1
|
Ritter AJ, Draper JM, Vollmers C, Sanford JR. Long-read subcellular fractionation and sequencing reveals the translational fate of full-length mRNA isoforms during neuronal differentiation. Genome Res 2024; 34:2000-2011. [PMID: 38839373 PMCID: PMC11610577 DOI: 10.1101/gr.279170.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Alternative splicing (AS) alters the cis-regulatory landscape of mRNA isoforms, leading to transcripts with distinct localization, stability, and translational efficiency. To rigorously investigate mRNA isoform-specific ribosome association, we generated subcellular fractionation and sequencing (Frac-seq) libraries using both conventional short reads and long reads from human embryonic stem cells (ESCs) and neural progenitor cells (NPCs) derived from the same ESCs. We performed de novo transcriptome assembly from high-confidence long reads from cytosolic, monosomal, light, and heavy polyribosomal fractions and quantified their abundance using short reads from their respective subcellular fractions. Thousands of transcripts in each cell type exhibited association with particular subcellular fractions relative to the cytosol. Of the multi-isoform genes, 27% and 19% exhibited significant differential isoform sedimentation in ESCs and NPCs, respectively. Alternative promoter usage and internal exon skipping accounted for the majority of differences between isoforms from the same gene. Random forest classifiers implicated coding sequence (CDS) and untranslated region (UTR) lengths as important determinants of isoform-specific sedimentation profiles, and motif analyses reveal potential cell type-specific and subcellular fraction-associated RNA-binding protein signatures. Taken together, our data demonstrate that alternative mRNA processing within the CDS and UTRs impacts the translational control of mRNA isoforms during stem cell differentiation, and highlight the utility of using a novel long-read sequencing-based method to study translational control.
Collapse
Affiliation(s)
- Alexander J Ritter
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jolene M Draper
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
2
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
3
|
Dong X, Wang H, Zhan L, Li Q, Li Y, Wu G, Wei H, Li Y. miR-153-3p suppresses the differentiation and proliferation of neural stem cells via targeting GPR55. Aging (Albany NY) 2023; 15:8518-8527. [PMID: 37642951 PMCID: PMC10497013 DOI: 10.18632/aging.204002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease is the most frequent neurodegenerative disease and is characterized by progressive cognitive impairment and decline. NSCs (neural stem cells) serve as beneficial and promising adjuncts to treat Alzheimer's disease. This study aimed to determine the role of miR-153-3p expression in NSC differentiation and proliferation. We illustrated that miR-153-3p was decreased and GPR55 was upregulated during NSC differentiation. IL-1β can induce miR-153-3p expression. Luciferase reporter analysis noted that elevated expression of miR-153-3p significantly inhibited the luciferase value of the WT reporter plasmid but did not change the luciferase value of the mut reporter plasmid. Ectopic miR-153-3p expression suppressed GPR55 expression in NSCs and identified GPR55 as a direct target gene of miR-153-3p. Ectopic expression of miR-153-3p inhibited NSC growth and differentiation into astrocytes and neurons. Elevated expression of miR-153-3p induced the release of proinflammatory cytokines, such as TNF-α, IL-1β and IL-6, in NSCs. Furthermore, miR-153-3p inhibited NSC differentiation and proliferation by targeting GPR55 expression. These data suggested that miR-153-3p may act as a clinical target for the therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Liping Zhan
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yang Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Huan Wei
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| |
Collapse
|
4
|
Modulation of Rab GDP-Dissociation Inhibitor Trafficking and Expression by the Transmembrane Protein 59 (TMEM59). SEPARATIONS 2022. [DOI: 10.3390/separations9110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transmembrane protein 59 (TMEM59) is a type I transmembrane protein. However, the characterization and functions of TMEM59 in cells are not clear. Our results showed that TMEM59 localizes to vesicular structures. Further co-localization studies illustrated that TMEM59 is mainly distributed in the lysosome and acidic vesicular. TMEM59 movement between the nucleus and cell membrane was observed in living cells expressing TMEM59–EGFP fusion proteins. In addition, cell surface transport of amyloid precursor protein (APP) was significantly inhibited by TMEM59 and increased APP levels in HEK296T cells. TMEM59 also significantly inhibits transport of Rab GDP dissociation inhibitor alpha (GDI1) and Rab GDP dissociation inhibitor beta (GDI2), and further increases expression of GDI1 and GDI2 proteins in the cytoplasm. However, TMEM59 does not affect protein expression and localization of BACE2. These results suggest that TMEM59 may be involved in the packaging of acidic vesicles, modulated transport, and processing of APP, GDI1, and GDI2.
