1
|
Anantanawat K, Papanicolaou A, Hill K, Liao Y, Xu W. Divergent Heat Stress Responses in Bactrocera tryoni and Ceratitis capitata. INSECTS 2024; 15:759. [PMID: 39452334 PMCID: PMC11508621 DOI: 10.3390/insects15100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Invasive Tephritid fruit flies rank among the most destructive agricultural and horticultural pests worldwide. Heat treatment is commonly employed as a post-harvest method to exterminate fruit flies in fruits or vegetables. These pest species exhibit distinct tolerance to heat treatments, suggesting that the molecular pathways affected by heat may differ among species. In this study, the Queensland fruit fly (Qfly), Bactrocera tryoni, was utilised as a model investigate its molecular response to heat stress through heat bioassays. RNA samples from flies before and after heat treatment were extracted and sequenced to identify genes with significant changes in expression. These findings were compared to another serious Tephritid fruit fly species, the Mediterranean fruit fly (Medfly), Ceratitis capitata, under similar heat treatment conditions. The analysis reveals only three common genes: heat shock protein 70 (HSP70), HSP68, and 14-3-3 zeta protein. However, despite these shared genes, their expression patterns differ between Qfly and Medfly. This suggests that these genes might play different roles in the heat responses of each species and could be regulated differently. This study presents the first evidence of differing molecular responses to heat between Qfly and Medfly, potentially linked to their varied origins, habitats, and genetic backgrounds. These findings offer new insights into Tephritid fruit fly responses to heat at the molecular level, which may help refine post-harvest strategies to control these pests in the future.
Collapse
Affiliation(s)
- Kay Anantanawat
- Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, VA 2753, Australia;
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA 5064, Australia
- Ithree Institute, University of Technology, Sydney, NSW 2007, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, VA 2753, Australia;
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Yalin Liao
- Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Wei Xu
- Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
2
|
Sun Z, He B, Yang Z, Huang Y, Duan Z, Yu C, Dan Z, Paek C, Chen P, Zhou J, Lei J, Wang F, Liu B, Yin L. Cost-Effective Whole Transcriptome Sequencing Landscape and Diagnostic Potential Biomarkers in Active Tuberculosis. ACS Infect Dis 2024; 10:2318-2332. [PMID: 38832694 DOI: 10.1021/acsinfecdis.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a prevalent and severe infectious disease that poses a significant threat to human health. However, it is frequently disregarded as there are not enough quick and accurate ways to diagnose tuberculosis. Here, we develop a strategy for tuberculosis detection to address the challenges, including an experimental strategy, namely, Double Adapter Directional Capture sequencing (DADCSeq), an easily operated and low-cost whole transcriptome sequencing method, and a computational method to identify hub differentially expressed genes as well as the diagnosis of TB based on whole transcriptome data using DADCSeq on peripheral blood mononuclear cells (PBMCs) from active TB and latent TB or healthy control. Applying our approach to create a robust and stable TB multi-mRNA risk probability model (TBMMRP) that can accurately distinguish active and latent TB patients, including active TB and healthy controls in clinical cohorts, this diagnostic biomarker was successfully validated by several independent cross-platform cohorts with favorable performance in differentiating active TB from latent TB or active TB from healthy controls and further demonstrated superior or similar diagnostic accuracy compared to previous diagnostic markers. Overall, we develop a low-cost and effective strategy for tuberculosis diagnosis; as the clinical cohort increases, we can expand to different disease kinds and learn new features through our disease diagnosis strategy.
Collapse
Affiliation(s)
- Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Zhifeng Yang
- Department of Chest Surgery, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430040, China
| | - Yi Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Zhaoyu Duan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Chengyi Yu
- Department of Active and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Zhaokui Dan
- Clinical Medicine School of Hubei University of Science and Technology, Xianning, Hubei Province 437100, China
| | - Chonil Paek
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Bing Liu
- Department of Active and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei Province 100730, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| |
Collapse
|
3
|
Shen Z, Naveed M, Bao J. Untacking small RNA profiling and RNA fragment footprinting: Approaches and challenges in library construction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1852. [PMID: 38715192 DOI: 10.1002/wrna.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Zhaokang Shen
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Muhammad Naveed
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| |
Collapse
|
4
|
Paten AM, Colin T, Coppin CW, Court LN, Barron AB, Oakeshott JG, Morgan MJ. Non-additive gene interactions underpin molecular and phenotypic responses in honey bee larvae exposed to imidacloprid and thymol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152614. [PMID: 34963587 DOI: 10.1016/j.scitotenv.2021.152614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding the cumulative risk of chemical mixtures at environmentally realistic concentrations is a key challenge in honey bee ecotoxicology. Ecotoxicogenomics, including transcriptomics, measures responses in individual organisms at the molecular level which can provide insights into the mechanisms underlying phenotypic responses induced by one or more stressors and link impacts on individuals to populations. Here, fifth instar honey bee larvae were sampled from a previously reported field experiment exploring the phenotypic impacts of environmentally realistic chronic exposures of the pesticide imidacloprid (5 μg.kg-1 for six weeks) and the acaricide thymol (250 g.kg-1 applied via Apiguard gel in-hive for four weeks), both separately and in combination. RNA-seq was used to discover individual and interactive chemical effects on larval gene expression and to uncover molecular mechanisms linked to reported adult and colony phenotypes. The separate and combined treatments had distinct gene expression profiles which represented differentially affected signaling and metabolic pathways. The molecular signature of the mixture was characterised by additive interactions in canonical stress responses associated with oxidative stress and detoxification, and non-additive interactions in secondary responses including developmental, neurological, and immune pathways. Novel emergent impacts on eye development genes correlated with long-term defects in visual learning performance as adults. This is consistent with these chemicals working through independent modes of action that combine to impact common downstream pathways, and highlights the importance of establishing mechanistic links between molecular and phenotypic responses when predicting effects of chemical mixtures on ecologically relevant population outcomes.
