1
|
Rolfs LA, Falat EJ, Gutzman JH. myh9b is a critical non-muscle myosin II encoding gene that interacts with myh9a and myh10 during zebrafish development in both compensatory and redundant pathways. G3 (BETHESDA, MD.) 2025; 15:jkae260. [PMID: 39503257 PMCID: PMC11708221 DOI: 10.1093/g3journal/jkae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Non-muscle myosin (NMII) motor proteins have diverse developmental functions due to their roles in cell shape changes, cell migration, and cell adhesion. Zebrafish are an ideal vertebrate model system to study the NMII encoding myh genes and proteins due to high sequence homology, established gene editing tools, and rapid ex utero development. In humans, mutations in the NMII encoding MYH genes can lead to abnormal developmental processes and disease. This study utilized zebrafish myh9a, myh9b, and myh10 null mutants to examine potential genetic interactions and roles for each gene in development. It was determined that the myh9b gene is the most critical NMII encoding gene, as myh9b mutants develop pericardial edema and have a partially penetrant lethal phenotype, which was not observed in the other myh mutants. This study also established that genetic interactions occur between the zebrafish myh9a, myh9b, and myh10 genes where myh9b is required for the expression of both myh9a and myh10, and myh10 is required for the expression of myh9b. Additionally, protein analyses suggested that enhanced NMII protein stability in some mutant backgrounds may play a role in compensation. Finally, double mutant studies revealed different and more severe phenotypes at earlier time points than single mutants, suggesting roles for tissue specific genetic redundancy, and in some genotypes, haploinsufficiency. These mutants are the first in vivo models allowing for the study of complete loss of the NMIIA and NMIIB proteins, establishing them as valuable tools to elucidate the role of NMII encoding myh genes in development and disease.
Collapse
Affiliation(s)
- Laura A Rolfs
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Elizabeth J Falat
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
2
|
Chinthalapudi K, Heissler SM. Structure, regulation, and mechanisms of nonmuscle myosin-2. Cell Mol Life Sci 2024; 81:263. [PMID: 38878079 PMCID: PMC11335295 DOI: 10.1007/s00018-024-05264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
Members of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues. This process is tightly controlled in time and space by numerous synergetic regulation mechanisms to meet cellular demands. We review how recent advances in structural biology together with elegant biophysical and cell biological approaches have contributed to our understanding of the shared and unique mechanisms of NM2 paralogs as they relate to their kinetics, regulation, assembly, and cellular function.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
4
|
Mercaldo V, Vidimova B, Gastaldo D, Fernández E, Lo AC, Cencelli G, Pedini G, De Rubeis S, Longo F, Klann E, Smit AB, Grant SGN, Achsel T, Bagni C. Altered striatal actin dynamics drives behavioral inflexibility in a mouse model of fragile X syndrome. Neuron 2023; 111:1760-1775.e8. [PMID: 36996810 DOI: 10.1016/j.neuron.2023.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.
Collapse
Affiliation(s)
- Valentina Mercaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Barbora Vidimova
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Esperanza Fernández
- VIB & UGent Center for Medical Biotechnology, Universiteit Gent, 9052 Ghent, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy; Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Seth G N Grant
- Center for the Clinical Brain Sciences and Simons Initiatives for the Developing Brain, The University of Edinburgh, Edinburgh EH16 4SB, Scotland
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland; Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
5
|
Wang L, Kriegstein AR. Non-muscle myosins control the integrity of cortical radial glial endfeet. PLoS Biol 2023; 21:e3002032. [PMID: 36854254 PMCID: PMC9974232 DOI: 10.1371/journal.pbio.3002032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Radial glial cells, the stem cells of the cerebral cortex, extend a long basal fiber that ends in basal endfeet. A new study in PLOS Biology found that non-muscle myosins control basal endfoot integrity to regulate interneuron organization.
