1
|
Zhang Y, Yu H, Guo Z. Circ_KIAA1199 inhibits MSI1 degradation by targeting miR-34c-5p to drive the malignant cell behaviors and tumor growth of colorectal cancer. Anticancer Drugs 2022; 33:e134-e144. [PMID: 34387591 DOI: 10.1097/cad.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circular RNAs (circRNAs) are important regulators that drive or inhibit cancer initiation and development. Here, we identified the expression and function of a circRNA, circ_KIAA1199, in colorectal cancer (CRC). The expression levels of circ_KIAA1199, microRNA-34c-5p (miR-34c-5p) and Musashi RNA-binding protein 1 (MSI1) mRNA were detected by quantitative real-time PCR. Cell proliferative capacity was assessed by colony formation assay, EdU assay and MTT assay. Cell apoptosis was determined by flow cytometry assay. Cell migration and cell invasion were investigated by transwell assay. The expression of MSI1 protein and proliferation, migration-related markers was detected by western blot. The relationship between miR-34c-5p and circ_KIAA1199 or MSI1 was verified by dual-luciferase reporter assay. Animal models were constructed to ascertain the role of circ_KIAA1199 in vivo. The expression of circ_KIAA1199 was elevated in CRC. Circ_KIAA1199 downregulation suppressed CRC cell proliferation, survival, migration and invasion. MiR-34c-5p was a target of circ_KIAA1199. The effects of circ_KIAA1199 downregulation were reversed by miR-34c-5p deficiency. In addition, MSI1 was a target of circ_KIAA1199, and the inhibitory effects of miR-34c-5p restoration on CRC cell proliferation, survival, migration and invasion were reversed by MSI1 overexpression. Circ_KIAA1199 positively regulated MSI1 expression by targeting miR-34c-5p. Moreover, circ_KIAA1199 knockdown blocked tumor growth in animal models. Circ_KIAA1199 functioned as an oncogene to drive the malignant development of CRC by activating MSI1 via competitively targeting miR-34c-5p.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of General Surgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | | | | |
Collapse
|
2
|
Mura M, Jaksik R, Lalik A, Biernacki K, Kimmel M, Rzeszowska-Wolny J, Fujarewicz K. A mathematical model as a tool to identify microRNAs with highest impact on transcriptome changes. BMC Genomics 2019; 20:114. [PMID: 30727966 PMCID: PMC6366035 DOI: 10.1186/s12864-019-5464-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
Background Rapid changes in the expression of many messenger RNA (mRNA) species follow exposure of cells to ionizing radiation. One of the hypothetical mechanisms of this response may include microRNA (miRNA) regulation, since the amounts of miRNAs in cells also vary upon irradiation. To address this possibility, we designed experiments using cancer-derived cell lines transfected with luciferase reporter gene containing sequences targeted by different miRNA species in its 3′- untranslated region. We focus on the early time-course response (1 h past irradiation) to eliminate secondary mRNA expression waves. Results Experiments revealed that the irradiation-induced changes in the mRNA expression depend on the miRNAs which interact with mRNA. To identify the strongest interactions, we propose a mathematical model which predicts the mRNA fold expression changes, caused by perturbation of microRNA-mRNA interactions. Model was applied to experimental data including various cell lines, irradiation doses and observation times, both ours and literature-based. Comparison of modelled and experimental mRNA expression levels given miRNA level changes allows estimating how many and which miRNAs play a significant role in transcriptome response to stress conditions in different cell types. As an example, in the human melanoma cell line the comparison suggests that, globally, a major part of the irradiation-induced changes of mRNA expression can be explained by perturbed miRNA-mRNA interactions. A subset of about 30 out of a few hundred miRNAs expressed in these cells appears to account for the changes. These miRNAs play crucial roles in regulatory mechanisms observed after irradiation. In addition, these miRNAs have a higher average content of GC and a higher number of targeted transcripts, and many have been reported to play a role in the development of cancer. Conclusions Our proposed mathematical modeling approach may be used to identify miRNAs which participate in responses of cells to ionizing radiation, and other stress factors such as extremes of temperature, exposure to toxins, and drugs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5464-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marzena Mura
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,, Ardigen S.A., ul. Bobrzyńskiego 14, 30-348, Cracow, Poland.
