1
|
Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci 2024; 18:1392688. [PMID: 38841098 PMCID: PMC11150811 DOI: 10.3389/fnins.2024.1392688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Saudi Biobank Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Azman AA, Siok-Fong C, Rajab NF, Md Zin RR, Ahmad Daud NN, Mohamad Hanif EA. The potential roles of lncRNA TINCR in triple negative breast cancer. Mol Biol Rep 2023; 50:7909-7917. [PMID: 37442895 DOI: 10.1007/s11033-023-08661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive intrinsic breast cancer subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and low levels of human epidermal growth factor receptor 2 (HER2). The complex nature of TNBC has resulted in little therapeutic progress for the past several decades. The standard of care remains the FEC cocktail (5-fluorouracil (5-FU), epirubicin and cyclophosphamide). However, early relapse and metastasis in TNBC patients persists in causing dismal clinical outcomes. Due to complex heterogeneity features of TNBC, identifying the biomarker associated to the chemoresistance remains a challenge. The emergence of the long non-coding RNA (lncRNA) as a potential signature may have proven to be a new deterrent to diagnostic and treatment options. Previous studies unveiled the associations of lncRNA in the development of TNBCs whereby the aggressiveness and response to therapies may be associated by the abrogation of the molecular mechanism lncRNA. Terminal differentiation induced ncRNA (TINCR) is a lncRNA which have been linked with many cancers including TNBC. The expression and behavior of TINCR may exert unfavorable outcome in TNBCs. Nevertheless, the underlying molecular mechanism of TINCR in driving chemoresistance in TNBC is not well understood. This review will highlight the potential molecular mechanisms of TINCR in TNBC chemoresistance and how it can serve as a future potential prognostic and therapeutic target for a better treatment intervention.
Collapse
Affiliation(s)
- Afreena Afiqah Azman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chin Siok-Fong
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Aging & Wellness, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Reena Rahayu Md Zin
- Faculty of Medicine (Pathology Department), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Nadiah Ahmad Daud
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Khazaal A, Zandavi SM, Smolnikov A, Fatima S, Vafaee F. Pan-Cancer Analysis Reveals Functional Similarity of Three lncRNAs across Multiple Tumors. Int J Mol Sci 2023; 24:ijms24054796. [PMID: 36902227 PMCID: PMC10003012 DOI: 10.3390/ijms24054796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key regulators in many biological processes. The dysregulation of lncRNA expression has been associated with many diseases, including cancer. Mounting evidence suggests lncRNAs to be involved in cancer initiation, progression, and metastasis. Thus, understanding the functional implications of lncRNAs in tumorigenesis can aid in developing novel biomarkers and therapeutic targets. Rich cancer datasets, documenting genomic and transcriptomic alterations together with advancement in bioinformatics tools, have presented an opportunity to perform pan-cancer analyses across different cancer types. This study is aimed at conducting a pan-cancer analysis of lncRNAs by performing differential expression and functional analyses between tumor and non-neoplastic adjacent samples across eight cancer types. Among dysregulated lncRNAs, seven were shared across all cancer types. We focused on three lncRNAs, found to be consistently dysregulated among tumors. It has been observed that these three lncRNAs of interest are interacting with a wide range of genes across different tissues, yet enriching substantially similar biological processes, found to be implicated in cancer progression and proliferation.