Collapse
Affiliation(s)
- Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Arnold R. Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
6
|
D’Arcy BR, Lennox AL, Manso Musso C, Bracher A, Escobar-Tomlienovich C, Perez-Sanchez S, Silver DL. Non-muscle myosins control radial glial basal endfeet to mediate interneuron organization. PLoS Biol 2023; 21:e3001926. [PMID: 36854011 PMCID: PMC9974137 DOI: 10.1371/journal.pbio.3001926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Radial glial cells (RGCs) are essential for the generation and organization of neurons in the cerebral cortex. RGCs have an elongated bipolar morphology with basal and apical endfeet that reside in distinct niches. Yet, how this subcellular compartmentalization of RGCs controls cortical development is largely unknown. Here, we employ in vivo proximity labeling, in the mouse, using unfused BirA to generate the first subcellular proteome of RGCs and uncover new principles governing local control of cortical development. We discover a cohort of proteins that are significantly enriched in RGC basal endfeet, with MYH9 and MYH10 among the most abundant. Myh9 and Myh10 transcripts also localize to endfeet with distinct temporal dynamics. Although they each encode isoforms of non-muscle myosin II heavy chain, Myh9 and Myh10 have drastically different requirements for RGC integrity. Myh9 loss from RGCs decreases branching complexity and causes endfoot protrusion through the basement membrane. In contrast, Myh10 controls endfoot adhesion, as mutants have unattached apical and basal endfeet. Finally, we show that Myh9- and Myh10-mediated regulation of RGC complexity and endfoot position non-cell autonomously controls interneuron number and organization in the marginal zone. Our study demonstrates the utility of in vivo proximity labeling for dissecting local control of complex systems and reveals new mechanisms for dictating RGC integrity and cortical architecture.
Collapse
Affiliation(s)
- Brooke R. D’Arcy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ashley L. Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Camila Manso Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Annalise Bracher
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carla Escobar-Tomlienovich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stephany Perez-Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Regeneration Center, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
7
|
Whole exome sequencing of 28 families of Danish descent reveals novel candidate genes and pathways in developmental dysplasia of the hip. Mol Genet Genomics 2023; 298:329-342. [PMID: 36454308 PMCID: PMC9938029 DOI: 10.1007/s00438-022-01980-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Developmental dysplasia of the hip (DDH) is a common condition involving instability of the hip with multifactorial etiology. Early diagnosis and treatment are critical as undetected DDH is an important cause of long-term hip complications. Better diagnostics may be achieved through genetic methods, especially for patients with positive family history. Several candidate genes have been reported but the exact molecular etiology of the disease is yet unknown. In the present study, we performed whole exome sequencing of DDH patients from 28 families with at least two affected first-degree relatives. Four genes previously not associated with DDH (METTL21B, DIS3L2, PPP6R2, and TM4SF19) were identified with the same variants shared among affected family members, in more than two families. Among known association genes, we found damaging variants in DACH1, MYH10, NOTCH2, TBX4, EVC2, OTOG, and SHC3. Mutational burden analysis across the families identified 322 candidate genes, and enriched pathways include the extracellular matrix, cytoskeleton, ion-binding, and detection of mechanical stimulus. Taken altogether, our data suggest a polygenic mode of inheritance for DDH, and we propose that an impaired transduction of the mechanical stimulus is involved in the etiopathological mechanism. Our findings refine our current understanding of candidate causal genes in DDH, and provide a foundation for downstream functional studies.