Collapse
Affiliation(s)
- Amy M Paten
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| | - Théotime Colin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Chris W Coppin
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| | - Leon N Court
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - John G Oakeshott
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; Applied Biosciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Matthew J Morgan
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Anantanawat K, Papanicolaou A, Hill K, Xu W. Molecular Response of the Mediterranean Fruit Fly (Diptera: Tephritidae) to Heat. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2495-2504. [PMID: 32725189 DOI: 10.1093/jee/toaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 06/11/2023]
Abstract
Tephritid fruit flies are highly successful invaders and some-such as the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)-are able to adapt to a large range of crops. Biosecurity controls require that shipments of produce are ensured to be pest-free, which is increasingly difficult due to the ban of key pesticides. Instead, stress-based strategies including controlled atmosphere, temperature, and irradiation can be used to eradicate flies inside products. However, unlike pesticide science, we do not yet have a robust scientific approach to measure cost-effectively whether a sufficiently lethal stress has been delivered and understand what this stress does to the biology of the pest. The latter is crucial as it would enable a combination of stresses targeting multiple molecular pathways and thus allow for lower doses of each to achieve higher lethality and reduce the development of resistance. Using heat as an example, this is the first study investigating the molecular stress response to heat in Tephritidae. Using a novel setup delivering measured doses of heat on C. capitata larvae and a high-density 11 timepoint gene expression experiment, we identified key components of lethal heat-stress response. While unraveling the complete molecular mechanism of fruit fly response to lethal stress would be a long-term project, this work curates and develops 31 potential biomarkers to assess whether sufficient lethal stress has been delivered. Further, as these protocols are straightforward and less expensive than other-omic approaches, our studies and approach will assist other researchers working on stress response.
Collapse
Affiliation(s)
- Kay Anantanawat
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Wei Xu
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
6
|
Apirajkamol N(B, James B, Gordon KHJ, Walsh TK, McGaughran A. Oxidative stress delays development and alters gene expression in the agricultural pest moth, Helicoverpa armigera. Ecol Evol 2020; 10:5680-5693. [PMID: 32607183 PMCID: PMC7319138 DOI: 10.1002/ece3.6308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Stress is a widespread phenomenon that all organisms must endure. Common in nature is oxidative stress, which can interrupt cell homeostasis to cause cell damage and may be derived from respiration or from environmental exposure through diet. As a result of the routine exposure from respiration, many organisms can mitigate the effects of oxidative stress, but less is known about responses to oxidative stress from other sources. Helicoverpa armigera is a major agricultural pest moth that causes significant damage to crops worldwide. Here, we examined the effects of oxidative stress on H. armigera by chronically exposing individuals to paraquat-a free radical producer-and measuring changes in development (weight, developmental rate, lifespan), and gene expression. We found that oxidative stress strongly affected development in H. armigera, with stressed samples spending more time as caterpillars than control samples (>24 vs. ~15 days, respectively) and therefore living longer overall. We found 1,618 up- and 761 down-regulated genes, respectively, in stressed versus control samples. In the up-regulated gene set, was an over-representation of biological processes related to cuticle and chitin development, glycine metabolism, and oxidation-reduction. Oxidative stress clearly impacts physiology and biochemistry in H. armigera and the interesting finding of an extended lifespan in stressed individuals could demonstrate hormesis, the phenomenon whereby toxic compounds can actually be beneficial at low doses. Collectively, our findings provide new insights into physiological and gene expression responses to oxidative stress in invertebrates.
Collapse
Affiliation(s)
- Nonthakorn (Beatrice) Apirajkamol
- Division of Ecology and EvolutionAustralian National UniversityCanberraACTAustralia
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Bill James
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Karl H. J. Gordon
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Tom K. Walsh
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
- Adjunct FellowMacquarie UniversitySydneyNSWAustralia
| | - Angela McGaughran
- Division of Ecology and EvolutionAustralian National UniversityCanberraACTAustralia
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| |
Collapse
|
7
|
Willi J, Küpfer P, Evéquoz D, Fernandez G, Katz A, Leumann C, Polacek N. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Res 2019; 46:1945-1957. [PMID: 29309687 PMCID: PMC5829716 DOI: 10.1093/nar/gkx1308] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation.