Collapse
|
5
|
Zhang L, Wang T, Chen XF, Xu ZX, Cao JB, Sun H. TMEM59 protects against cerebral ischemic stroke by suppressing pyroptosis and microglial activation. Biochem Biophys Res Commun 2021; 543:72-79. [PMID: 33517129 DOI: 10.1016/j.bbrc.2020.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 10/22/2022]
Abstract
Ischemic stroke is a common disease worldwide with high mortality and disability rates. Nevertheless, pathogenesis of ischemic stroke is still vague, and finding novel therapeutic target is urgently necessary. TMEM59 (also known as dendritic cell-derived factor 1, DCF1), a type I transmembrane protein, contains a minimal 19-amino-acid peptide in its intracellular domain, and has been involved in neurological pathology. However, its biological impacts on ischemic stroke are still unknown. In this study, we provided new evidence that TMEM59 expression was significantly down-regulated upon ischemia/reperfusion (I/R). The effect of stroke insult on TMEM59 expression change was only detected in microglial cells by in vitro studies. We observed that TMEM59 knockout markedly accelerated cerebral I/R in mice induced by middle cerebral artery occlusion (MCAO), as evidenced by the elevated infarction volume, neurological deficit scores, brain water contents and neuronal death, further contributing to the abnormal behaviors for mice. We then found that microglial activation reflected by the enhanced expression of Iba-1 was dramatically potentiated by TMEM59 knockout in MCAO-treated mice. Pyroptosis was highly triggered in mice with cerebral I/R, while being further aggravated in mice with TMEM59 deletion, as proved by the considerably increased expression of NLRP3, ASC, cleaved Caspase-1, GSDMD-N, mature-IL-1β and mature-IL-18. Additionally, TMEM59 knockout mice exhibited accelerated activation of NF-κB signaling pathway compared with the wild type group of mice after MCAO operation, indicating the anabatic neuroinflammation. The effects of TMEM59 suppression on ischemic stroke were confirmed in microglial cells with exposure to oxygen-glucose deprivation/reoxygenation (OGD/R). In contrast, the in vitro studies verified that improving TMEM59 expression effectively hindered pyroptosis and inflammation in microglial cells upon OGD/R treatment. Taken together, these findings illustrated protective effects of TMEM59 against ischemic stroke through restraining pyroptosis and inflammatory response.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511447, China
| | - Tao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Xiao-Fang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Zhi-Xin Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Jiang-Bei Cao
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Hu Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
6
|
Zhang Y, Jiang H, Dou S, Zhang B, Qi X, Li J, Zhou Q, Li W, Chen C, Wang Q, Xie L. Comprehensive analysis of differentially expressed microRNAs and mRNAs involved in diabetic corneal neuropathy. Life Sci 2020; 261:118456. [PMID: 32956661 DOI: 10.1016/j.lfs.2020.118456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
AIMS Corneal nerve fibers are derived from the ophthalmic division of the trigeminal ganglion (TG). Here, by sequencing of microRNAs (miRNAs) and messenger RNAs (mRNAs) from diabetic and normal TG tissues, we aimed to uncover potential miRNAs, mRNAs, and the network of their interactions involved in the pathogenesis of diabetic corneal neuropathy. MAIN METHODS We performed RNA sequencing to systematically screen out differentially expressed miRNAs and mRNAs in TG tissues from diabetic and normal mice. Functional enrichment analyses were performed to illustrate the biological functions of differentially expressed mRNAs (DEmRNAs). Following this, miRNA-mRNA regulatory networks were built by means of bioinformatics methods to suggest regulatory role for miRNAs in the pathogenesis of diabetic corneal neuropathy. Finally, the credibility of the sequencing-based results was validated using qRT-PCR. KEY FINDINGS Sequencing analyses disclosed that 68 miRNAs and 114 mRNAs were differentially expressed in diabetic TG tissues compared with normal TG samples. The functional analyses showed that DEmRNAs participated in diabetes-related biological processes. After applying an optimized approach to predict miRNA-mRNA pairs, a miRNA-mRNA interacting network was inferred. Subsequently, the expression and correlation of miR-350-5p and Mup20, miR-592-5p and Angptl7 as well as miR-351-5p and Elovl6 were preliminarily validated. SIGNIFICANCE Our study provides a systematic characterization of miRNA and mRNA expression in the TG during diabetic corneal neuropathy and will contribute to the development of clinical diagnostic and therapeutic strategies for diabetic corneal neuropathy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Hui Jiang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Shengqian Dou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Bin Zhang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Xia Qi
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Jing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qingjun Zhou
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Weina Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qun Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China.