Collapse
|
8
|
Chen X, Ma L, Zhao J, Pan X, Chen S. Effect of empagliflozin on cytoskeletal repair in the hippocampus of obese mice. Front Neurosci 2022; 16:1000839. [PMID: 36408417 PMCID: PMC9667058 DOI: 10.3389/fnins.2022.1000839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE We aimed to investigate the effect of empagliflozin on hippocampal phosphorylated protein levels in obese mice. MATERIALS AND METHODS Sixteen obese mice successfully modeled on high-fat diet were randomly divided into high-fat feeding group (group H) and empagliflozin group (group H + empagliflozin, group E), eight mice in each group, and eight C57BL/6J male normal mice were selected as the control group (normal control, group C). Group E was treated with empagliflozin 10 mg/kg/d for 12 weeks, while mice in groups H and C were treated with equal amounts of saline. The spatial learning memory ability of the mice was determined by the Morris water maze experiment. Further, their body weights and serological indices were measured. Finally, total proteins were extracted from hippocampal tissues for functional analysis by the phosphorylated proteomics method. RESULTS The results showed that escape latency was prolonged, retention time in the target quadrant was shortened, and the number of loop penetrations was reduced in the obese mice induced by a high-calorie diet compared with normal controls, whereas escape latency was shortened, retention time in the target quadrant was increased, and the number of loop penetrations was increased after empagliflozin treatment. Phosphoproteomics in the high-fat/control (H/C), empagliflozin/high-fat (E/H), and E/C groups showed 844, 1,552, and 1,512 differentially significant phosphorylation sites, respectively. The proteins corresponding to these differentially phosphorylated sites were mainly involved in neurodegenerative pathways and actin cytoskeleton regulation. Notably, myosin heavy chain 10 (MYH10), p21 protein-activated kinase 4 (PAK4), phosphatidylinositol 3 -phosphate 5-kinase (PIKfyve), and other differentially phosphorylated proteins were involved in actin cytoskeleton regulation. CONCLUSION We concluded that empagliflozin protects cognitive functions by inducing serine phosphorylation in MYH10, PAK4, and PIKfyve in the hippocampal tissue of obese mice.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Graduate School of Hebei North University, Zhangjiakou, China,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Liang Ma
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jingyu Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China,Graduate School of North China University of Science and Technology, Tangshan, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China,*Correspondence: Shuchun Chen,
| |
Collapse
|
9
|
Molecular Mechanisms Contributing to the Etiology of Congenital Diaphragmatic Hernia: A Review and Novel Cases. J Pediatr 2022; 246:251-265.e2. [PMID: 35314152 DOI: 10.1016/j.jpeds.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
|
10
|
Bendixen C, Reutter H. The Role of De Novo Variants in Patients with Congenital Diaphragmatic Hernia. Genes (Basel) 2021; 12:genes12091405. [PMID: 34573387 PMCID: PMC8466043 DOI: 10.3390/genes12091405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
The genetic etiology of congenital diaphragmatic hernia (CDH), a common and severe birth defect, is still incompletely understood. Chromosomal aneuploidies, copy number variations (CNVs), and variants in a large panel of CDH-associated genes, both de novo and inherited, have been described. Due to impaired reproductive fitness, especially of syndromic CDH patients, and still significant mortality rates, the contribution of de novo variants to the genetic background of CDH is assumed to be high. This assumption is supported by the relatively low recurrence rate among siblings. Advantages in high-throughput genome-wide genotyping and sequencing methods have recently facilitated the detection of de novo variants in CDH. This review gives an overview of the known de novo disease-causing variants in CDH patients.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Unit of Paediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence:
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany;
- Division of Neonatology and Paediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
12
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Costa AR, Sousa MM. Non-Muscle Myosin II in Axonal Cell Biology: From the Growth Cone to the Axon Initial Segment. Cells 2020; 9:cells9091961. [PMID: 32858875 PMCID: PMC7563147 DOI: 10.3390/cells9091961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
By binding to actin filaments, non-muscle myosin II (NMII) generates actomyosin networks that hold unique contractile properties. Their dynamic nature is essential for neuronal biology including the establishment of polarity, growth cone formation and motility, axon growth during development (and axon regeneration in the adult), radial and longitudinal axonal tension, and synapse formation and function. In this review, we discuss the current knowledge on the spatial distribution and function of the actomyosin cytoskeleton in different axonal compartments. We highlight some of the apparent contradictions and open questions in the field, including the role of NMII in the regulation of axon growth and regeneration, the possibility that NMII structural arrangement along the axon shaft may control both radial and longitudinal contractility, and the mechanism and functional purpose underlying NMII enrichment in the axon initial segment. With the advances in live cell imaging and super resolution microscopy, it is expected that in the near future the spatial distribution of NMII in the axon, and the mechanisms by which it participates in axonal biology will be further untangled.