Collapse
Affiliation(s)
- Abir Khazaal
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
| | - Seid Miad Zandavi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute of Applied Medical Research, Sydney, NSW 2170, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence:
| |
Collapse
|
4
|
Tierno D, Grassi G, Zanconati F, Bortul M, Scaggiante B. An Overview of Circulating Cell-Free Nucleic Acids in Diagnosis and Prognosis of Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:1799. [PMID: 36675313 PMCID: PMC9864244 DOI: 10.3390/ijms24021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer due to its molecular heterogeneity and poor clinical outcomes. Analysis of circulating cell-free tumor nucleic acids (ctNAs) can improve our understanding of TNBC and provide efficient and non-invasive clinical biomarkers that may be representative of tumor heterogeneity. In this review, we summarize the potential of ctNAs to aid TNBC diagnosis and prognosis. For example, tumor fraction of circulating cell-free DNA (TFx) may be useful for molecular prognosis of TNBC: high TFx levels after neoadjuvant chemotherapy have been associated with shorter progression-free survival and relapse-free survival. Mutations and copy number variations of TP53 and PIK3CA/AKT genes in plasma may be important markers of TNBC onset, progression, metastasis, and for clinical follow-up. In contrast, the expression profile of circulating cell-free tumor non-coding RNAs (ctncRNAs) can be predictive of molecular subtypes of breast cancer and thus aid in the identification of TBNC. Finally, dysregulation of some circulating cell-free tumor miRNAs (miR17, miR19a, miR19b, miR25, miR93, miR105, miR199a) may have a predictive value for chemotherapy resistance. In conclusion, a growing number of efforts are highlighting the potential of ctNAs for future clinical applications in the diagnosis, prognosis, and follow-up of TNBC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| | - Marina Bortul
- Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Sun LB, Ding AP, Han Y, Song MQ, Shan TD. The lncRNA Tincr Regulates the Abnormal Differentiation of Intestinal Epithelial Stem Cells in the Diabetic State Via the miR-668-3p/Klf3 Axis. Curr Stem Cell Res Ther 2023; 18:105-114. [PMID: 35362387 DOI: 10.2174/1574888x17666220331124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is among the most common chronic diseases, and diabetic enteropathy (DE), which is a complication caused by DM, is a serious health condition. Long noncoding RNAs (lncRNAs) are regulators of DE progression. OBJECTIVE However, the mechanisms of action of multiple lncRNAs involved in DE remain poorly understood. METHODS Reverse transcription-quantitative PCR (RT-qPCR) and in situ hybridization were used to analyze terminal differentiation-induced lncRNA (Tincr) expression in intestinal epithelial cells (IECs) in the DM state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays were used to identify the genes targeted by Tincr. The role of miR-668-3p was then explored by up- and down-regulating its expression in vitro and in vivo. RESULTS In this study, we observed that the level of lncRNA Tincr was increased in IECs in the DM state. More importantly, Tincr was associated with abnormal intestinal epithelial stem cell (IESC) differentiation in DM. Our mechanistic study demonstrated that Tincr is a major marker of Lgr5+ stem cells in DM. In addition, we investigated whether Tincr directly targets miR-668-3p and whether miR-668-3p targets Klf3. Our findings showed that Tincr sponged miR-668-3p, which attenuated abnormal IESC differentiation in DM by regulating Klf3 expression. CONCLUSION This study presents evidence of an essential role for Tincr in IESC differentiation in DM.