Collapse
Affiliation(s)
- Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Pascal Küpfer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Guillermo Fernandez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Christian Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
8
|
Stenotrophomonas maltophilia Differential Gene Expression in Synthetic Cystic Fibrosis Sputum Reveals Shared and Cystic Fibrosis Strain-Specific Responses to the Sputum Environment. J Bacteriol 2019; 201:JB.00074-19. [PMID: 31109991 DOI: 10.1128/jb.00074-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can infect the lungs of people with cystic fibrosis (CF). The highly viscous mucus in the CF lung, expectorated as sputum, serves as the primary nutrient source for microbes colonizing this site and induces virulence-associated phenotypes and gene expression in several CF pathogens. Here, we characterized the transcriptional responses of three S. maltophilia strains during exposure to synthetic CF sputum medium (SCFM2) to gain insight into how this organism interacts with the host in the CF lung. These efforts led to the identification of 881 transcripts differentially expressed by all three strains, many of which reflect the metabolic pathways used by S. maltophilia in sputum, as well as altered stress responses. The latter correlated with increased resistance to peroxide exposure after pregrowth in SCFM2 for two of the strains. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates to that of the acute infection strain, S. maltophilia K279a, allowing us to identify CF isolate-specific signatures in differential gene expression. The expression of genes from the accessory genomes was also differentially altered in response to SCFM2. Finally, a number of biofilm-associated genes were differentially induced in SCFM2, particularly in K279a, which corresponded to increased aggregation and biofilm formation in this strain relative to both CF strains. Collectively, this work details the response of S. maltophilia to an environment that mimics important aspects of the CF lung, identifying potential survival strategies and metabolic pathways used by S. maltophilia during infections.IMPORTANCE Stenotrophomonas maltophilia is an important infecting bacterium in the airways of people with cystic fibrosis (CF). However, compared to the other CF pathogens, S. maltophilia has been relatively understudied. The significance of our research is to provide insight into the global transcriptomic changes of S. maltophilia in response to a medium that was designed to mimic important aspects of the CF lung. This study elucidates the overall metabolic changes that occur when S. maltophilia encounters the CF lung and generates a road map of candidate genes to test using in vitro and in vivo models of CF.
Collapse
|
9
|
Dual Gene Expression Analysis Identifies Factors Associated with Staphylococcus aureus Virulence in Diabetic Mice. Infect Immun 2019; 87:IAI.00163-19. [PMID: 30833333 DOI: 10.1128/iai.00163-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen of the skin. The global burden of diabetes is high, with S. aureus being a major complication of diabetic wound infections. We investigated how the diabetic environment influences S. aureus skin infection and observed an increased susceptibility to infection in mouse models of both type I and type II diabetes. A dual gene expression approach was taken to investigate transcriptional alterations in both the host and bacterium after infection. While analysis of the host response revealed only minor changes between infected control and diabetic mice, we observed that S. aureus isolated from diabetic mice had significant increases in the levels of genes associated with translation and posttranslational modification and chaperones and reductions in the levels of genes associated with amino acid transport and metabolism. One family of genes upregulated in S. aureus isolated from diabetic lesions encoded the Clp proteases, associated with the misfolded protein response. The Clp proteases were found to be partially glucose regulated as well as influencing the hemolytic activity of S. aureus Strains lacking the Clp proteases ClpX, ClpC, and ClpP were significantly attenuated in our animal model of skin infection, with significant reductions observed in dermonecrosis and bacterial burden. In particular, mutations in clpP and clpX were significantly attenuated and remained attenuated in both normal and diabetic mice. Our data suggest that the diabetic environment also causes changes to occur in invading pathogens, and one of these virulence determinants is the Clp protease system.
Collapse
|
10
|
Golnar AJ, Langevin S, Panella NA, Solberg OD, Reisen WK, Komar N. Flanders hapavirus in western North America. Arch Virol 2018; 163:3351-3356. [PMID: 30159683 PMCID: PMC7083209 DOI: 10.1007/s00705-018-4003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/04/2018] [Indexed: 10/28/2022]
Abstract
Flanders virus (FLAV; family Rhabdoviridae) is a mosquito-borne hapavirus with no known pathology that is frequently isolated during arbovirus surveillance programs. Here, we document the presence of FLAV in Culex tarsalis mosquitoes and a Canada goose (Branta canadensis) collected in western North America, outside of the currently recognized range of FLAV. Until now, FLAV-like viruses detected in the western United States were assumed to be Hart Park virus (HPV, family Rhabdoviridae), a closely related congener. A re-examination of archived viral isolates revealed that FLAV was circulating in California as early as 1963. FLAV also was isolated in Nebraska, Colorado, South Dakota, North Dakota, and Saskatchewan, Canada. Phylogenetic analysis of the U1 pseudogene for 117 taxa and eight nuclear genes for 15 taxa demonstrated no distinct clustering between western FLAV isolates. Assuming the range of FLAV has been expanding west, these results indicate that FLAV likely spread west following multiple invasion events. However, it remains to be determined if the detection of FLAV in western North America is due to expansion or is a result of enhanced arbovirus surveillance or diagnostic techniques. Currently, the impact of FLAV infection remains unknown.