Collapse
|
14
|
Conventional and Non-Conventional Roles of Non-Muscle Myosin II-Actin in Neuronal Development and Degeneration. Cells 2020; 9:cells9091926. [PMID: 32825197 PMCID: PMC7566000 DOI: 10.3390/cells9091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.
Collapse
|
15
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
16
|
Asensio-Juárez G, Llorente-González C, Vicente-Manzanares M. Linking the Landscape of MYH9-Related Diseases to the Molecular Mechanisms that Control Non-Muscle Myosin II-A Function in Cells. Cells 2020; 9:E1458. [PMID: 32545517 PMCID: PMC7348894 DOI: 10.3390/cells9061458] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/ or the formation of heteropolymers or co-polymers with other NMII isoforms.
Collapse
Affiliation(s)
| | | | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (G.A.-J.); (C.L.-G.)
| |
Collapse
|
17
|
Fan C, Gao Y, Liang G, Huang L, Wang J, Yang X, Shi Y, Dräger UC, Zhong M, Gao TM, Yang X. Transcriptomics of Gabra4 knockout mice reveals common NMDAR pathways underlying autism, memory, and epilepsy. Mol Autism 2020; 11:13. [PMID: 32033586 PMCID: PMC7007694 DOI: 10.1186/s13229-020-0318-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neuronal developmental disorder with impaired social interaction and communication, often with abnormal intelligence and comorbidity with epilepsy. Disturbances in synaptic transmission, including the GABAergic, glutamatergic, and serotonergic systems, are known to be involved in the pathogenesis of this disorder, yet we do not know if there is a common molecular mechanism. As mutations in the GABAergic receptor subunit gene GABRA4 are reported in patients with ASD, we eliminated the Gabra4 gene in mice and found that the Gabra4 knockout mice showed autistic-like behavior, enhanced spatial memory, and attenuated susceptibility to pentylenetetrazol-induced seizures, a constellation of symptoms resembling human high-functioning autism. To search for potential molecular pathways involved in these phenotypes, we performed a hippocampal transcriptome profiling, constructed a hippocampal interactome network, and revealed an upregulation of the NMDAR system at the center of the converged pathways underlying high-functioning autism-like and anti-epilepsy phenotypes.
Collapse
Affiliation(s)
- Cuixia Fan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yue Gao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Guanmei Liang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Lang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxue Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiwu Shi
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ursula C Dräger
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xinping Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China. .,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that is associated with significant morbidity and mortality, especially when associated with additional congenital anomalies. Both environmental and genetic factors are thought to contribute to CDH. The genetic contributions to CDH are highly heterogeneous and incompletely defined. No one genetic cause accounts for more than 1-2% of CDH cases. In this review, we summarize the known genetic causes of CDH from chromosomal anomalies to individual genes. Both de novo and inherited variants contribute to CDH. Genes causing CDH are increasingly identified from animal models and from genomic strategies including exome and genome sequencing in humans. CDH genes are often transcription factors, genes involved in cell migration or the components of extracellular matrix. We provide clinical genetic testing strategies in the clinical evaluation that can identify a genetic cause in up to ∼30% of patients with non-isolated CDH and can be useful to refine prognosis, identify associated medical and neurodevelopmental issues to address, and inform family planning options.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Rebecca R. Hernan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain. Cells 2020; 9:cells9020313. [PMID: 32012899 PMCID: PMC7072627 DOI: 10.3390/cells9020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic disruption of synaptic proteins results in a whole variety of human neuropsychiatric disorders including intellectual disability, schizophrenia or autism spectrum disorder (ASD). In a wide range of these so-called synaptopathies a sex bias in prevalence and clinical course has been reported. Using an unbiased proteomic approach, we analyzed the proteome at the interaction site of the pre- and postsynaptic compartment, in the prefrontal cortex, hippocampus, striatum and cerebellum of male and female adult C57BL/6J mice. We were able to reveal a specific repertoire of synaptic proteins in different brain areas as it has been implied before. Additionally, we found a region-specific set of novel synaptic proteins differentially expressed between male and female individuals including the strong ASD candidates DDX3X, KMT2C, MYH10 and SET. Being the first comprehensive analysis of brain region-specific synaptic proteomes from male and female mice, our study provides crucial information on sex-specific differences in the molecular anatomy of the synapse. Our efforts should serve as a neurobiological framework to better understand the influence of sex on synapse biology in both health and disease.