| | - Roman Jaksik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Anna Lalik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, USA
| | - Marek Kimmel
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Departments of Statistics and Bioengineering, Rice University, MS 138, 6100 Main, Houston, TX, 77005, USA
| | - Joanna Rzeszowska-Wolny
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Krzysztof Fujarewicz
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland
| |
Collapse
|
3
|
Wang D, Tang H, Xu X, Dai W, Wu J, Wang J. Control the intracellular NF-κB activity by a sensor consisting of miRNA and decoy. Int J Biochem Cell Biol 2018; 95:43-52. [PMID: 29246684 DOI: 10.1016/j.biocel.2017.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/14/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Many diseases are associated with the abnormal activation of NF-κB and its signaling pathway. NF-κB has become an important target for disease treatment and development of new drugs. Many various NF-κB inhibitors were therefore developed; however, they have difficulties to become clinical drugs due to their adverse side effects resulted from the affected normal physiological functions of this transcription factor. To overcome this limitation, this study construct a transgenic vector that can express an artificial miRNA targeting NF-κB RelA under the control of a NF-κB-specific promoter. The promoter consists of a NF-κB decoy and a minimal promoter. The vector was named as decoy minimal promoter-artificial microRNA (DMP-amiRNA). This study verified that this vector can sense and control the intracellular NF-κB activity upon transfection. Working of the vector forms a perfect feedback loop that realizes the NF-κB self-control. With the vector in cells, the higher NF-κB activity, the higher DMP transcriptional activity, and the more amiR533 expression. DMP-amiRNA can moderately inhibit the intracellular NF-κB activity but exert no significant effect on cell viability. This study therefore develops a new strategy for inhibiting over activity of NF-κB, which should has great potential in clinical application.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Huanhuan Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
4
|
Huang Z, Liu G, Zeng Q, Gao R, Zhang S, Wang L, Liu B, Yu Y, Zhao A, Li R, Zhou S, Yu W. MiR-29b expression is associated with a dexmedetomidine-mediated protective effect against oxygen-glucose deprivation-induced injury to SK-N-SH cells in vitro. Cell Biol Int 2017; 42:344-352. [PMID: 29087603 DOI: 10.1002/cbin.10906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Ischemic cerebral stroke is a leading cause of death and long-term disability world-wide. Neuronal injury following cerebral ischemia initiates a complex series of signaling cascades that lead to neuronal cell death. MicroRNA 29b (miR-29b) has reported involvement in the pathogenic process of ischemic brain injury. Dexmedetomidine (Dex) is a highly selective α2 adrenergic receptor stimulant that exerts a protective effect on brain tissue. To determine whether Dex might directly influence miR-29b expression after an ischemic injury, human neuroblastoma SK-N-SH cells were subjected to oxygen-glucose deprivation (OGD) for the purpose of creating a neuronal injury model that mimics the effects of brain ischemia in vitro. Next, the association of miR-29b with the protective effect of Dex against ischemic brain injury was studied through the enhancement or inhibition of miR-29b expression by transfection with an miR-29b mimic or inhibitor. We demonstrated that Dex treatment could reduce miR-29b expression, increase cell viability, and inhibit cell apoptosis in the OGD-induced neuronal injury model in vitro. Furthermore, down-regulation of miR-29b expression produced effects on OGD-induced neuronal injuries that were similar to those produced by Dex treatment. Moreover, up-regulation of miR-29b reversed the protective effect of Dex treatment against OGD-induced neuronal injury. Therefore, down-regulation of miR-29b expression might play a role in anti-apoptotic signaling similar to that played by Dex. Elucidation of the role played by miR-29b in ischemia, and identification of a definite association between Dex and miR-29b may lead to the development of new strategies for treating ischemic brain injuries.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, 550005, China.,Key Laboratory of Endemic and Ethnic Diseases, The Key Laboratory of Medical Molecular Biology in Guizhou Medical University, Guiyang, 550002, China
| | - Guoli Liu
- School of Medical Imaging of Guizhou Medical University, Guiyang city Beijing Road 9#, Guiyang, 550002, China
| | - Qingfan Zeng
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, 550005, China
| | - Rui Gao
- Guizhou Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China, Guiyang, 550005, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550005, China
| | - Lizhou Wang
- School of Medical Imaging of Guizhou Medical University, Guiyang city Beijing Road 9#, Guiyang, 550002, China
| | - Bingjie Liu
- School of Medical Imaging of Guizhou Medical University, Guiyang city Beijing Road 9#, Guiyang, 550002, China