Collapse
Affiliation(s)
- Andrew J Golnar
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843, USA.
| | - Stan Langevin
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Nicholas A Panella
- Division of Vector-Borne Diseases, Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Owen D Solberg
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - William K Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Nicholas Komar
- Division of Vector-Borne Diseases, Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| |
Collapse
|
11
|
Miller PR, Taylor RM, Tran BQ, Boyd G, Glaros T, Chavez VH, Krishnakumar R, Sinha A, Poorey K, Williams KP, Branda SS, Baca JT, Polsky R. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun Biol 2018; 1:173. [PMID: 30374463 PMCID: PMC6197253 DOI: 10.1038/s42003-018-0170-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
Dermal interstitial fluid (ISF) is an underutilized information-rich biofluid potentially useful in health status monitoring applications whose contents remain challenging to characterize. Here, we present a facile microneedle approach for dermal ISF extraction with minimal pain and no blistering for human subjects and rats. Extracted ISF volumes were sufficient for determining transcriptome, and proteome signatures. We noted similar profiles in ISF, serum, and plasma samples, suggesting that ISF can be a proxy for direct blood sampling. Dynamic changes in RNA-seq were recorded in ISF from induced hypoxia conditions. Finally, we report the first isolation and characterization, to our knowledge, of exosomes from dermal ISF. The ISF exosome concentration is 12-13 times more enriched when compared to plasma and serum and represents a previously unexplored biofluid for exosome isolation. This minimally invasive extraction approach can enable mechanistic studies of ISF and demonstrates the potential of ISF for real-time health monitoring applications.
Collapse
Affiliation(s)
- Philip R Miller
- Nano and Micro Sensors, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Robert M Taylor
- Department of Emergency Medicine, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bao Quoc Tran
- Excet Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Gabrielle Boyd
- Excet Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Trevor Glaros
- Research and Technology Directorate, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Edgewood, MD, 21010, USA
| | - Victor H Chavez
- Nano and Micro Sensors, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Raga Krishnakumar
- Systems Biology, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Anupama Sinha
- Systems Biology, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Kunal Poorey
- Systems Biology, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Kelly P Williams
- Systems Biology, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Steven S Branda
- Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Justin T Baca
- Department of Emergency Medicine, The University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Ronen Polsky
- Nano and Micro Sensors, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
| |
Collapse
|
12
|
Luczkowiak J, Matamoros T, Menéndez-Arias L. Template-primer binding affinity and RNase H cleavage specificity contribute to the strand transfer efficiency of HIV-1 reverse transcriptase. J Biol Chem 2018; 293:13351-13363. [PMID: 29991591 PMCID: PMC6120193 DOI: 10.1074/jbc.ra118.004324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/29/2018] [Indexed: 01/31/2023] Open
Abstract
During reverse transcription of the HIV-1 genome, two strand-transfer events occur. Both events rely on the RNase H cleavage activity of reverse transcriptases (RTs) and template homology. Using a panel of mutants of HIV-1BH10 (group M/subtype B) and HIV-1ESP49 (group O) RTs and in vitro assays, we demonstrate that there is a strong correlation between RT minus-strand transfer efficiency and template-primer binding affinity. The highest strand transfer efficiencies were obtained with HIV-1ESP49 RT mutants containing the substitutions K358R/A359G/S360A, alone or in combination with V148I or T355A/Q357M. These HIV-1ESP49 RT mutants had been previously engineered to increase their DNA polymerase activity at high temperatures. Now, we found that RTs containing RNase H-inactivating mutations (D443N or E478Q) were devoid of strand transfer activity, whereas enzymes containing F61A or L92P had very low strand transfer activity. The strand transfer defect produced by L92P was attributed to a loss of template-primer binding affinity and, more specifically, to the higher dissociation rate constants (koff) shown by RTs bearing this substitution. Although L92P also deleteriously affected the RT's nontemplated nucleotide addition activity, neither nontemplated nucleotide addition activity nor the RT's clamp activities contributed to increased template switching when all tested mutant and WT RTs were considered. Interestingly, our results also revealed an association between efficient strand transfer and the generation of secondary cleavages in the donor RNA, consistent with the creation of invasion sites. Exposure of the elongated DNA at these sites facilitate acceptor (RNA or DNA) binding and promote template switching.
Collapse
Affiliation(s)
- Joanna Luczkowiak
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Tania Matamoros
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis Menéndez-Arias
- From the Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Pinatel E, Peano C. RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction. Methods Mol Biol 2018; 1716:239-265. [PMID: 29222757 DOI: 10.1007/978-1-4939-7528-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is a strict interplay between metabolic networks and transcriptional regulation in bacteria; indeed, the transcriptome regulation, affecting the expression of large gene sets, can be used to predict the likely "on" or "off" state of metabolic genes as a function of environmental factors. Up to date, many bacterial transcriptomes have been studied by RNAseq, hundreds of experiments have been performed, and Giga bases of sequences have been produced. All this transcriptional information could potentially be integrated into metabolic networks in order to obtain a more comprehensive view of their regulation and to increase their prediction power.To get high-quality transcriptomic data, to be integrated into metabolic networks, it is paramount to clearly know how to produce highly informative RNA sequencing libraries and how to manage RNA sequencing data.In this chapter, we will get across the main steps of an RNAseq experiment: from removal of ribosomal RNAs, to strand-specific library preparation, till data analysis and integration. We will try to share our experience and know-how, to give you a precise protocol to follow, and some useful recommendations or tips and tricks to adopt in order to go straightforward toward a successful RNAseq experiment.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Italy.