Collapse
|
20
|
Vandervore LV, Schot R, Kasteleijn E, Oegema R, Stouffs K, Gheldof A, Grochowska MM, van der Sterre MLT, van Unen LMA, Wilke M, Elfferich P, van der Spek PJ, Heijsman D, Grandone A, Demmers JAA, Dekkers DHW, Slotman JA, Kremers GJ, Schaaf GJ, Masius RG, van Essen AJ, Rump P, van Haeringen A, Peeters E, Altunoglu U, Kalayci T, Poot RA, Dobyns WB, Bahi-Buisson N, Verheijen FW, Jansen AC, Mancini GMS. Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain 2019; 142:867-884. [PMID: 30879067 PMCID: PMC6439326 DOI: 10.1093/brain/awz045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.
Collapse
Affiliation(s)
- Laura V Vandervore
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Renske Oegema
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Pathology, Clinical Bio-informatics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Katrien Stouffs
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Marianne L T van der Sterre
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Leontine M A van Unen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Daphne Heijsman
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Anna Grandone
- Department of Molecular Genetics, Proteomics Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Johan A Slotman
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Roy G Masius
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anton J van Essen
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Patrick Rump
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Pediatric Neurology, Juliana Hospital, Els Borst-Eilersplein 275, 2545 AA Den Haag, The Netherlands
| | - Els Peeters
- Department of Medical genetics, Istanbul Medical Faculty, Istanbul University, Topkapı Mahallesi, Turgut Özal Millet Cd, 34093 Fatih/İstanbul, Turkey
| | - Umut Altunoglu
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Tugba Kalayci
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Imagine Institute, INSERM UMR-1163, Laboratory Genetics and Embryology of Congenital Malformations, Paris Descartes University, Institut des Maladies Génétiques 24, Boulevard de Montparnasse, Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anna C Jansen
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| |
Collapse
|
21
|
Kasza KE, Supriyatno S, Zallen JA. Cellular defects resulting from disease-related myosin II mutations in Drosophila. Proc Natl Acad Sci U S A 2019; 116:22205-22211. [PMID: 31615886 PMCID: PMC6825282 DOI: 10.1073/pnas.1909227116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The nonmuscle myosin II motor protein produces forces that are essential to driving the cell movements and cell shape changes that generate tissue structure. Mutations in myosin II that are associated with human diseases are predicted to disrupt critical aspects of myosin function, but the mechanisms that translate altered myosin activity into specific changes in tissue organization and physiology are not well understood. Here we use the Drosophila embryo to model human disease mutations that affect myosin motor activity. Using in vivo imaging and biophysical analysis, we show that engineering human MYH9-related disease mutations into Drosophila myosin II produces motors with altered organization and dynamics that fail to drive rapid cell movements, resulting in defects in epithelial morphogenesis. In embryos that express the Drosophila myosin motor variants R707C or N98K and have reduced levels of wild-type myosin, myosin motors are correctly planar polarized and generate anisotropic contractile tension in the tissue. However, expression of these motor variants is associated with a cellular-scale reduction in the speed of cell intercalation, resulting in a failure to promote full elongation of the body axis. In addition, these myosin motor variants display slowed turnover and aberrant aggregation at the cell cortex, indicating that mutations in the motor domain influence mesoscale properties of myosin organization and dynamics. These results demonstrate that disease-associated mutations in the myosin II motor domain disrupt specific aspects of myosin localization and activity during cell intercalation, linking molecular changes in myosin activity to defects in tissue morphogenesis.