Collapse
Affiliation(s)
- Li-Bin Sun
- Department of Oncology and The Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ai-Ping Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Ming-Quan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| |
Collapse
|
6
|
Ning X, Zhao J, He F, Yuan Y, Li B, Ruan J. lncRNA NUTM2A-AS1 Targets the SRSF1/Trim37 Signaling Pathway to Promote the Proliferation and Invasion of Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3299336. [PMID: 35959349 PMCID: PMC9363211 DOI: 10.1155/2022/3299336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Method Using the tumor database (TCGA) and analysis platform (GEPIA), NUTM2A-AS1 expression in breast cancer cases was compared with the normal cases. In addition, Kaplan-Meier curve of overall survival according to the various levels of NUTM2A-AS1 was assessed. Then, we constructed a knockdown plasmid of NUTM2A-AS1 and successfully reduced the expression function of NUTM2A-AS1 in BC cells. Results We found NUTM2A-AS1 could promote the malignant phenotype of proliferation and invasion of BC. In terms of mechanism research, NUTM2A-AS1 was mainly located in the cytoplasm of BC cells, which indicated that NUTM2A-AS1 may achieve its function through transcriptional or posttranscriptional regulation pathways. While knocking down NUTM2A-AS1, we detected several major molecules of the trim family. The results showed that only trim37 mRNA was significantly affected, and protein detection also showed that knockdown NUTM2A-AS1 expression could reduce the expression of trim37. The results of RIP experiments suggested that NUTM2A-AS1 played a key role by combining with SRSF1 and affecting the interaction between SRSF1 and trim37 mRNA. The stability test of mRNA also confirmed that during the knockdown of NUTM2A-AS1, the mRNA stability of trim37 decreased significantly, but this downward trend could be reversed by overexpressed SRSF1. The above results suggested that NUTM2A-AS1 could maintain the stability and expression of trim37 through SRSF1 pathway. The results of rescue experiment showed the overexpression of trim37, while knocking down NUTM2A-AS1 could reverse the decrease of proliferation and invasiveness of BC cells induced by NUTM2A-AS1 knockdown. Conclusion Therefore, trim37 is seen as a necessary target for NUTM2A-AS1 to exert the biological function of BC. Additionally, NUTM2A-AS1 is to regulate the malignant phenotype of BC through NUTM2A-AS1/trim37 pathway.
Collapse
Affiliation(s)
- Xiaojie Ning
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Jianguo Zhao
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Fan He
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Yuan Yuan
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Bin Li
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Jian Ruan
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| |
Collapse
|
7
|
Sur S, Ray RB. Emerging role of lncRNA ELDR in development and cancer. FEBS J 2022; 289:3011-3023. [PMID: 33860640 PMCID: PMC11827507 DOI: 10.1111/febs.15876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Whole-genome sequencing and transcriptome analysis revealed more than 90% of the human genome transcribes noncoding RNAs including lncRNAs. From the beginning of the 21st century, lncRNAs have gained widespread attention as a new layer of regulation in biological processes. lncRNAs are > 200 nucleotides in size, transcribed by RNA polymerase II, and share many similarities with mRNAs. lncRNA interacts with DNA, RNA, protein, and miRNAs, thereby regulating many biological processes. In this review, we have focused mainly on LINC01156 [also known as the EGFR long non-coding downstream RNA (ELDR) or Fabl] and its biological importance. ELDR is a newly identified lncRNA and first reported in a mouse model, but it has a human homolog. The human ELDR gene is closely localized downstream of epidermal growth factor receptor (EGFR) gene at chromosome 7 on the opposite strand. ELDR is highly expressed in neuronal stem cells and associated with neuronal differentiation and mouse brain development. ELDR is upregulated in head and neck cancer, suggesting its role as an oncogene and its importance in prognosis and therapy. Publicly available RNA-seq data further support its oncogenic potential in different cancers. Here, we summarize all the aspects of ELDR in development and cancer, highlighting its future perspectives in the context of mechanism.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, MO, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, MO, USA
- Cancer Center, Saint Louis University, MO, USA
| |
Collapse
|
8
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
9
|
Mei J, Lin W, Li S, Tang Y, Ye Z, Lu L, Wen Y, Kan A, Zou J, Yu C, Wei W, Guo R. Long noncoding RNA TINCR facilitates hepatocellular carcinoma progression and dampens chemosensitivity to oxaliplatin by regulating the miR-195-3p/ST6GAL1/NF-κB pathway. J Exp Clin Cancer Res 2022; 41:5. [PMID: 34980201 PMCID: PMC8722212 DOI: 10.1186/s13046-021-02197-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNAs (lncRNA) have an essential role in progression and chemoresistance of hepatocellular carcinoma (HCC). In-depth study of specific regulatory mechanisms is of great value in providing potential therapeutic targets. The present study aimed to explore the regulatory functions and mechanisms of lncRNA TINCR in HCC progression and oxaliplatin response. Methods The expression of TINCR in HCC tissues and cell lines was detected by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation, migration, invasion, and chemosensitivity were evaluated by cell counting kit 8 (CCK8), colony formation, transwell, and apoptosis assays. Luciferase reporter assays and RNA pulldown were used to identify the interaction between TINCR and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) via miR-195-3p. The corresponding functions were verified in the complementation test and in vivo animal experiment. Results TINCR was upregulated in HCC and associated with poor patient prognosis. Silencing TINCR inhibited HCC proliferation, migration, invasion, and oxaliplatin resistance while overexpressing TINCR showed opposite above-mentioned functions. Mechanistically, TINCR acted as a competing endogenous (ceRNA) to sponge miR-195-3p, relieving its repression on ST6GAL1, and activated nuclear factor kappa B (NF-κB) signaling. The mouse xenograft experiment further verified that knockdown TINCR attenuated tumor progression and oxaliplatin resistance in vivo. Conclusions Our finding indicated that there existed a TINCR/miR-195-3p/ST6GAL1/NF-κB signaling regulatory axis that regulated tumor progression and oxaliplatin resistance, which might be exploited for anticancer therapy in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02197-x.