| | - Lixin Xie
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
TMEM59 interacts with TREM2 and modulates TREM2-dependent microglial activities. Cell Death Dis 2020; 11:678. [PMID: 32826884 PMCID: PMC7442838 DOI: 10.1038/s41419-020-02874-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
The surface receptor triggering receptor expressed on myeloid cells 2 (TREM2) plays a crucial role in maintaining a multitude of microglial activities, such as survival, proliferation, migration, metabolism, inflammation, and phagocytosis. However, the molecular mechanisms underlying TREM2-mediated microglial activities remain largely elusive. Herein, we found that TREM2 interacted with the type I transmembrane protein TMEM59, whose expression could facilitate autophagic flux through its carboxyl-terminus. TMEM59 expression was decreased upon lipopolysaccharide treatment. While downregulation of TMEM59 promoted anti-inflammatory factor expression and attenuated lipopolysaccharide treatment-induced inflammation. Importantly, we found that overexpression of TREM2 reduced TMEM59 protein levels through promoting its degradation, whereas TMEM59 levels were elevated in Trem2-deficient microglia. Finally, impaired survival, proliferation, migration, and phagocytosis, as well as dysregulated autophagy and metabolism in Trem2-deficient microglia were attenuated upon TMEM59 silencing. Together, our findings reveal a novel function of TREM2 in mediating TMEM59 protein degradation and demonstrate the importance of TMEM59 homeostasis in maintaining TREM2-mediated microglial activities.
Collapse
|
8
|
Long L, Zeng C, Chen H, Zhou T, Wu L, Cai X. ADNCR modulates neural stem cell differentiation and proliferation through the regulation of TCF3 expression. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:927. [PMID: 32953727 PMCID: PMC7475390 DOI: 10.21037/atm-20-1068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Neural stem cells (NSCs) are undifferentiated precursor cells that have the ability to self-renew and proliferate and have the capacity to become either glia (oligodendrocytes and astrocytes) or neurons. NSCs can act as beneficial adjuncts for many neurological disorders, such as cerebral infarction, spinal cord injuries, Alzheimer's disease, and Parkinson's disease. Long noncoding RNAs (lncRNAs) play essential roles during cell differentiation, proliferation, and metabolism. This study aimed to explore the role played by adipocyte differentiation-associated long noncoding RNA (ADNCR) in the self-renewal and multipotency of NSCs. Methods In this study, we identified NSCs and verified that these cells were able to regenerate and differentiate into both astrocytes and neurons. Then we studied the relation between expression of ADNCR and transcription factor 3 (TCF3) and proliferation of NSCs. Results ADNCR and TCF3 expression have been shown to decrease during the differentiation of NSCs into both neurons and astrocyte induction cells. However, the expression of the microRNA miR-204-5p increased over time during the differentiation of NSCs into both neurons and astrocyte induction cells. ADNCR acts as a competing endogenous RNA (ceRNA) for miR-204-5p, and the overexpression of ADNCR suppressed miR-204-5p expression and enhanced TCF3 expression in NSCs, which resulted in enhanced proliferation and suppressed neural differentiation. Conclusions These data suggested that the use of ADNCR may represent a new strategy for expanding the interventions used to treat neurological disorders.
Collapse
Affiliation(s)
- Ling Long
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Zeng
- Department of Pathology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Honglei Chen
- Department of Gastrointestinal Endoscopy, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lili Wu
- Department of Ultrasound, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Cai
- Department of Neurology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Wu X, Hu C, Long C, Zhai X, Liang P, Yu Z. MicroRNA-351 Promotes the Proliferation and Invasion of Glioma Cells through Downregulation of NAIF1. J Mol Neurosci 2020; 70:1493-1499. [PMID: 32506303 DOI: 10.1007/s12031-020-01582-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023]
Abstract
Despite the well-characterized expression profile of miR-351 in the neural system, its molecular mechanisms in glioma still remain elusive. Here we intended to assess the regulatory function of miR-351 on nuclear apoptosis-inducing factor 1 (NAIF1) and, thereby, modulation of cancerous behaviors of human glioma cell lines. Two human glioma cell lines (U87 and U251) and normal human astroglia (NHA) cell line were cultured. The cell lines were prepared and transfected with mimic, inhibitor, and negative controls (NCs) of miR-351, then MTT and wound healing assays were performed. We extracted the total protein for western blotting assay and isolated the total RNA for real-time PCR. The miR-351 expression was significantly decreased in U87 and U251 cell lines compared with the NHA cell line (P < 0.05). NAIF1 expression was significantly higher in glioma cell lines compared with the NHA cell line (P < 0.05). Moreover, the NAIF1 expression showed a negative correlation with miR-351 (P = 0.005, r = -0.522). Apoptosis was significantly decreased in both cell lines transfected with miR-351 mimics compared with the NC group at 72 and 96 h after transfection (P < 0.05) and significantly increased in the transfected group with miR-351 inhibitors compared with the NC group at 72 and 96 h after transfection (P < 0.05). According to our results, after 24 and 48 h, migration was increased in the mimic group compared with the miR-351 NC group and decreased in the inhibitory group compared with the miR-351 NC group in the U251 cell line. Our findings provide theoretical evidence that miR-351, which targets NAIF1, could be considered an important marker in the pathogenesis of glioma. Furthermore, miR-351 has valuable potential to serve as a new prognostic and diagnostic biomarker and could be considered a potential target for the treatment of this cancer in the near future.