Collapse
Affiliation(s)
- Karen E Kasza
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Sara Supriyatno
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| | - Jennifer A Zallen
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| |
Collapse
|
22
|
Uzquiano A, Francis F. Rotatin' the phenotypes. Brain 2019; 142:834-838. [PMID: 30946475 DOI: 10.1093/brain/awz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Uzquiano
- Sorbonne Université, UMR-S 1270, F-75005, Paris.,Inserm U 1270, Paris, France.,Institut du Fer a Moulin, Paris, France
| | - Fiona Francis
- Sorbonne Université, UMR-S 1270, F-75005, Paris.,Inserm U 1270, Paris, France.,Institut du Fer a Moulin, Paris, France
| |
Collapse
|
23
|
Ridge LA, Mitchell K, Al-Anbaki A, Shaikh Qureshi WM, Stephen LA, Tenin G, Lu Y, Lupu IE, Clowes C, Robertson A, Barnes E, Wright JA, Keavney B, Ehler E, Lovell SC, Kadler KE, Hentges KE. Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genet 2017; 13:e1007068. [PMID: 29084269 PMCID: PMC5697871 DOI: 10.1371/journal.pgen.1007068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.
Collapse
Affiliation(s)
- Liam A. Ridge
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karen Mitchell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ali Al-Anbaki
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Louise A. Stephen
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Gennadiy Tenin
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Irina-Elena Lupu
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Clowes
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Abigail Robertson
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Emma Barnes
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Jayne A. Wright
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and the Cardiovascular Division, Kings College London, London, United Kingdom
| | - Simon C. Lovell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn E. Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10:955-970. [PMID: 28768736 PMCID: PMC5560060 DOI: 10.1242/dmm.028365] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kate G Ackerman
- Departments of Pediatrics (Critical Care) and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J McCulley
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Linshan Shang
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wendy K Chung
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
25
|
Zhang S, Shan Y, Zhang S, Sui Z, Zhang L, Liang Z, Zhang Y. NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing. J Proteomics 2017; 154:40-48. [DOI: 10.1016/j.jprot.2016.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022]
|
26
|
Farwell Hagman KD, Shinde DN, Mroske C, Smith E, Radtke K, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Alcaraz WA, Helbig KL, Sajan SA, Rossi M, Lu HM, Huether R, Li S, Wu S, Nuñes ME, Tang S. Candidate-gene criteria for clinical reporting: diagnostic exome sequencing identifies altered candidate genes among 8% of patients with undiagnosed diseases. Genet Med 2016; 19:224-235. [PMID: 27513193 PMCID: PMC5303763 DOI: 10.1038/gim.2016.95] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Purpose: Diagnostic exome sequencing (DES) is now a commonly ordered test for individuals with undiagnosed genetic disorders. In addition to providing a diagnosis for characterized diseases, exome sequencing has the capacity to uncover novel candidate genes for disease. Methods: Family-based DES included analysis of both characterized and novel genetic etiologies. To evaluate candidate genes for disease in the clinical setting, we developed a systematic, rule-based classification schema. Results: Testing identified a candidate gene among 7.7% (72/934) of patients referred for DES; 37 (4.0%) and 35 (3.7%) of the genes received evidence scores of “candidate” and “suspected candidate,” respectively. A total of 71 independent candidate genes were reported among the 72 patients, and 38% (27/71) were subsequently corroborated in the peer-reviewed literature. This rate of corroboration increased to 51.9% (27/52) among patients whose gene was reported at least 12 months previously. Conclusions: Herein, we provide transparent, comprehensive, and standardized scoring criteria for the clinical reporting of candidate genes. These results demonstrate that DES is an integral tool for genetic diagnosis, especially for elucidating the molecular basis for both characterized and novel candidate genetic etiologies. Gene discoveries also advance the understanding of normal human biology and more common diseases. Genet Med19 2, 224–235.