Collapse
Affiliation(s)
- Jie Mei
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenping Lin
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaohua Li
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhao Tang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiwei Ye
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lianghe Lu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhua Wen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anna Kan
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jingwen Zou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chengyou Yu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Rongping Guo
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Almasi S, Jasmin BJ. The multifunctional RNA-binding protein Staufen1: an emerging regulator of oncogenesis through its various roles in key cellular events. Cell Mol Life Sci 2021; 78:7145-7160. [PMID: 34633481 PMCID: PMC8629789 DOI: 10.1007/s00018-021-03965-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
The double-stranded multifunctional RNA-binding protein (dsRBP) Staufen was initially discovered in insects as a regulator of mRNA localization. Later, its mammalian orthologs have been described in different organisms, including humans. Two human orthologues of Staufen, named Staufen1 (STAU1) and Staufen2 (STAU2), share some structural and functional similarities. However, given their different spatio-temporal expression patterns, each of these orthologues plays distinct roles in cells. In the current review, we focus on the role of STAU1 in cell functions and cancer development. Since its discovery, STAU1 has mostly been studied for its involvement in various aspects of RNA metabolism. Given the pivotal role of RNA metabolism within cells, recent studies have explored the mechanistic impact of STAU1 in a wide variety of cell functions ranging from cell growth to cell death, as well as in various disease states. In particular, there has been increasing attention on the role of STAU1 in neuromuscular disorders, neurodegeneration, and cancer. Here, we provide an overview of the current knowledge on the role of STAU1 in RNA metabolism and cell functions. We also highlight the link between STAU1-mediated control of cellular functions and cancer development, progression, and treatment. Hence, our review emphasizes the potential of STAU1 as a novel biomarker and therapeutic target for cancer diagnosis and treatment, respectively.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
11
|
Müller L, Hatzfeld M, Keil R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front Cell Dev Biol 2021; 9:745670. [PMID: 34631720 PMCID: PMC8495202 DOI: 10.3389/fcell.2021.745670] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state. Their constituent proteins are highly regulated by posttranslational modifications that control their function in the desmosome itself and in addition regulate a multitude of desmosome-independent functions. This review will summarize our current knowledge how signaling pathways that control epithelial shape, polarity and function regulate desmosomes and how desmosomal proteins transduce these signals to modulate cell behavior.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Bonnet-Magnaval F, DesGroseillers L. The Staufen1-dependent cell cycle regulon or how a misregulated RNA-binding protein leads to cancer. Biol Rev Camb Philos Soc 2021; 96:2192-2208. [PMID: 34018319 DOI: 10.1111/brv.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
13
|
Rahim AB, Lim HK, Tan CYR, Jia L, Leo VI, Uemura T, Hardman-Smart J, Common JEA, Lim TC, Bellanger S, Paus R, Igarashi K, Yang H, Vardy LA. The Polyamine Regulator AMD1 Upregulates Spermine Levels to Drive Epidermal Differentiation. J Invest Dermatol 2021; 141:2178-2188.e6. [PMID: 33984347 DOI: 10.1016/j.jid.2021.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.
