeloma cylindrosporumundergoes early waves of transcriptional reprogramming prior to symbiotic structures differentiation. Environ Microbiol 2017; 19:1338-1354. [DOI: 10.1111/1462-2920.13670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Jeanne Doré
- Ecologie Microbienne; Université de Lyon; F-69622 Lyon France
- Université Lyon 1, CNRS, UMR5557, INRA, UMR1418; Villeurbanne France
| | - Annegret Kohler
- Interactions Arbres/Microorganismes, INRA-Nancy; INRA, UMR 1136 INRA-Université de Lorraine; Champenoux 54280 France
| | - Audrey Dubost
- Ecologie Microbienne; Université de Lyon; F-69622 Lyon France
- Université Lyon 1, CNRS, UMR5557, INRA, UMR1418; Villeurbanne France
| | - Hope Hundley
- U.S. Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - Yi Peng
- U.S. Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - Francis Martin
- Interactions Arbres/Microorganismes, INRA-Nancy; INRA, UMR 1136 INRA-Université de Lorraine; Champenoux 54280 France
| | - Roland Marmeisse
- Ecologie Microbienne; Université de Lyon; F-69622 Lyon France
- Université Lyon 1, CNRS, UMR5557, INRA, UMR1418; Villeurbanne France
| | - Gilles Gay
- Ecologie Microbienne; Université de Lyon; F-69622 Lyon France
- Université Lyon 1, CNRS, UMR5557, INRA, UMR1418; Villeurbanne France
| |
Collapse
|
19
|
Schmid J, Day R, Zhang N, Dupont PY, Cox MP, Schardl CL, Minards N, Truglio M, Moore N, Harris DR, Zhou Y. Host Tissue Environment Directs Activities of an Epichloë Endophyte, While It Induces Systemic Hormone and Defense Responses in Its Native Perennial Ryegrass Host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:138-149. [PMID: 28027026 DOI: 10.1094/mpmi-10-16-0215-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Increased resilience of pasture grasses mediated by fungal Epichloë endophytes is crucial to pastoral industries. The underlying mechanisms are only partially understood and likely involve very different activities of the endophyte in different plant tissues and responses of the plant to these. We analyzed the transcriptomes of Epichloë festucae and its host, Lolium perenne, in host tissues of different function and developmental stages. The endophyte contributed approximately 10× more to the transcriptomes than to the biomass of infected tissues. Proliferating mycelium in growing host tissues highly expressed genes involved in hyphal growth. Nonproliferating mycelium in mature plant tissues, transcriptionally equally active, highly expressed genes involved in synthesizing antiherbivore compounds. Transcripts from the latter accounted for 4% of fungal transcripts. Endophyte infection systemically but moderately increased transcription of L. perenne genes with roles in hormone biosynthesis and perception as well as stress and pathogen resistance while reducing expression of genes involved in photosynthesis. There was a good correlation between transcriptome-based observations and physiological observations. Our data indicate that the fitness-enhancing effects of the endophyte are based both on its biosynthetic activities, predominantly in mature host tissues, and also on systemic alteration of the host's hormonal responses and induction of stress response genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Jan Schmid
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Robert Day
- 2 School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ningxin Zhang
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Pierre-Yves Dupont
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Murray P Cox
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Christopher L Schardl
- 3 Department of Plant Pathology, University of Kentucky, Lexington 40546-0312, U.S.A
| | - Niki Minards
- 4 Manawatu Microscopy and Imaging Centre, Palmerston North 4410, New Zealand
| | - Mauro Truglio
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Neil Moore
- 5 Computer Science Department, University of Kentucky; and
| | - Daniel R Harris
- 6 Institute for Pharmaceutical Outcomes & Policy, University of Kentucky
| | - Yanfei Zhou
- 1 Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
20
|
Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 2016; 14:760-773. [PMID: 27795567 DOI: 10.1038/nrmicro.2016.149] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the diversification of Fungi and the rise of conifer-dominated and angiosperm- dominated forests, mutualistic symbioses developed between certain trees and ectomycorrhizal fungi that enabled these trees to colonize boreal and temperate regions. The evolutionary success of these symbioses is evident from phylogenomic analyses that suggest that ectomycorrhizal fungi have arisen in approximately 60 independent saprotrophic lineages, which has led to the wide range of ectomycorrhizal associations that exist today. In this Review, we discuss recent genomic studies that have revealed the adaptations that seem to be fundamental to the convergent evolution of ectomycorrhizal fungi, including the loss of some metabolic functions and the acquisition of effectors that facilitate mutualistic interactions with host plants. Finally, we consider how these insights can be integrated into a model of the development of ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Francis Martin
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Annegret Kohler
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Claude Murat