Collapse
Affiliation(s)
- Xuanxuan Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan 2nd Road, Chongqing, 400014, Yuzhong, China
| | - Chongling Hu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing, 400030, China.,Department of Neural Tumor, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing, 400030, China
| | - Chunxi Long
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan 2nd Road, Chongqing, 400014, Yuzhong, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan 2nd Road, Chongqing, 400014, Yuzhong, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan 2nd Road, Chongqing, 400014, Yuzhong, China
| | - Zengpeng Yu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan 2nd Road, Chongqing, 400014, Yuzhong, China.
| |
Collapse
|
10
|
Sato A, Ogino Y, Shimotsuma A, Hiramoto A, Kim HS, Wataya Y. Direct interaction analysis of microRNA-351-5p and nuclear scaffold lamin B1 mRNA by the cell-free in vitro mRNA/miRNA binding evaluation system. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:799-805. [PMID: 31994437 DOI: 10.1080/15257770.2019.1702675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/09/2023]
Abstract
We previously demonstrated that miR-351-5p regulates nuclear scaffold lamin B1 expression and mediates the anticancer floxuridine-induced necrosis shift to apoptosis in mammalian tumor cells. Notably, it is unknown whether lamin B1 mRNA is a direct target of miR-351-5p. Here, we show that miR-351-5p interacts with a lamin B1 mRNA partial sequence by using the cell-free in vitro miRNA and mRNA binding evaluation system. In addition, the interaction of miR-351-5p/lamin B1 mRNA was suppressed by an miR-351-5p inhibitor. Our findings are important in exploring the functions of miRNAs in cellular processes, including cell death.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Ogino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akira Shimotsuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akiko Hiramoto
- Division of International Infectious Diseases Control, Faculty of Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, Japan
| | - Hye-Sook Kim
- Division of International Infectious Diseases Control, Faculty of Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, Japan
| | - Yusuke Wataya
- Division of International Infectious Diseases Control, Faculty of Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, Japan
| |
Collapse
|
11
|
Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization. Genomics 2020; 112:809-819. [DOI: 10.1016/j.ygeno.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022]
|
12
|
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasit Vectors 2019; 12:611. [PMID: 31888743 PMCID: PMC6937654 DOI: 10.1186/s13071-019-3866-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schistosomiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strategies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, has been proved to be associated with the development of many human diseases, including schistosomiasis. In this review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic targets for treating schistosomiasis-associated hepatic fibrosis.![]()
Collapse
|
13
|
Wang Y, Liu Q, Xie J, Feng R, Ma F, Wang F, Shen S, Wen T. Dcf1 Affects Memory and Anxiety by Regulating NMDA and AMPA Receptors. Neurochem Res 2019; 44:2499-2505. [PMID: 31531752 DOI: 10.1007/s11064-019-02866-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/17/2019] [Accepted: 08/24/2019] [Indexed: 02/02/2023]
Abstract
The hippocampus is critical for memory and emotion and both N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl- 4-isoxazolepropionic acid (AMPA) receptors are known to contribute for those processes. However, the underlying molecular mechanisms remain poorly understood. We have previously found that mice undergo memory decline upon dcf1 deletion through ES gene knockout. In the present study, a nervous system-specific dcf1 knockout (NKO) mouse was constructed, which was found to present severely damaged neuronal morphology. The damaged neurons caused structural abnormalities in dendritic spines and decreased synaptic density. Decreases in hippocampal NMDA and AMPA receptors of NKO mice lead to abnormal long term potentiation (LTP) at DG, with significantly decreased performance in the water maze, elevated- plus maze, open field and light and dark test. Investigation into the underlying molecular mechanisms revealed that dendritic cell factor 1 (Dcf1) contributes for memory and emotion by regulating NMDA and AMPA receptors. Our results broaden the understanding of synaptic plasticity's role in cognitive function, thereby expanding its known list of functions.