| | - YanLong Yu
- School of Medical Imaging of Guizhou Medical University, Guiyang city Beijing Road 9#, Guiyang, 550002, China
| | - Ansu Zhao
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550001, China
| | - Rui Li
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Shi Zhou
- School of Medical Imaging of Guizhou Medical University, Guiyang city Beijing Road 9#, Guiyang, 550002, China.,Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550005, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, The Key Laboratory of Medical Molecular Biology in Guizhou Medical University, Guiyang, 550002, China
| |
Collapse
|
5
|
Kozlowski E, Wasserman GA, Morgan M, O’Carroll D, Ramirez NGP, Gummuluru S, Rah JY, Gower AC, Ieong M, Quinton LJ, Mizgerd JP, Jones MR. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS One 2017; 12:e0179797. [PMID: 28665939 PMCID: PMC5493306 DOI: 10.1371/journal.pone.0179797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/05/2017] [Indexed: 02/03/2023] Open
Abstract
Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs), including the closely homologous family members Zcchc6 (TUT7) and Zcchc11 (TUT4), have been implicated in the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.
Collapse
Affiliation(s)
- Elyse Kozlowski
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marcos Morgan
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Dónal O’Carroll
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nora-Guadalupe P. Ramirez
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jasmine Y. Rah
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Adam C. Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael Ieong
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Franco D, Bonet F, Hernandez-Torres F, Lozano-Velasco E, Esteban FJ, Aranega AE. Analysis of microRNA Microarrays in Cardiogenesis. Methods Mol Biol 2016; 1375:207-21. [PMID: 25971912 DOI: 10.1007/7651_2015_247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
microRNAs are a subclass of noncoding RNAs which have been demonstrated to play pivotal roles in multiple cellular mechanisms. microRNAs are small RNA molecules of 22-24 nt in length capable of modulating protein translation and/or RNA stability by base-priming with complementary sequences of the mRNAs, normally at the 3'untranslated region. To date, over 2,000 microRNAs have been already identified in humans, and orthologous microRNAs have been also identified in distinct animals and plants ranging a wide vast of species. High-throughput analyses by microarrays have become a gold standard to analyze the changes on microRNA expression in normal and pathological cellular or tissue conditions. In this chapter, we provide insights into the usage of this uprising technology in the context of cardiac development and disease.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain.
| | - Fernando Bonet
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Francisco Hernandez-Torres
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Francisco J Esteban
- System Biology Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| |
Collapse
|
7
|
Hillman Y, Mazkereth N, Farberov L, Shomron N, Fishelson Z. Regulation of Complement-Dependent Cytotoxicity by MicroRNAs miR-200b, miR-200c, and miR-217. THE JOURNAL OF IMMUNOLOGY 2016; 196:5156-65. [PMID: 27183614 DOI: 10.4049/jimmunol.1502701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022]
Abstract
The impact of microRNAs (miRNAs) known to regulate numerous biologic processes on complement-dependent cytotoxicity (CDC) was investigated in K562 cells. The C5b-9 complex is the executioner of CDC. Cells protect themselves from CDC by C5b-9 elimination, a process involving the mitochondrial chaperone mortalin/GRP75. Potential miR-200 (b and c) and miR-217 regulatory sites were identified in mortalin mRNA. Overexpression of miR-200b/c or miR-217 lowered the expression of mortalin mRNA. miRNA inhibitors for miR-200b, miR-200c, or miR-217 enhanced mortalin mRNA level. Unexpectedly, these miRNA modulators had no significant effect on mortalin protein level. Metabolic labeling analysis demonstrated that, to compensate for reduction in mortalin mRNA level, the cells increased the rate of synthesis of mortalin protein. Cells overexpressing miR-200b/c or miR-217 showed reduced sensitivity to CDC, whereas inhibition of miR-200c and miR-217 enhanced cell death. miR-200b/c overexpression reduced C5b-9 binding and enhanced its release from the cells and promoted mortalin relocation to the plasma membrane. Inhibition of miR-200 (b and c) and miR-217 had no effect on the expression level of the membrane complement-regulatory proteins CD46, CD55, and CD59. However, overexpression of miR-200b/c or miR-217 enhanced expression of CD46 and CD55 (not of CD59). Overall, the data demonstrate miRNA regulation of cell sensitivity to CDC. We identified miR-200b, miR-200c, and miR-217 as regulators of mortalin and, perhaps indirectly, of CD46 and CD55. Cell exposure to a sublytic dose of complement was shown to increase expression of miR-200 (b and c), suggesting that complement C5b-9 exerts a feedback-regulatory effect on these miRNAs.