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), 54500 Vandoeuvre-lès-Nancy, France
| | - David S Hibbett
- Biology Department, Clark University, Lasry Center for Bioscience, 950 Main Street, Worcester, Massachusetts 01610, USA
| |
Collapse
|
21
|
Navarro-RóDenas A, Xu H, Kemppainen M, Pardo AG, Zwiazek JJ. Laccaria bicolor aquaporin LbAQP1 is required for Hartig net development in trembling aspen (Populus tremuloides). PLANT, CELL & ENVIRONMENT 2015; 38:2475-86. [PMID: 25857333 DOI: 10.1111/pce.12552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/22/2015] [Indexed: 05/27/2023]
Abstract
The development of ectomycorrhizal associations is crucial for growth of many forest trees. However, the signals that are exchanged between the fungus and the host plant during the colonization process are still poorly understood. In this study, we have identified the relationship between expression patterns of Laccaria bicolor aquaporin LbAQP1 and the development of ectomycorrhizal structures in trembling aspen (Populus tremuloides) seedlings. The peak expression of LbAQP1 was 700-fold higher in the hyphae within the root than in the free-living mycelium after 24 h of direct interaction with the roots. Moreover, in LbAQP1 knock-down strains, a non-mycorrhizal phenotype was developed without the Hartig net and the expression of the mycorrhizal effector protein MiSSP7 quickly declined after an initial peak on day 5 of interaction of the fungal hyphae with the roots. The increase in the expression of LbAQP1 required a direct contact of the fungus with the root and it modulated the expression of MiSSP7. We have also determined that LbAQP1 facilitated NO, H2 O2 and CO2 transport when heterologously expressed in yeast. The report demonstrates that the L. bicolor aquaporin LbAQP1 acts as a molecular signalling channel, which is fundamental for the development of Hartig net in root tips of P. tremuloides.
Collapse
Affiliation(s)
| | - Hao Xu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, B1876BXD, Argentina
| | - Alejandro G Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, B1876BXD, Argentina
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
22
|
Garcia K, Delaux PM, Cope KR, Ané JM. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. THE NEW PHYTOLOGIST 2015; 208:79-87. [PMID: 25982949 DOI: 10.1111/nph.13423] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 05/08/2023]
Abstract
Ectomycorrhizal (ECM) symbioses are among the most widespread associations between roots of woody plants and soil fungi in forest ecosystems. These associations contribute significantly to the sustainability and sustainagility of these ecosystems through nutrient cycling and carbon sequestration. Unfortunately, the molecular mechanisms controlling the mutual recognition between both partners are still poorly understood. Elegant work has demonstrated that effector proteins from ECM and arbuscular mycorrhizal (AM) fungi regulate host defenses by manipulating plant hormonal pathways. In parallel, genetic and evolutionary studies in legumes showed that a 'common symbiosis pathway' is required for the establishment of the ancient AM symbiosis and has been recruited for the rhizobia-legume association. Given that genes of this pathway are present in many angiosperm trees that develop ectomycorrhizas, we propose their potential involvement in some but not all ECM associations. The maintenance of a successful long-term relationship seems strongly regulated by resource allocation between symbiotic partners, suggesting that nutrients themselves may serve as signals. This review summarizes our current knowledge on the early and late signal exchanges between woody plants and ECM fungi, and we suggest future directions for decoding the molecular basis of the underground dance between trees and their favorite fungal partners.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kevin R Cope
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
23
|
Plett JM, Martin F. Reconsidering mutualistic plant-fungal interactions through the lens of effector biology. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:45-50. [PMID: 26116975 DOI: 10.1016/j.pbi.2015.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/23/2015] [Accepted: 06/01/2015] [Indexed: 05/03/2023]
Abstract
Mutualistic mycorrhizal plant-fungal interactions have shaped the evolution of plant life on land. In these intimate associations, fungal hyphae grow invasively within plant tissues. Despite this invasion, these mycorrhizal fungi are not repulsed leading to a great deal of research focused on the signals exchanged between mutualistic fungi and their host plants in an effort to understand how these relationships are established. In this review, we focus on one type of signal used by mutualistic fungi during symbiosis: effector proteins. These small secreted proteins have recently been found to be used by a range of beneficial fungi to alter the physiological status of the plant host such that symbiosis is favoured. We discuss how the role of these novel proteins has altered our vision of how the 'mutualistic' lifestyle evolved in fungi: rather than being perceived as beneficial by their plant hosts, these microbes currently viewed as 'beneficial' may actually be overcoming the defences of their plant hosts in a mechanism originally thought to be unique to pathogenic microbes.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW 2753, Australia.