Collapse
Affiliation(s)
- Anisa B Rahim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Hui Kheng Lim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Christina Yan Ru Tan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Li Jia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vonny Ivon Leo
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Takeshi Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Jonathan Hardman-Smart
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - John E A Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive & Aesthetic Surgery, Department of Surgery, National University Hospital, National University of Singapore, Singapore, Singapore
| | - Sophie Bellanger
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Ralf Paus
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Leah A Vardy
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| |
Collapse
|
14
|
Lu D, Di S, Zhuo S, Zhou L, Bai R, Ma T, Zou Z, Chen C, Sun M, Tang J, Zhang Z. The long noncoding RNA TINCR promotes breast cancer cell proliferation and migration by regulating OAS1. Cell Death Discov 2021; 7:41. [PMID: 33649294 PMCID: PMC7921111 DOI: 10.1038/s41420-021-00419-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women around the world. It is urgently needed to identify genes associated with tumorigenesis and prognosis, as well as to elucidate the molecular mechanisms underlying the oncogenic process. Long noncoding RNAs (lncRNAs) are widely involved in the pathological and physiological processes of organisms and play an important role as oncogenes or tumor suppressor genes, affecting the development and progression of tumors. In this study, we focused on terminal differentiation-induced non-coding RNA (TINCR) (GeneID:257000) and explore its role in the pathogenesis of breast cancer. The results showed that TINCR was increased in breast cancer tissue, and high expression level of TINCR was associated with older age, larger tumor size, and advanced TNM stage. High level of TINCR can promote proliferation and metastasis of breast cancer cells, while downregulation of TINCR induces G1-G0 arrest and apoptosis. Mechanismly, TINCR can bind to staufen1 (STAU1) and then guide STAU1 (GeneID:6780) to bind to OAS1 mRNA (NM_016816.4) to mediate its stability. Thus low level of OAS1(GeneID:4938) can lead to cell proliferation and migration. This result elucidates a new mechanism for TINCR in breast cancer development and provides a survival indicator and potential therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Die Lu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Shihao Di
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Shuaishuai Zhuo
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Linyan Zhou
- Department of Pathology, Changzhou Jintan District People's Hospital, Jintan Affiliated Hospital of Jiangsu University, 16 Nanmen Road, Jintan, Jiangsu Province, 213200, China
| | - Rumeng Bai
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Tianshi Ma
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.,Department of Pathology, Zhejiang Provincial People's Hospital & People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| | - Zigui Zou
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.,Department of Pathology, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215000, China
| | - Chunni Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
15
|
Omote N, Sakamoto K, Li Q, Schupp JC, Adams T, Ahangari F, Chioccioli M, DeIuliis G, Hashimoto N, Hasegawa Y, Kaminski N. Long noncoding RNA TINCR is a novel regulator of human bronchial epithelial cell differentiation state. Physiol Rep 2021; 9:e14727. [PMID: 33527707 PMCID: PMC7851438 DOI: 10.14814/phy2.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/29/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Long-noncoding RNAs (lncRNAs) have numerous biological functions controlling cell differentiation and tissue development. The knowledge about the role of lncRNAs in human lungs remains limited. Here we found the regulatory role of the terminal differentiation-induced lncRNA (TINCR) in bronchial cell differentiation. RNA in situ hybridization revealed that TINCR was mainly expressed in bronchial epithelial cells in normal human lung. We performed RNA sequencing analysis of normal human bronchial epithelial cells (NHBECs) with or without TINCR inhibition and found the differential expression of 603 genes, which were enriched for cell adhesion and migration, wound healing, extracellular matrix organization, tissue development and differentiation. To investigate the role of TINCR in the differentiation of NHBECs, we employed air-liquid interface culture and 3D organoid formation assay. TINCR was upregulated during differentiation, loss of TINCR significantly induced an early basal-like cell phenotype (TP63) and a ciliated cell differentiation (FOXJ1) in late phase and TINCR overexpression suppressed basal cell phenotype and the differentiation toward to ciliated cells. Critical regulators of differentiation such as SOX2 and NOTCH genes (NOTCH1, HES1, and JAG1) were significantly upregulated by TINCR inhibition and downregulated by TINCR overexpression. RNA immunoprecipitation assay revealed that TINCR was required for the direct bindings of Staufen1 protein to SOX2, HES1, and JAG1 mRNA. Loss of Staufen1 induced TP63, SOX2, NOTCH1, HES1, and JAG1 mRNA expressions, which TINCR overexpression suppressed partially. In conclusion, TINCR is a novel regular of bronchial cell differentiation, affecting downstream regulators such as SOX2 and NOTCH genes, potentially in coordination with Staufen1.