Collapse
Affiliation(s)
- Yaron Hillman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Mazkereth
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luba Farberov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Kang S, Zhao Y, Hu K, Xu C, Wang L, Liu J, Yao A, Zhang H, Cao F. miR-124 exhibits antiproliferative and antiaggressive effects on prostate cancer cells through PACE4 pathway. Prostate 2014; 74:1095-106. [PMID: 24913567 DOI: 10.1002/pros.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
INTRODUCTION PACE4 plays an important role in prostate cancer (PCa) proliferation and aggression, which might provide a useful target against prostate cancer. In this study, we had strived to find some key miRNAs to decrease malignancy and invasiveness of PCa through regulating PACE4 expression. METHODS Clinically pathological analysis of immunohistochemistry/in situ hybridization was carried out to detect the relationship between PACE4 expression/miRNAs and the malignancy of prostate mass. Prostate cell lines (DU145, C4-2, and BPH-1) were cultured for growth curve, immunocytochemistry analysis, colony formation, Matrigel invasion, and transcriptional/translational expression assay of PACE4-related signaling molecules for confirming the relationship. MiRNAs targeting PACE4 were predicted, validated and further-corroborated using bio-software, real-time PCR, luciferase reporter assay and transfection of miRNA mimics and inhibitor. RESULTS It was suggested that PACE4 might reflect the pathological malignancy of prostate lesion from pathology analysis. Moreover, DU145 cells, the highest PACE4-level and related TF expression indicated of the strongest malignancy and invasiveness. It was significantly found that miR-124 was presented with the biggest odd to target PACE4-3'UTR, the capability of decreasing PACE expression and slowing down cell growth and cell invasion. CONCLUSIONS It was clear that PACE4 level was closely associated with malignancy and invasiveness of PCa in vivo or in vitro MiR-124, played a crucial role inhibiting PACE4 transcription thus exhibiting obvious effects of antiproliferation and antiaggression of PCa.
Collapse
Affiliation(s)
- Shaosan Kang
- Department of Urinary Surgery, Hebei United University Affiliated Hospital, Tangshan, Hebei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A mathematical model of HiF-1α-mediated response to hypoxia on the G1/S transition. Math Biosci 2013; 248:31-9. [PMID: 24345497 DOI: 10.1016/j.mbs.2013.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/28/2022]
Abstract
Hypoxia is known to influence the cell cycle by increasing the G1 phase duration or by inducing a quiescent state (arrest of cell proliferation). This entry into quiescence is a mean for the cell to escape from hypoxia-induced apoptosis. It is suggested that some cancer cells have gain the advantage over normal cells to easily enter into quiescence when environmental conditions, such as oxygen pressure, are unfavorable [43,1]. This ability contributes in the appearance of highly resistant and aggressive tumor phenotypes [2]. The HiF-1α factor is the key actor of the intracellular hypoxia pathway. As tumor cells undergo chronic hypoxic conditions, HiF-1α is present in higher level in cancer than in normal cells. Besides, it was shown that genetic mutations promoting overstabilization of HiF-1α are a feature of various types of cancers [7]. Finally, it is suggested that the intracellular level of HiF-1α can be related to the aggressiveness of the tumors [53,24,4,10]. However, up to now, mathematical models describing the G1/S transition under hypoxia, did not take into account the HiF-1α factor in the hypoxia pathway. Therefore, we propose a mathematical model of the G1/S transition under hypoxia, which explicitly integrates the HiF-1α pathway. The model reproduces the slowing down of G1 phase under moderate hypoxia, and the entry into quiescence of proliferating cells under severe hypoxia. We show how the inhibition of cyclin D by HiF-1α can induce quiescence; this result provides a theoretical explanation to the experimental observations of Wen et al. (2010) [50]. Thus, our model confirms that hypoxia-induced chemoresistance can be linked, for a part, to the negative regulation of cyclin D by HiF-1α.