Collapse
Affiliation(s)
| | - Deepali N Shinde
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Cameron Mroske
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Erica Smith
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Kelly Radtke
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Layla Shahmirzadi
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Dima El-Khechen
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Zöe Powis
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Elizabeth C Chao
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA.,Division of Genetics and Genomics, Department of Pediatrics, University of California, Irvine, Irvine, California, USA
| | - Wendy A Alcaraz
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Katherine L Helbig
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Samin A Sajan
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mari Rossi
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Hsiao-Mei Lu
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Robert Huether
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Shuwei Li
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Sitao Wu
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mark E Nuñes
- Department of Genetics, Kaiser Permanente, San Diego, California, USA
| | - Sha Tang
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| |
Collapse
|
27
|
Fenix AM, Taneja N, Buttler CA, Lewis J, Van Engelenburg SB, Ohi R, Burnette DT. Expansion and concatenation of non-muscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis. Mol Biol Cell 2016; 27:mbc.E15-10-0725. [PMID: 26960797 PMCID: PMC4850034 DOI: 10.1091/mbc.e15-10-0725] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, non-muscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks) but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non-mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-F/NMIIA-F stacks move together and align. We found NMIIA-F stack formation was regulated by both motor-activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus, interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II-based contractile systems are assembled.
Collapse
Affiliation(s)
- Aidan M Fenix
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nilay Taneja
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - John Lewis
- Vanderbilt University School of Medicine, Nashville, TN 37232 Kalamazoo College, Kalamazoo, MI 49008
| | | | - Ryoma Ohi
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | | |
Collapse
|
28
|
Wang G, Yang H, Yan S, Wang CE, Liu X, Zhao B, Ouyang Z, Yin P, Liu Z, Zhao Y, Liu T, Fan N, Guo L, Li S, Li XJ, Lai L. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener 2015; 10:42. [PMID: 26334913 PMCID: PMC4557629 DOI: 10.1186/s13024-015-0036-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Background TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43. Results We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains. Conclusion Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.
Collapse
Affiliation(s)
- Guohao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqiang Yang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Sen Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Chuan-En Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Xudong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bentian Zhao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Zhen Ouyang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Peng Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhaoming Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Yu Zhao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Tao Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Nana Fan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Lin Guo
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Xiao-Jiang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
29
|
Delineation of New Disorders and Phenotypic Expansion of Known Disorders Through Whole Exome Sequencing. CURRENT GENETIC MEDICINE REPORTS 2015. [DOI: 10.1007/s40142-015-0079-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Abstract
Congenital diaphragmatic hernia (CDH) is a moderately prevalent birth defect that, despite advances in neonatal care, is still a significant cause of infant death, and surviving patients have significant morbidity. The goal of ongoing research to elucidate the genetic causes of CDH is to develop better treatment and ultimately prevention. CDH is a complex developmental defect that is etiologically heterogeneous. This review summarizes the recurrent genetic causes of CDH including aneuploidies, chromosome copy number variants, and single gene mutations. It also discusses strategies for genetic evaluation and genetic counseling in an era of rapidly evolving technologies in clinical genetic diagnostics.
Collapse
Affiliation(s)
| | | | - Wendy K. Chung
- Corresponding author. Address: Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, 1150 St Nicholas Avenue, Room 620, New York, NY 10032, USA. Tel.: +1 212-851-5313; fax: +1 212-851-5306. (W.K. Chung)
| |
Collapse
|
31
|
Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, Massicotte C, Ambalavanan A, Spiegelman D, Diallo O, Henrion E, Dionne-Laporte A, Fougerat A, Pshezhetsky AV, Venkateswaran S, Rouleau GA, Michaud JL. De novo mutations in moderate or severe intellectual disability. PLoS Genet 2014; 10:e1004772. [PMID: 25356899 PMCID: PMC4214635 DOI: 10.1371/journal.pgen.1004772] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023] Open
Abstract
Genetics is believed to have an important role in intellectual disability (ID). Recent studies have emphasized the involvement of de novo mutations (DNMs) in ID but the extent to which they contribute to its pathogenesis and the identity of the corresponding genes remain largely unknown. Here, we report a screen for DNMs in subjects with moderate or severe ID. We sequenced the exomes of 41 probands and their parents, and confirmed 81 DNMs affecting the coding sequence or consensus splice sites (1.98 DNMs/proband). We observed a significant excess of de novo single nucleotide substitutions and loss-of-function mutations in these cases compared to control subjects, suggesting that at least a subset of these variations are pathogenic. A total of 12 likely pathogenic DNMs were identified in genes previously associated with ID (ARID1B, CHD2, FOXG1, GABRB3, GATAD2B, GRIN2B, MBD5, MED13L, SETBP1, TBR1, TCF4, WDR45), resulting in a diagnostic yield of ∼29%. We also identified 12 possibly pathogenic DNMs in genes (HNRNPU, WAC, RYR2, SET, EGR1, MYH10, EIF2C1, COL4A3BP, CHMP2A, PPP1CB, VPS4A, PPP2R2B) that have not previously been causally linked to ID. Interestingly, no case was explained by inherited mutations. Protein network analysis indicated that the products of many of these known and candidate genes interact with each other or with products of other ID-associated genes further supporting their involvement in ID. We conclude that DNMs represent a major cause of moderate or severe ID.