Collapse
Affiliation(s)
- Yajiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Qiang Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Jiayang Xie
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Ruili Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Fangfang Ma
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Shiyi Shen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China.
| |
Collapse
|
14
|
Luo G, Feng R, Sun Y, Zheng L, Wang Y, Chen Y, Wen T. Dendritic cell factor 1 inhibits proliferation and migration and induces apoptosis of neuroblastoma cells by inhibiting the ERK signaling pathway. Oncol Rep 2018; 41:103-112. [PMID: 30365123 PMCID: PMC6278510 DOI: 10.3892/or.2018.6796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor that affects mainly children and has extremely high mortality and recurrence rates. A previous study revealed that dendritic cell factor 1 (DCF1), also called transmembrane protein 59, could activate apoptosis in glioma cells. In the present study, we applied immunofluorescence, western blot analysis, flow cytometry and cell tumorigenicity to investigate the DCF1 mechanisms involved in NB apoptosis. DCF1 was overexpressed in Neuro-2a and SK-N-SH cells through instantaneous transfection. The data revealed that overexpression of DCF1 could inhibit cell proliferation, migration, invasion and promote cell apoptosis in vitro, and suppress NB growth in vivo. The ERK1/2 signaling pathway, which promotes cell survival, was the target of DCF1 in neuroblastoma cells. All the results indicated that DCF1 could be a potential therapeutic target for the understanding and treatment of NB.
Collapse
Affiliation(s)
- Guanghong Luo
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Ruili Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yangyang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Lili Zheng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yajiang Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Yanlu Chen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
15
|
Zhang LN, Tian H, Zhou XL, Tian SC, Zhang XH, Wu TJ. Upregulation of microRNA-351 exerts protective effects during sepsis by ameliorating skeletal muscle wasting through the Tead-4-mediated blockade of the Hippo signaling pathway. FASEB J 2018; 32:fj201800151RR. [PMID: 30040486 DOI: 10.1096/fj.201800151rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sepsis-induced skeletal muscle wasting may lead to various severe clinical consequences. Understanding molecular mechanisms of the regulation of the loss of skeletal muscle mass in septic patients remains a significant clinical challenge. The current study was conducted to establish septic mice models to explore the relationship between microRNA (miR)-351 and the transcription element apical (TEA) domain transcription factor (Tead)-4 gene and to investigate its effects on the skeletal muscle through mediating the Hippo signaling pathway in mice with acute sepsis. A total of 60 mice were collected to establish mouse models of acute sepsis. The positive expression rate of Tead-4 and the apoptotic index (AI) were measured. A dual-luciferase reporter gene assay was conducted to verify the targeting relationship between miR-351 and Tead-4. Furthermore, the muscle fiber diameter (MFD) and area (MFA) and the content of 3-methylhistidine (3-MH) and tyrosine (Tyr) were assessed. The expression levels of miR-351, p38-MAPK, Yes-associated protein, Tead-4, B-cell lymphoma X protein (Bax), and Caspase-3 were determined with quantitative RT-PCR and Western blot analysis. Finally, cell viability, apoptosis, and levels of inflammatory factors, including IL-1β, IL-6, IGF-1, TNF-α, and monocyte chemoattractant protein-1 were detected by 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and ELISA. Initially, Tead-4 protein expression was higher in skeletal muscle tissues of mice with acute sepsis. Tead-4 was identified to negatively regulate miR-351. Upregulation of miR-351 increased MFA and MFD, muscle weight water content, Bcl-2 expression levels, and cell viability. Up-regulation of miR-351 reduced AI; 3-MH and Tyr content; positive expression of Tead-4 protein; the expression levels of p38-MAPK, Yap, Tead-4, Bax, and Caspase-3; apoptosis; and inflammatory responses. The current study demonstrated that up-regulation of miR-351 inhibits the degradation of skeletal muscle protein and the atrophy of skeletal muscle in mice with acute sepsis by targeting Tead-4 through suppression of the Hippo signaling pathway. Thus, miR-351 overexpression may be a future therapeutic strategy for acute sepsis.-Zhang, L.-N., Tian, H., Zhou, X.-L., Tian, S.-C., Zhang, X.-H., Wu, T.-J. Upregulation of microRNA-351 exerts protective effects during sepsis by ameliorating skeletal muscle wasting through the Tead-4-mediated blockade of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Li-Na Zhang
- Intensive Care Unit, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, China
| | - Hui Tian
- Intensive Care Unit, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, China
| | - Xiu-Li Zhou
- Intensive Care Unit, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, China
| | - Suo-Chen Tian
- Intensive Care Unit, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, China
| | - Xi-Hong Zhang
- Intensive Care Unit, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, China
| | - Tie-Jun Wu
- Intensive Care Unit, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, China
| |
Collapse
|
16
|
Dendritic Cell Factor 1-Knockout Results in Visual Deficit Through the GABA System in Mouse Primary Visual Cortex. Neurosci Bull 2018; 34:465-475. [PMID: 29430585 DOI: 10.1007/s12264-018-0211-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022] Open
Abstract
The visual system plays an important role in our daily life. In this study, we found that loss of dendritic cell factor 1 (DCF1) in the primary visual cortex (V1) caused a sight deficit in mice and induced an abnormal increase in glutamic acid decarboxylase 67, an enzyme that catalyzes the decarboxylation of glutamate to gamma aminobutyric acid and CO2, particularly in layer 5. In vivo electrophysiological recordings confirmed a decrease in delta, theta, and beta oscillation power in DCF1-knockout mice. This study presents a previously unknown function of DCF1 in V1, suggests an unknown contact between DCF1 and GABA systems, and provides insight into the mechanism and treatment of visual deficits.