| | - Francis Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280 Champenoux, France.
| |
Collapse
|
24
|
Gorzelak MA, Asay AK, Pickles BJ, Simard SW. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AOB PLANTS 2015; 7:plv050. [PMID: 25979966 PMCID: PMC4497361 DOI: 10.1093/aobpla/plv050] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/26/2015] [Indexed: 05/03/2023]
Abstract
Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems.
Collapse
Affiliation(s)
- Monika A Gorzelak
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Amanda K Asay
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Brian J Pickles
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
25
|
Hacquard S, Schadt CW. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. THE NEW PHYTOLOGIST 2015; 205:1424-1430. [PMID: 25422041 DOI: 10.1111/nph.13133] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/24/2014] [Indexed: 05/18/2023]
Abstract
Interactions between trees and microorganisms are tremendously complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. We review recent studies in Populus to emphasize the importance of such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems.
Collapse
Affiliation(s)
- Stéphane Hacquard
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37966, USA
| |
Collapse
|
26
|
Morán-Diez ME, Trushina N, Lamdan NL, Rosenfelder L, Mukherjee PK, Kenerley CM, Horwitz BA. Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genomics 2015; 16:8. [PMID: 25608961 PMCID: PMC4326404 DOI: 10.1186/s12864-014-1208-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/30/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Members of the fungal genus Trichoderma directly antagonize soil-borne fungal pathogens, and an increasing number of species are studied for their potential in biocontrol of plant pathogens in agriculture. Some species also colonize plant roots, promoting systemic resistance. The Trichoderma-root interaction is hosted by a wide range of plant species, including monocots and dicots. RESULTS To test the hypothesis that gene expression by the fungal partner in this beneficial interaction is modulated by the plant, Trichoderma virens was co-cultured with maize or tomato in a hydroponic system allowing interaction with the roots. The transcriptomes for T. virens alone were compared with fungus-inoculated tomato or maize roots by hybridization on microarrays of 11645 unique oligonucleotides designed from the predicted protein-coding gene models. Transcript levels of 210 genes were modulated by interaction with roots. Almost all were up-regulated. Glycoside hydrolases and transporters were highly represented among transcripts induced by co-culture with roots. Of the genes up-regulated on either or both host plants, 35 differed significantly in their expression levels between maize and tomato. Ten of these were expressed higher in the fungus in co-culture with tomato roots than with maize. Average transcript levels for these genes ranged from 1.9 fold higher on tomato than on maize to 60.9 fold for the most tomato-specific gene. The other 25 host-specific transcripts were expressed more strongly in co-culture with maize than with tomato. Average transcript levels for these genes were 2.5 to 196 fold higher on maize than on tomato. CONCLUSIONS Based on the relevant role of Trichoderma virens as a biological control agent this study provides a better knowledge of its crosstalk with plants in a host-specific manner. The differentially expressed genes encode proteins belonging to several functional classes including enzymes, transporters and small secreted proteins. Among them, glycoside hydrolases and transporters are highlighted by their abundance and suggest an important factor in the metabolism of host cell walls during colonization of the outer root layers. Host-specific gene expression may contribute to the ability of T. virens to colonize the roots of a wide range of plant species.