| |
Collapse
|
14
|
Cieślik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nat Rev Genet 2017; 19:93-109. [PMID: 29279605 DOI: 10.1038/nrg.2017.96] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methodological breakthroughs over the past four decades have repeatedly revolutionized transcriptome profiling. Using RNA sequencing (RNA-seq), it has now become possible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples. These transcriptomes provide a link between cellular phenotypes and their molecular underpinnings, such as mutations. In the context of cancer, this link represents an opportunity to dissect the complexity and heterogeneity of tumours and to discover new biomarkers or therapeutic strategies. Here, we review the rationale, methodology and translational impact of transcriptome profiling in cancer.
Collapse
Affiliation(s)
- Marcin Cieślik
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan.,Comprehensive Cancer Center, University of Michigan.,Department of Urology, University of Michigan.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
De Novo RNA Sequencing and Transcriptome Analysis of Monascus purpureus and Analysis of Key Genes Involved in Monacolin K Biosynthesis. PLoS One 2017; 12:e0170149. [PMID: 28114365 PMCID: PMC5256959 DOI: 10.1371/journal.pone.0170149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/29/2016] [Indexed: 12/25/2022] Open
Abstract
Monascus purpureus is an important medicinal and edible microbial resource. To facilitate biological, biochemical, and molecular research on medicinal components of M. purpureus, we investigated the M. purpureus transcriptome by RNA sequencing (RNA-seq). An RNA-seq library was created using RNA extracted from a mixed sample of M. purpureus expressing different levels of monacolin K output. In total 29,713 unigenes were assembled from more than 60 million high-quality short reads. A BLAST search revealed hits for 21,331 unigenes in at least one of the protein or nucleotide databases used in this study. The 22,365 unigenes were categorized into 48 functional groups based on Gene Ontology classification. Owing to the economic and medicinal importance of M. purpureus, most studies on this organism have focused on the pharmacological activity of chemical components and the molecular function of genes involved in their biogenesis. In this study, we performed quantitative real-time PCR to detect the expression of genes related to monacolin K (mokA-mokI) at different phases (2, 5, 8, and 12 days) of M. purpureus M1 and M1-36. Our study found that mokF modulates monacolin K biogenesis in M. purpureus. Nine genes were suggested to be associated with the monacolin K biosynthesis. Studies on these genes could provide useful information on secondary metabolic processes in M. purpureus. These results indicate a detailed resource through genetic engineering of monacolin K biosynthesis in M. purpureus and related species.
Collapse
|
16
|
Bent ZW, Poorey K, LaBauve AE, Hamblin R, Williams KP, Meagher RJ. A Rapid Spin Column-Based Method to Enrich Pathogen Transcripts from Eukaryotic Host Cells Prior to Sequencing. PLoS One 2016; 11:e0168788. [PMID: 28002481 PMCID: PMC5176299 DOI: 10.1371/journal.pone.0168788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023] Open
Abstract
When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich for pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ~400-fold, and allowed the recovery of transcripts from ~2000–3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.
Collapse
Affiliation(s)
- Zachary W. Bent
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| | - Kunal Poorey
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Annette E. LaBauve
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Hamblin
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Kelly P. Williams
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Robert J. Meagher
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| |
Collapse
|
17
|
Abstract
Genomic sequences are described from five novel viruses and divergent strains of Brejeira and Guaico Culex viruses from mosquitoes collected in Pantanal, Brazil, in 2010.
Collapse
|
18
|
Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27198714 DOI: 10.1002/wrna.1364] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Deep sequencing has been revolutionizing biology and medicine in recent years, providing single base-level precision for our understanding of nucleic acid sequences in high throughput fashion. Sequencing of RNA, or RNA-Seq, is now a common method to analyze gene expression and to uncover novel RNA species. Aspects of RNA biogenesis and metabolism can be interrogated with specialized methods for cDNA library preparation. In this study, we review current RNA-Seq methods for general analysis of gene expression and several specific applications, including isoform and gene fusion detection, digital gene expression profiling, targeted sequencing and single-cell analysis. In addition, we discuss approaches to examine aspects of RNA in the cell, technical challenges of existing RNA-Seq methods, and future directions. WIREs RNA 2017, 8:e1364. doi: 10.1002/wrna.1364 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | | | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
19
|
Hudson CM, Kirton E, Hutchinson MI, Redfern JL, Simmons B, Ackerman E, Singh S, Williams KP, Natvig DO, Powell AJ. Lignin‐modifying processes in the rhizosphere of arid land grasses. Environ Microbiol 2015; 17:4965-78. [DOI: 10.1111/1462-2920.13020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | - Blake Simmons
- Sandia National Laboratories Livermore CA USA
- Joint BioEnergy Institute Emeryville CA USA
| | - Eric Ackerman
- Computational Simulation Sandia National Laboratories Albuquerque NM USA
| | - Seema Singh
- Sandia National Laboratories Livermore CA USA
- Joint BioEnergy Institute Emeryville CA USA
| | | | - Donald O. Natvig
- Department of Biology University of New Mexico Albuquerque NM USA
| | - Amy J. Powell
- Computational Simulation Sandia National Laboratories Albuquerque NM USA
| |
Collapse
|
20
|
Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Majem B, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 2015; 4:26533. [PMID: 26320937 PMCID: PMC4553263 DOI: 10.3402/jev.v4.26533] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/17/2015] [Accepted: 05/03/2015] [Indexed: 01/14/2023] Open
Abstract
Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
Collapse
Affiliation(s)
- Louise C Laurent
- Division of Maternal Fetal Medicine, Department of Reproductive Medicine, University of California San Diego, San Diego, CA, USA.,Sanford Consortium for Regenerative Medicine, San Diego, CA, USA;
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University, School of Medicine, New Orleans, LA, USA
| | | | | | - Leonora Balaj
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra Breakefield
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Carlson
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Bob S Carter
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Blanca Majem
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Emanuele Cocucci
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kirsty Danielson
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amanda Courtright
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Jane Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - David Galas
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Roopali Gandhi
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Yong Kim
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Madhu Lal-Nag
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Clara D Laurent
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Trevor Leonardo
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ivana Malenica
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parham Nejad
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic Florida, Jacksonville, FL, USA.,Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Robert L Raffai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Veteran's Affairs, San Francisco, CA, USA
| | - Renee Rubio
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Jie Sun
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kahraman Tanriverdi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kasey Vickers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoyu Wang
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Wong
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Irene K Yan
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Stephen Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Cieslik M, Chugh R, Wu YM, Wu M, Brennan C, Lonigro R, Su F, Wang R, Siddiqui J, Mehra R, Cao X, Lucas D, Chinnaiyan AM, Robinson D. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res 2015; 25:1372-81. [PMID: 26253700 PMCID: PMC4561495 DOI: 10.1101/gr.189621.115] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022]
Abstract
RNA-seq by poly(A) selection is currently the most common protocol for whole transcriptome sequencing as it provides a broad, detailed, and accurate view of the RNA landscape. Unfortunately, the utility of poly(A) libraries is greatly limited when the input RNA is degraded, which is the norm for research tissues and clinical samples, especially when specimens are formalin-fixed. To facilitate the use of RNA sequencing beyond cell lines and in the clinical setting, we developed an exome-capture transcriptome protocol with greatly improved performance on degraded RNA. Capture transcriptome libraries enable measuring absolute and differential gene expression, calling genetic variants, and detecting gene fusions. Through validation against gold-standard poly(A) and Ribo-Zero libraries from intact RNA, we show that capture RNA-seq provides accurate and unbiased estimates of RNA abundance, uniform transcript coverage, and broad dynamic range. Unlike poly(A) selection and Ribo-Zero depletion, capture libraries retain these qualities regardless of RNA quality and provide excellent data from clinical specimens including formalin-fixed paraffin-embedded (FFPE) blocks. Systematic improvements across key applications of RNA-seq are shown on a cohort of prostate cancer patients and a set of clinical FFPE samples. Further, we demonstrate the utility of capture RNA-seq libraries in a patient with a highly malignant solitary fibrous tumor (SFT) enrolled in our clinical sequencing program called MI-ONCOSEQ. Capture transcriptome profiling from FFPE revealed two oncogenic fusions: the pathognomonic NAB2-STAT6 inversion and a therapeutically actionable BRAF fusion, which may drive this specific cancer's aggressive phenotype.
Collapse
Affiliation(s)
- Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rashmi Chugh
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ming Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Christine Brennan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert Lonigro
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - David Lucas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Dan Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
22
|
Peng Z, Yuan C, Zellmer L, Liu S, Xu N, Liao DJ. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers. J Cancer 2015; 6:555-67. [PMID: 26000048 PMCID: PMC4439942 DOI: 10.7150/jca.11997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.
Collapse
Affiliation(s)
- Zhiyu Peng
- 1. Beijing Genomics Institute at Shenzhen, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P. R. China
| | - Chengfu Yuan
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- 3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P. R. China
| | - D Joshua Liao
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
23
|
Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival. Infect Immun 2015; 83:2672-85. [PMID: 25895974 DOI: 10.1128/iai.02922-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.
Collapse
|
24
|
Bartsch MS, Edwards HS, Lee D, Moseley CE, Tew KE, Renzi RF, Van de Vreugde JL, Kim H, Knight DL, Sinha A, Branda SS, Patel KD. The rotary zone thermal cycler: a low-power system enabling automated rapid PCR. PLoS One 2015; 10:e0118182. [PMID: 25826708 PMCID: PMC4380418 DOI: 10.1371/journal.pone.0118182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022] Open
Abstract
Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.