Collapse
|
17
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
18
|
DCF1 subcellular localization and its function in mitochondria. Biochimie 2018; 144:50-55. [DOI: 10.1016/j.biochi.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022]
|
19
|
Laganà A, Dirksen WP, Supsavhad W, Yilmaz AS, Ozer HG, Feller JD, Vala KA, Croce CM, Rosol TJ. Discovery and characterization of the feline miRNAome. Sci Rep 2017; 7:9263. [PMID: 28835705 PMCID: PMC5569061 DOI: 10.1038/s41598-017-10164-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/07/2017] [Indexed: 12/28/2022] Open
Abstract
The domestic cat is an important human companion animal that can also serve as a relevant model for ~250 genetic diseases, many metabolic and degenerative conditions, and forms of cancer that are analogous to human disorders. MicroRNAs (miRNAs) play a crucial role in many biological processes and their dysregulation has a significant impact on important cellular pathways and is linked to a variety of diseases. While many species already have a well-defined and characterized miRNAome, miRNAs have not been carefully studied in cats. As a result, there are no feline miRNAs present in the reference miRNA databases, diminishing the usefulness of medical research on spontaneous disease in cats for applicability to both feline and human disease. This study was undertaken to define and characterize the cat miRNAome in normal feline tissues. High-throughput sequencing was performed on 12 different normal cat tissues. 271 candidate feline miRNA precursors, encoding a total of 475 mature sequences, were identified, including several novel cat-specific miRNAs. Several analyses were performed to characterize the discovered miRNAs, including tissue distribution of the precursors and mature sequences, genomic distribution of miRNA genes and identification of clusters, and isomiR characterization. Many of the miRNAs were regulated in a tissue/organ-specific manner.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Wachiraphan Supsavhad
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hatice G Ozer
- Department of Biomedical Informatics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - James D Feller
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Kiersten A Vala
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Dcf1 Triggers Dendritic Spine Formation and Facilitates Memory Acquisition. Mol Neurobiol 2017; 55:763-775. [DOI: 10.1007/s12035-016-0349-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022]
|
21
|
Sato A, Omi T, Yamamoto A, Satake A, Hiramoto A, Masutani M, Tanuma SI, Wataya Y, Kim HS. MicroRNA-351 Regulates Two-Types of Cell Death, Necrosis and Apoptosis, Induced by 5-fluoro-2'-deoxyuridine. PLoS One 2016; 11:e0153130. [PMID: 27071035 PMCID: PMC4829180 DOI: 10.1371/journal.pone.0153130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Cell-death can be necrosis and apoptosis. We are investigating the mechanisms regulating the cell death that occurs on treatment of mouse cancer cell-line FM3A with antitumor 5-fluoro-2'-deoxyuridine (FUdR): necrosis occurs for the original clone F28-7, and apoptosis for its variant F28-7-A. Here we report that a microRNA (miR-351) regulates the cell death pattern. The miR-351 is expressed strongly in F28-7-A but only weakly in F28-7. Induction of a higher expression of miR-351 in F28-7 by transfecting an miRNA mimic into F28-7 resulted in a change of the death mode; necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in the morphology change, apoptosis to necrosis, in this death-by-FUdR. Possible mechanism involving lamin B1 in this miR-351's regulatory action is discussed.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
- Division of Genome Stability Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Takuya Omi
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Akihiro Yamamoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Akito Satake
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Akiko Hiramoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
- Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Sei-ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Yusuke Wataya
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Hye-Sook Kim
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| |
Collapse
|
22
|