Collapse
Affiliation(s)
- Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Koji Sakamoto
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Qin Li
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Taylor Adams
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Giuseppe DeIuliis
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Naozumi Hashimoto
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshinori Hasegawa
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
- Department of Respiratory MedicineNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine SectionDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
16
|
Xu C, Liu M, Jia D, Tao T, Hao D. lncRNA TINCR SNPs and Expression Levels Are Associated with Bladder Cancer Susceptibility. Genet Test Mol Biomarkers 2020; 25:31-41. [PMID: 33372851 DOI: 10.1089/gtmb.2020.0178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: The long-chain noncoding RNA (lncRNA) TINCR has been associated with the development and progression of bladder cancer. In this study, we analyzed the correlation between lncRNA TINCR single-nucleotide polymorphisms (SNPs) and bladder cancer susceptibility risk. Methods: The genotypes of the lncRNA TINCR rs2288947 and rs8113645 loci in 125 surgically treated bladder cancer patients and 125 controls were analyzed by Sanger sequencing. A dual-luciferase reporter gene assay was used to detect the binding of the microRNAs miR-1247-3p and miR-30c-2-3p with the lncRNA TINCR. The receiver operating characteristic curve was used to analyze the value of expression levels of the lncRNA TINCR and the microRNAs miR-1247-3p and miR-30c-2-3p in the diagnosis of bladder cancer. Results: The bladder cancer susceptibility risk of the rs2288947 G allele carriers was 2.32 times higher compared with the A allele carriers (95% confidence interval [CI]: 1.58-3.42, p < 0.01); The bladder cancer susceptibility risk of the rs8113645 T allele carriers was 0.33 times compared with the C allele carriers (95% CI: 0.19-0.55, p < 0.01). lncRNA TINCR was more highly expressed in bladder cancer tissues than controls (p < 0.01). The lncRNA TINCR rs2288947 A>G variation was associated with increased expression of lncRNA TINCR in bladder cancer tissues, and the rs8113645 C > T was associated with decreased expression. The expression levels of the lncRNA TINCR in cancer and paracancerous tissues showed a significant negative correlation with that of miR-1247-3p and miR-30c-2-3p (r = -0.89, -0.78, -0.81, and -0.66, all p < 0.01). The dual-luciferase reporter gene assay results indicate that the lncRNA TINCR rs2288947 G allele is the target of miR-1247-3p, and the rs8113645 C allele is the target of miR-30c-2-3p. Conclusion: The lncRNA TINCR rs2288947 A>G is associated with increased bladder cancer risk and rs8113645 C > T is associated with decreased susceptibility. These two SNP loci are associated with lncRNA TINCR expression levels; however, further studies are needed for validation.