Collapse
Affiliation(s)
- Michael S. Bartsch
- Sandia National Laboratories, Livermore, CA, United States of America
- * E-mail:
| | | | - Daniel Lee
- Sandia National Laboratories, Livermore, CA, United States of America
| | | | - Karen E. Tew
- Sandia National Laboratories, Livermore, CA, United States of America
| | - Ronald F. Renzi
- Sandia National Laboratories, Livermore, CA, United States of America
| | | | - Hanyoup Kim
- Sandia National Laboratories, Livermore, CA, United States of America
| | | | - Anupama Sinha
- Sandia National Laboratories, Livermore, CA, United States of America
| | - Steven S. Branda
- Sandia National Laboratories, Livermore, CA, United States of America
| | - Kamlesh D. Patel
- Sandia National Laboratories, Livermore, CA, United States of America
| |
Collapse
|
25
|
Jebrail MJ, Renzi RF, Sinha A, Van De Vreugde J, Gondhalekar C, Ambriz C, Meagher RJ, Branda SS. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices. LAB ON A CHIP 2015; 15:151-158. [PMID: 25325619 DOI: 10.1039/c4lc00703d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4-95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. This simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.
Collapse
Affiliation(s)
- Mais J Jebrail
- Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pauvolid-Corrêa A, Solberg O, Couto-Lima D, Kenney J, Serra-Freire N, Brault A, Nogueira R, Langevin S, Komar N. Nhumirim virus, a novel flavivirus isolated from mosquitoes from the Pantanal, Brazil. Arch Virol 2015; 160:21-7. [PMID: 25252815 PMCID: PMC4785999 DOI: 10.1007/s00705-014-2219-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/01/2014] [Indexed: 11/25/2022]
Abstract
We describe the isolation of a novel flavivirus, isolated from a pool of mosquitoes identified as Culex (Culex) chidesteri collected in 2010 in the Pantanal region of west-central Brazil. The virus is herein designated Nhumirim virus (NHUV) after the name of the ranch from which the mosquito pool was collected. Flavivirus RNA was detected by real-time RT-PCR of homogenized mosquitoes and from the corresponding C6/36 culture supernatant. Based on full-genome sequencing, the virus isolate was genetically distinct from but most closely related to Barkedji virus (BJV), a newly described flavivirus from Senegal. Phylogenetic analysis demonstrated that NHUV grouped with mosquito-borne flaviviruses forming a clade with BJV. This clade may be genetically intermediate between the Culex-borne flaviviruses amplified by birds and the insect-only flaviviruses.
Collapse
Affiliation(s)
- Alex Pauvolid-Corrêa
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ministério da Saúde, Rio de Janeiro, RJ, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Heyer EE, Ozadam H, Ricci EP, Cenik C, Moore MJ. An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments. Nucleic Acids Res 2014; 43:e2. [PMID: 25505164 PMCID: PMC4288154 DOI: 10.1093/nar/gku1235] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Our approach works across a wide range of input amounts (400 pg to 200 ng), is easy to follow and produces a library in 2–3 days at relatively low reagent cost, all while giving the user complete control over every step. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved.
Collapse
Affiliation(s)
- Erin E Heyer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hakan Ozadam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Emiliano P Ricci
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Can Cenik
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
28
|
Kenney JL, Solberg OD, Langevin SA, Brault AC. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol 2014; 95:2796-2808. [PMID: 25146007 DOI: 10.1099/vir.0.068031-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated 'Nhumirim virus'; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus's capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a 10(6)-fold and 10(4)-fold reduction in peak titres, respectively.
Collapse
Affiliation(s)
- Joan L Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | | | | | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
29
|
Turchinovich A, Surowy H, Serva A, Zapatka M, Lichter P, Burwinkel B. Capture and Amplification by Tailing and Switching (CATS). An ultrasensitive ligation-independent method for generation of DNA libraries for deep sequencing from picogram amounts of DNA and RNA. RNA Biol 2014; 11:817-28. [PMID: 24922482 PMCID: PMC4179956 DOI: 10.4161/rna.29304] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Massive parallel sequencing (MPS) technologies have paved the way into new areas of research including individualized medicine. However, sequencing of trace amounts of DNA or RNA still remains a major challenge, especially for degraded nucleic acids like circulating DNA. This together with high cost and time requirements impedes many important applications of MPS in medicine and fundamental science. We have established a fast, cheap and highly efficient protocol called ‘Capture and Amplification by Tailing and Switching’ (CATS) to directly generate ready-to-sequence libraries for MPS from nanogram and picogram quantities of both DNA and RNA. Furthermore, those DNA libraries are strand-specific, can be prepared within 2–3 h and do not require preliminary sample amplification steps. To exemplify the capacity of the technique, we have generated and sequenced DNA libraries from hundred-picogram amounts of circulating nucleic acids isolated from human blood plasma, one nanogram of mRNA-enriched total RNA from cultured cells and few nanograms of bisulfite-converted DNA. The approach for DNA library preparation from minimal and fragmented input described here will find broad application in diverse research areas such as translational medicine including therapy monitoring, prediction, prognosis and early detection of various human disorders and will permit high-throughput DNA sequencing from previously inaccessible material such as minute forensic and archeological samples.