Kim Y, Kang YS, Lee NY, Kim KY, Hwang YJ, Kim HW, Rhyu IJ, Her S, Jung MK, Kim S, Lee CJ, Ko S, Kowall NW, Lee SB, Lee J, Ryu H. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy 2016; 11:796-811. [PMID: 25946189 DOI: 10.1080/15548627.2015.1035503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The EWSR1 (EWS RNA-binding protein 1/Ewing Sarcoma Break Point Region 1) gene encodes a RNA/DNA binding protein that is ubiquitously expressed and involved in various cellular processes. EWSR1 deficiency leads to impairment of development and accelerated senescence but the mechanism is not known. Herein, we found that EWSR1 modulates the Uvrag (UV radiation resistance associated) gene at the post-transcription level. Interestingly, EWSR1 deficiency led to the activation of the DROSHA-mediated microprocessor complex and increased the level of Mir125a and Mir351, which directly target Uvrag. Moreover, the Mir125a- and Mir351-mediated reduction of Uvrag was associated with the inhibition of autophagy that was confirmed in ewsr1 knockout (KO) MEFs and ewsr1 KO mice. Taken together, our data indicate that EWSR1 is involved in the post-transcriptional regulation of Uvrag via a miRNA-dependent pathway, resulting in the deregulation of autophagy inhibition. The mechanism of Uvrag and autophagy regulation by EWSR1 provides new insights into the role of EWSR1 deficiency-related cellular dysfunction.
Collapse
Key Words
- AGO2, argonaute
- ATG12, autophagy-related 12
- ATG14, autophagy-related 14
- ATG5, autophagy-related 5
- Ant-Mir125a
- Ant-Mir351
- BECN1, Beclin 1
- CNT-Ant, control antagomir
- CQ, chloroquine
- DGCR8, DiGeorge syndrome critical region gene 8
- EWS, Ewing's Sarcoma
- EWSR1
- EWSR1, EWS RNA-binding protein 1/Ewing Sarcoma Break Point Region 1; Ewsr1+/+
- Ewsr1 homozygous knockout
- Ewsr1 wild type; ewsr1−/−
- LAMP, lysosomal-associated membrane protein; MAP1LC3/LC3
- MEF, mouse embryonic fibroblast
- Mir125a
- Mir125a-specific antagomir
- Mir351
- Mir351-specific antagomir
- Pep.A, pepstatin A
- RISC, catalytic component 2
- RNA-seq, whole transcriptome sequencing
- SQSTM1, sequestosome 1
- UVRAG
- UVRAG, UV radiation-resistance associated
- autophagy
- miRNA, microRNA
- microtubule-associated protein 1 light chain 3
- pri-miRNA, primary transcript miRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Yunha Kim
- a Laboratory for Neuronal Gene Regulation and Epigenetics; Center for NeuroMedicine; Korea Institute of Science and Technology ; Seoul , Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Liu Y, Zhang H, Wang M, Zhang J. Mmu-miR-351 attenuates the survival of cardiac arterial endothelial cells through targeting STAT3 in the atherosclerotic mice. Biochem Biophys Res Commun 2015; 468:300-5. [PMID: 26505789 DOI: 10.1016/j.bbrc.2015.10.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
The signal transducer and activator of transcription 3 (STAT3) signaling pathway was involved in regulation of endothelial cell survival/apoptosis and was regarded as a target for prevention of atherosclerosis or other cardiovascular diseases. Factors, regulating STAT3 expression and activity, have aroused a wide range of interest, such as miRNAs or transcription factors. The aim of this study is to explore the role of miR-351, a miRNA found not long before, in the regulation of STAT3 expression and endothelial cell survival in the model mice with atherosclerosis (AS). Expression of miR-351 in the serum and cardiac arterial endothelial cells of the WT mice and AS mice was detected. Real-time qPCR analysis showed that miR-351 was upregulated in the serum and endothelial cells of the AS mice, displaying an opposite expression pattern with STAT3. To explore the role and mechanism of miR-351 in the endothelial cell survival, the miR-351 mimic was transfected in to the endothelial cells. MTT and Trypan Blue assays showed miR-351 attenuated the survival of endothelial cells. Our results of the TargetScan output and the 3'UTR luciferase reporter assay indicated that STAT3 was target of miR-351. Additionally, miR-351 resisted the elevation of STAT3 protein level and promotion of endothelial cell survival caused by SD19. Finally, our in vitro angiogenesis assay revealed that miR-351 suppressed angiogenesis and resisted the promotion of angiogenesis caused by SD19. In conclusion, miR-351 was upregulated in the atherosclerotic mice. MiR-351 can attenuate the survival of endothelial cells and suppress angiogenesis through targeting STAT3 in vitro.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China.