Collapse
Affiliation(s)
- Chuanbing Xu
- Department of Urology, Zibo Central Hospital, Zibo, China
| | - Min Liu
- Department of Urology, Zibo Central Hospital, Zibo, China
| | - Dongsheng Jia
- Department of Urology, Zibo Central Hospital, Zibo, China
| | - Tingting Tao
- Department of Urology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongfang Hao
- Department of Urology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
17
|
Wang X, Li S, Xiao H, Deng X. Serum lncRNA TINCR Serve as a Novel Biomarker for Predicting the Prognosis in Triple-Negative Breast Cancer. Technol Cancer Res Treat 2020; 19:1533033820965574. [PMID: 33084530 PMCID: PMC7785999 DOI: 10.1177/1533033820965574] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Tissue differentiation-inducing non-protein coding RNA (TINCR) has been shown to play a crucial role in pathogenesis of various types of human cancer including breast cancer (BC). The purpose of this study was to determine the potential prognostic value of serum lncRNA TINCR in BC. Methods: Quantitative reverse transcription PCR (qRT-PCR) was performed to detect serum lncRNA TINCR levels in 72 triple-negative BC (TNBC) patients, 105 non-TNBC patients, 60 benign breast disease patients and 86 healthy subjects. Results: The results showed that serum lncRNA TINCR level was significantly increased in BC, especially in TNBC. High circulating lncRNA TINCR was significantly correlated with worse clinicopathological features and clinical outcome of TNBC. Multivariate analysis revealed that serum lncRNA TINCR was an independent prognostic factor for overall survival of TNBC. However, little association was found between serum lncRNA TINCR and the prognosis of non-TNBC. Conclusions: Taken together, our findings demonstrate that serum lncRNA TINCR might be a useful novel and non-invasive biomarker for the prognosis prediction of TNBC.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Xiaojie Wang and Shuang Li contributed equally to this work
| | - Shuang Li
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Xiaojie Wang and Shuang Li contributed equally to this work
| | - Huiyu Xiao
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoqin Deng
- Department of Radiotherapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
18
|
Zheng ZQ, Li ZX, Guan JL, Liu X, Li JY, Chen Y, Lin L, Kou J, Lv JW, Zhang LL, Zhou GQ, Liu RQ, Chen F, He XJ, Li YQ, Li F, Xu SS, Ma J, Liu N, Sun Y. Long Noncoding RNA TINCR-Mediated Regulation of Acetyl-CoA Metabolism Promotes Nasopharyngeal Carcinoma Progression and Chemoresistance. Cancer Res 2020; 80:5174-5188. [PMID: 33067266 DOI: 10.1158/0008-5472.can-19-3626] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 12/09/2022]
Abstract
Frontier evidence suggests that dysregulation of long noncoding RNAs (lncRNA) is ubiquitous in all human tumors, indicating that lncRNAs might have essential roles in tumorigenesis. Therefore, an in-depth study of the roles of lncRNA in nasopharyngeal carcinoma (NPC) carcinogenesis might be helpful to provide novel therapeutic targets. Here we report that lncRNA TINCR was significantly upregulated in NPC and was associated positively with poor survival. Silencing TINCR inhibited NPC progression and cisplatin resistance. Mechanistically, TINCR bound ACLY and protected it from ubiquitin degradation to maintain total cellular acetyl-CoA levels. Accumulation of cellular acetyl-CoA promoted de novo lipid biosynthesis and histone H3K27 acetylation, which ultimately regulated the peptidyl arginine deiminase 1 (PADI1)-MAPK-MMP2/9 pathway. In addition, insulin-like growth factor 2 mRNA-binding protein 3 interacted with TINCR and slowed its decay, which partially accounted for TINCR upregulation in NPC. These findings demonstrate that TINCR acts as a crucial driver of NPC progression and chemoresistance and highlights the newly identified TINCR-ACLY-PADI1-MAPK-MMP2/9 axis as a potential therapeutic target in NPC. SIGNIFICANCE: TINCR-mediated regulation of a PADI1-MAPK-MMP2/9 signaling pathway plays a critical role in NPC progression and chemoresistance, marking TINCR as a viable therapeutic target in this disease.