Collapse
Affiliation(s)
| | - Myriam Srour
- CHU Sainte-Justine Research Center, Montreal, Canada
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, Canada
| | | | - Hussein Daoud
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lysanne Patry
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | | | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ousmane Diallo
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edouard Henrion
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Anne Fougerat
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | | | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Pediatrics and Department of Neurosciences, University of Montreal, Montreal, Canada
| |
Collapse
|
32
|
Ma X, Adelstein RS. The role of vertebrate nonmuscle Myosin II in development and human disease. BIOARCHITECTURE 2014; 4:88-102. [PMID: 25098841 DOI: 10.4161/bioa.29766] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Three different genes each located on a different chromosome encode the heavy chains of nonmuscle myosin II in humans and mice. This review explores the functional consequences of the presence of three isoforms during embryonic development and beyond. The roles of the various isoforms in cell division, cell-cell adhesion, blood vessel formation and neuronal cell migration are addressed in animal models and at the cellular level. Particular emphasis is placed on the role of nonmuscle myosin II during cardiac and brain development, and during closure of the neural tube and body wall. Questions addressed include the consequences on organ development, of lowering or ablating a particular isoform as well as the effect of substituting one isoform for another, all in vivo. Finally the roles of the three isoforms in human diseases such as cancer as well as in syndromes affecting a variety of organs in humans are reviewed.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD USA
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
33
|
Ma X, Adelstein RS. A point mutation in Myh10 causes major defects in heart development and body wall closure. ACTA ACUST UNITED AC 2014; 7:257-65. [PMID: 24825879 DOI: 10.1161/circgenetics.113.000455] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The 3 isoforms of nonmuscle myosin (NM) II (NMII-A, NMII-B, and NMII-C) play various roles during mouse embryonic development. Previous work, using knockout and hypomorphic mice, showed that Myh10 encoding myosin heavy chain II-B is critical for cardiac and brain development. Ablating or decreasing NMII-B by 80% results in cardiac (ventricular septal defect, double outlet of the right ventricle) and brain defects but not midline fusion defects. Neither NMII-A nor II-C seems to play roles in early myocardial development. METHODS AND RESULTS We had previously generated point mutant knock-in mice and now report novel findings as a result of expressing motor-deficient NMII-B at wild-type levels. Homozygous mice die at embryonic day 14.5 in cardiac failure, exhibiting abnormalities not seen in NMII-B null and hypomorphic mice: a failure in midline fusion resulting in a cleft palate, ectopia cordis, and a large omphalocele. Fusion of the sternum and endocardial cushions is impaired in the mutant mice associated with a failure in apoptosis of the mesenchymal cells. Failure to disassemble myocyte cell-cell adhesions during cardiac outflow tract development contributes to impaired outflow tract myocardialization and displacement of the aorta to the right ventricle. CONCLUSIONS Expression of motor-impaired NMII-B disrupts normal ventral body wall closure because of a dominant-negative effect. This is not because of the loss of NMII-B function but rather a gain-of-function resulting from prolonged cross-linking of NMII-B to actin filaments, thereby interfering with the dynamics of actomyosin cytoskeletal structure. Furthermore, impaired NMII-B motor activity inhibits outflow tract myocardialization, leading to mislocalization of the aorta.
Collapse
Affiliation(s)
- Xuefei Ma
- From the Laboratory of Molecular Cardiology, Genetics & Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Robert S Adelstein
- From the Laboratory of Molecular Cardiology, Genetics & Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|