Collapse
Affiliation(s)
- Maria E Morán-Diez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
- Present address: Bio-Protection Research Centre, Lincoln University, PO Box 84, Lincoln, 7647, New Zealand.
| | - Naomi Trushina
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| | - Netta Li Lamdan
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| | - Lea Rosenfelder
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Mumbai, India.
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| | - Benjamin A Horwitz
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| |
Collapse
|
27
|
Kuo A, Kohler A, Martin FM, Grigoriev IV. Expanding genomics of mycorrhizal symbiosis. Front Microbiol 2014; 5:582. [PMID: 25408690 PMCID: PMC4219462 DOI: 10.3389/fmicb.2014.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.
Collapse
Affiliation(s)
- Alan Kuo
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| | - Annegret Kohler
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Francis M. Martin
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| |
Collapse
|
28
|
Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet 2014; 10:e1004227. [PMID: 24603691 PMCID: PMC3945186 DOI: 10.1371/journal.pgen.1004227] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.
Collapse
|
29
|
Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. PLANT, CELL & ENVIRONMENT 2013; 36:909-19. [PMID: 23145472 DOI: 10.1111/pce.12036] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 05/07/2023]
Abstract
A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin-signalling pathways in modulating plant-microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter-species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant-microbe interactions.
Collapse
Affiliation(s)
- Poornima Sukumar
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | | | | | | | | |
Collapse
|
30
|
Atanasova L, Crom SL, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 2013; 14:121. [PMID: 23432824 PMCID: PMC3599271 DOI: 10.1186/1471-2164-14-121] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/19/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani. RESULTS The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification. CONCLUSION This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi that may be exploited for further development of biofungicides.
Collapse
Affiliation(s)
- Lea Atanasova
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Stephane Le Crom
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, F-75005, Paris, France
- Inserm, U1024, F-75005, Paris, France
- CNRS, UMR 8197, F-75005, Paris, France
- UPMC Univ Paris 06, UMR7622, Laboratoire de Biologie du Développement, 9 quai St. Bernard, F-75005, Paris, France
- CNRS, UMR7622, Laboratoire de Biologie du Développement, 9 quai St. Bernard, F-75005, Paris, France
| | - Sabine Gruber
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Fanny Coulpier
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, F-75005, Paris, France
- Inserm, U1024, F-75005, Paris, France
- CNRS, UMR 8197, F-75005, Paris, France
| | - Verena Seidl-Seiboth
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Christian P Kubicek
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
- Austrian Center of Industrial Biotechnology (ACIB), GmBH c/o Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Irina S Druzhinina
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
- Austrian Center of Industrial Biotechnology (ACIB), GmBH c/o Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| |
Collapse
|
31
|
Druzhinina IS, Shelest E, Kubicek CP. Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 2012; 337:1-9. [PMID: 22924408 PMCID: PMC3533174 DOI: 10.1111/j.1574-6968.2012.02665.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 01/05/2023] Open
Abstract
Mycotrophic species of Trichoderma are among the most common fungi isolated from free soil, dead wood and as parasites on sporocarps of other fungi (mycoparasites). In addition, they undergo various other biotrophic associations ranging from rhizosphere colonization and endophytism up to facultative pathogenesis on such animals as roundworms and humans. Together with occurrence on a variety of less common substrata (marine invertebrates, artificial materials, indoor habitats), these lifestyles illustrate a wealthy opportunistic potential of the fungus. One tropical species, Trichoderma reesei, has become a prominent producer of cellulases and hemicellulases, whereas several other species are applied in agriculture for the biological control of phytopathogenic fungi. The sequencing of the complete genomes of the three species (T. reesei, T. virens, and T. atroviride) has led to a deepened understanding of Trichoderma lifestyle and its molecular physiology. In this review, we present the in silico predicted secretome of Trichoderma, and – in addition to the unique features of carbohydrate active enzymes – demonstrate the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichoderma genetics so far. We also discuss the link between Trichoderma secretome and biology of the fungus.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | | |
Collapse
|