| | - Yujie Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Hong Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Minghui Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Jinlian Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
24
|
Shi X, Yan C, Liu B, Yang C, Nie X, Wang X, Zheng J, Wang Y, Zhu Y. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression. PLoS One 2015; 10:e0138973. [PMID: 26431046 PMCID: PMC4591969 DOI: 10.1371/journal.pone.0138973] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaodong Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Chunhua Yan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Baoquan Liu
- Department of anatomy, Harbin Medical University, Harbin, 150081, PR China
| | - Chunxiao Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xuedan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Jiaolin Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| | - Yue Wang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, 150081, PR China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
25
|
Yu Y, Lü X, Ding F. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation. J Neural Eng 2015; 12:046010. [PMID: 26035737 DOI: 10.1088/1741-2560/12/4/046010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. APPROACH Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. MAIN RESULTS The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, miR-18a, miR-107 and miR-103 regulate the Rras2 and Nf1 gene and thereby, affect cytoskeleton regulation and MAPK pathway; (2) miR-92a, miR-339-5p, miR-25, miR-125a-5p, miR-351 and miR-19b co-regulate the Pafah1b1 gene, affecting PC12 cell migration and differentiation. SIGNIFICANCE This work demonstrates a bioinformatic approach to accomplish miRNA-mRNA profile integrative analysis and provides more insights for understanding the regulatory mechanism of miRNA in AFs affecting neuronal differentiation. These findings will be greatly beneficial for the application and design of AFs in nerve tissue engineering.
Collapse
Affiliation(s)
- Yadong Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | | | |
Collapse
|
26
|
Xie Y, Li Q, Yang Q, Yang M, Zhang Z, Zhu L, Yan H, Feng R, Zhang S, Huang C, Liu Z, Wen T. Overexpression of DCF1 inhibits glioma through destruction of mitochondria and activation of apoptosis pathway. Sci Rep 2014; 4:3702. [PMID: 24424470 PMCID: PMC3892183 DOI: 10.1038/srep03702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 01/29/2023] Open
Abstract
Gliomas are the most common brain tumors affecting the central nervous system and are associated with a high mortality rate. DCF1 is a membrane protein that was previously found to play a role in neural stem cell differentiation. In the present study, we found that overexpression of dcf1 significantly inhibited cell proliferation, migration, and invasion and dramatically promoted apoptosis in the glioblastoma U251 cell line. DCF1 deletion mutations in the functional region showed that the complete structure of DCF1 was necessary for apoptosis. Furthermore, significantly lower tumorigenicity was observed in athymic nude mice by transplanting U251 cells overexpressing dcf1. To decode the apoptosis induced by dcf1, mitochondrial structure and membrane potential in glioma cells were investigated and the results indicated obvious mitochondrial swelling, destruction of cristae, and a significant decline in membrane potential. Mechanismly, caspase-3 signaling was activated. Finally, endogenous dcf1 silence in U251 cells was investigated. Results showed a highly methylation at −1339 and −1322 position at dcf1 promoter sequence, revealing the causal relationship between dcf1 gene and tumorigencicity. The present study identified a previously unknown cancer apoptosis mechanism involving dcf1 overexpression and provided a novel approach to potentially treat glioma patients.
Collapse
Affiliation(s)
- Yuqiong Xie
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China [3]
| | - Qiang Li
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China [3]
| | - Qingbo Yang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mei Yang
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Zhifeng Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liucun Zhu
- Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Huang Yan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ruili Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shiqing Zhang
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Chen Huang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zengrong Liu
- Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Tieqiao Wen
- 1] Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China [2] Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
27
|
Mor E, Shomron N. Species-specific microRNA regulation influences phenotypic variability: perspectives on species-specific microRNA regulation. Bioessays 2013; 35:881-8. [PMID: 23864354 DOI: 10.1002/bies.201200157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenotypic divergence among animal species may be due in part to species-specific (SS) regulation of gene expression by small, non-coding regulatory RNAs termed "microRNAs". This phenomenon can be modulated by several variables. First, microRNA genes vary by their level of conservation, many of them being SS, or unique to a particular evolutionary lineage. Second, microRNA expression levels vary spatially and temporally in different species. Lastly, while microRNAs bind the 3'UTR of target genes in order to silence their expression, the binding sites themselves are often non-conserved. The variability of the miRNA-target paradigm between different species is thus multifactorial, and this paradigm has only just started to gain attention from researchers in various fields. Here we present and discuss recent findings regarding the characteristics and implications of SS microRNA regulation.
Collapse
Affiliation(s)
- Eyal Mor
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|