Collapse
|
10
|
Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One 2013; 8:e79467. [PMID: 24265774 PMCID: PMC3827167 DOI: 10.1371/journal.pone.0079467] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/28/2013] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are known to repress translation by binding to the 3’UTRs of mRNAs. Using bioinformatics, we recently reported that several miRNAs also have target sites in DNA particularly in the promoters of the protein-coding genes. To understand the functional significance of this phenomenon, we tested the effects of miR-324-3p binding to RelA promoter. In PC12 cells, co-transfection with premiR-324-3p induced a RelA promoter plasmid in a dose-dependent manner and this effect was lost when the miR-324-3p binding site in the promoter was mutated. PremiR-324-3p transfection also significantly induced the endogenous RelA mRNA and protein expression in PC12 cells. Furthermore, transfection with premiR-324-3p increased the levels of cleaved caspase-3 which is a marker of apoptosis. Importantly, the miR-324-3p effects were Ago2 mediated as Ago2 knockdown prevented RelA expression and cleavage of caspase-3. Thus, our studies show that miRNA-mediated transcriptional activation can be seen in PC12 cells which are neural in origin.
Collapse
Affiliation(s)
- Ashutosh Dharap
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Courtney Pokrzywa
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shruthi Murali
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gopal Pandi
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Li JY, Zhang Y, Zhang WH, Jia S, Kang Y, Zhu XY. Differential distribution of miR-20a and miR-20b may underly metastatic heterogeneity of breast cancers. Asian Pac J Cancer Prev 2013; 13:1901-6. [PMID: 22901144 DOI: 10.7314/apjcp.2012.13.5.1901] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The discovery that microRNA (miRNA) regulates metastasis provide a principal molecular basis for tumor heterogeneity. A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions (centers of tumor) of low blood flow. It is necessary to discover the mechanism of breast cancer metastasis in relation to the fact that there is a differential distribution of crucial microRNA in tumors from centers to edges. METHODS Breast tissues from 48 patients (32 patients with breast cancer) were classified into the high invasive and metastatic group (HIMG), low invasive and metastatic group (LIMG), and normal group. Samples were collected from both the centers and edges of all tumors. The first six specimens were detected by microRNA array, and the second ten specimens were detected by real-time qRT- PCR and Western blot analyses. Correlation analysis was performed between the miRNAs and target proteins. RESULTS The relative content of miR-20a and miR-20b was lower in the center of the tumor than at the edge in the LIMG, lower at the edge of the tumor than in the center in the HIMG, and lower in breast cancer tissues than in normal tissues. VEGF-A and HIF-1alpha mRNA levels were higher in the HIMG than in the LIMG, and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor. VEGF-A and HIF-1alpha protein levels were higher in the HIMG than in the LIMG, and protein levels in both groups were higher than in the normal group; there was a significant difference in protein expression between the edge and center of the tumor. Correlation analysis showed that the key miRNAs (miR-20a and miR-20b) negatively correlated with the target proteins (VEGF-A and HIF-1alpha). CONCLUSIONS Our data suggest that miR-20a and miR-20b are differentially distributed in breast cancer, while VEGF-A and HIF-1alpha mRNA had coincident distributions, and VEGF-A and HIF-1alpha proteins had uneven and opposing distributions to the miRNAs. It appears that one of the most important facets underlying metastatic heterogeneity is the differential distribution of miR-20a and miR-20b and their regulation of target proteins.
Collapse
Affiliation(s)
- Jian-Yi Li
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|