Collapse
Affiliation(s)
- Andrey Turchinovich
- Molecular Epidemiology; German Cancer Research Center DKFZ; Heidelberg, Germany; Molecular Biology of Breast Cancer; University Women's Clinic; Heidelberg, Germany
| | - Harald Surowy
- Molecular Epidemiology; German Cancer Research Center DKFZ; Heidelberg, Germany; Molecular Biology of Breast Cancer; University Women's Clinic; Heidelberg, Germany
| | - Andrius Serva
- Molecular Genetics; German Cancer Research Center DKFZ; Heidelberg, Germany
| | - Marc Zapatka
- Molecular Genetics; German Cancer Research Center DKFZ; Heidelberg, Germany
| | - Peter Lichter
- Molecular Genetics; German Cancer Research Center DKFZ; Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology; German Cancer Research Center DKFZ; Heidelberg, Germany; Molecular Biology of Breast Cancer; University Women's Clinic; Heidelberg, Germany
| |
Collapse
|
30
|
Knief C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. FRONTIERS IN PLANT SCIENCE 2014; 5:216. [PMID: 24904612 PMCID: PMC4033234 DOI: 10.3389/fpls.2014.00216] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation—Molecular Biology of the Rhizosphere, Faculty of Agriculture, University of BonnBonn, Germany
| |
Collapse
|
31
|
Jebrail MJ, Sinha A, Vellucci S, Renzi RF, Ambriz C, Gondhalekar C, Schoeniger JS, Patel KD, Branda SS. World-to-Digital-Microfluidic Interface Enabling Extraction and Purification of RNA from Human Whole Blood. Anal Chem 2014; 86:3856-62. [DOI: 10.1021/ac404085p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mais J. Jebrail
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Anupama Sinha
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Samantha Vellucci
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Ronald F. Renzi
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Cesar Ambriz
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Carmen Gondhalekar
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Joseph S. Schoeniger
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Kamlesh D. Patel
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| | - Steven S. Branda
- Departments of Biotechnology and Bioengineering, ‡Systems Biology, and §Advanced Systems Engineering and
Deployment, Sandia National Laboratories, Livermore, California, United States
| |
Collapse
|
32
|
Singh G, Ricci EP, Moore MJ. RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods 2014; 65:320-32. [PMID: 24096052 PMCID: PMC3943816 DOI: 10.1016/j.ymeth.2013.09.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022] Open
Abstract
Development of high-throughput approaches to map the RNA interaction sites of individual RNA binding proteins (RBPs) transcriptome-wide is rapidly transforming our understanding of post-transcriptional gene regulatory mechanisms. Here we describe a ribonucleoprotein (RNP) footprinting approach we recently developed for identifying occupancy sites of both individual RBPs and multi-subunit RNP complexes. RNA:protein immunoprecipitation in tandem (RIPiT) yields highly specific RNA footprints of cellular RNPs isolated via two sequential purifications; the resulting RNA footprints can then be identified by high-throughput sequencing (Seq). RIPiT-Seq is broadly applicable to all RBPs regardless of their RNA binding mode and thus provides a means to map the RNA binding sites of RBPs with poor inherent ultraviolet (UV) crosslinkability. Further, among current high-throughput approaches, RIPiT has the unique capacity to differentiate binding sites of RNPs with overlapping protein composition. It is therefore particularly suited for studying dynamic RNP assemblages whose composition evolves as gene expression proceeds.
Collapse
Affiliation(s)
- Guramrit Singh
- Howard Hughes Medical Institute, RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Emiliano P Ricci
- Howard Hughes Medical Institute, RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Melissa J Moore
- Howard Hughes Medical Institute, RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
33
|
Bent ZW, Brazel DM, Tran-Gyamfi MB, Hamblin RY, VanderNoot VA, Branda SS. Use of a capture-based pathogen transcript enrichment strategy for RNA-Seq analysis of the Francisella tularensis LVS transcriptome during infection of murine macrophages. PLoS One 2013; 8:e77834. [PMID: 24155975 PMCID: PMC3796476 DOI: 10.1371/journal.pone.0077834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Francisella tularensis is a zoonotic intracellular pathogen that is capable of causing potentially fatal human infections. Like all successful bacterial pathogens, F. tularensis rapidly responds to changes in its environment during infection of host cells, and upon encountering different microenvironments within those cells. This ability to appropriately respond to the challenges of infection requires rapid and global shifts in gene expression patterns. In this study, we use a novel pathogen transcript enrichment strategy and whole transcriptome sequencing (RNA-Seq) to perform a detailed characterization of the rapid and global shifts in F. tularensis LVS gene expression during infection of murine macrophages. We performed differential gene expression analysis on all bacterial genes at two key stages of infection: phagosomal escape, and cytosolic replication. By comparing the F. tularensis transcriptome at these two stages of infection to that of the bacteria grown in culture, we were able to identify sets of genes that are differentially expressed over the course of infection. This analysis revealed the temporally dynamic expression of a number of known and putative transcriptional regulators and virulence factors, providing insight into their role during infection. In addition, we identified several F. tularensis genes that are significantly up-regulated during infection but had not been previously identified as virulence factors. These unknown genes may make attractive therapeutic or vaccine targets.
Collapse
Affiliation(s)
- Zachary W. Bent
- Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| | - David M. Brazel
- Sandia National Laboratories, Livermore, California, United States of America
| | - Mary B. Tran-Gyamfi
- Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Y. Hamblin
- Sandia National Laboratories, Livermore, California, United States of America
| | | | - Steven S. Branda
- Sandia National Laboratories, Livermore, California, United States of America
| |
Collapse
|