Collapse
Affiliation(s)
- Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Li Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Kou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Wei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lu-Lu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rui-Qi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - FoPing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Jun He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Feng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Si-Si Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
19
|
Zhong Y, Hu Z, Wu J, Dai F, Lee F, Xu Y. STAU1 selectively regulates the expression of inflammatory and immune response genes and alternative splicing of the nerve growth factor receptor signaling pathway. Oncol Rep 2020; 44:1863-1874. [PMID: 33000283 PMCID: PMC7551455 DOI: 10.3892/or.2020.7769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Double‑stranded RNA‑binding protein Staufen homolog 1 (STAU1) is a highly conserved multifunctional double‑stranded RNA‑binding protein, and is a key factor in neuronal differentiation. RNA sequencing was used to analyze the overall transcriptional levels of the upregulated cells by STAU1 and control cells, and select alternative splicing (AS). It was determined that the high expression of STAU1 led to changes in the expression levels of a variety of inflammatory and immune response genes, including IFIT2, IFIT3, OASL, and CCL2. Furthermore, STAU1 was revealed to exert a significant regulatory effect on the AS of genes related to the 'nerve growth factor receptor signaling pathway'. This is of significant importance for neuronal survival, differentiation, growth, post‑damage repair, and regeneration. In conclusion, overexpression of STAU1 was associated with immune response and regulated AS of pathways related to neuronal growth and repair. In the present study, the whole transcriptome of STAU1 expression was first analyzed, which laid a foundation for further understanding the key functions of STAU1.
Collapse
Affiliation(s)
- Yi Zhong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhengchao Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jingcui Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fan Dai
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Feng Lee
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| | - Yangping Xu
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
20
|
Hassine S, Bonnet-Magnaval F, Benoit Bouvrette LP, Doran B, Ghram M, Bouthillette M, Lecuyer E, DesGroseillers L. Staufen1 localizes to the mitotic spindle and controls the localization of RNA populations to the spindle. J Cell Sci 2020; 133:jcs247155. [PMID: 32576666 DOI: 10.1242/jcs.247155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Staufen1 (STAU1) is an RNA-binding protein involved in the post-transcriptional regulation of mRNAs. We report that a large fraction of STAU1 localizes to the mitotic spindle in colorectal cancer HCT116 cells and in non-transformed hTERT-RPE1 cells. Spindle-associated STAU1 partly co-localizes with ribosomes and active sites of translation. We mapped the molecular determinant required for STAU1-spindle association within the first 88 N-terminal amino acids, a domain that is not required for RNA binding. Interestingly, transcriptomic analysis of purified mitotic spindles revealed that 1054 mRNAs and the precursor ribosomal RNA (pre-rRNA), as well as the long non-coding RNAs and small nucleolar RNAs involved in ribonucleoprotein assembly and processing, are enriched on spindles compared with cell extracts. STAU1 knockout causes displacement of the pre-rRNA and of 154 mRNAs coding for proteins involved in actin cytoskeleton organization and cell growth, highlighting a role for STAU1 in mRNA trafficking to spindle. These data demonstrate that STAU1 controls the localization of subpopulations of RNAs during mitosis and suggests a novel role of STAU1 in pre-rRNA maintenance during mitosis, ribogenesis and/or nucleoli reassembly.
Collapse
Affiliation(s)
- Sami Hassine
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Louis Philip Benoit Bouvrette
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Bellastrid Doran
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mathieu Bouthillette
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| | - Eric Lecuyer
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
21
|
Ren Z, Liu J, Li J, Yao L. Decreased lncRNA, TINCR, promotes growth of colorectal carcinoma through upregulating microRNA-31. Aging (Albany NY) 2020; 12:14219-14231. [PMID: 32681722 PMCID: PMC7425505 DOI: 10.18632/aging.103436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Abnormal expression in terminal differentiation-induced noncoding RNA (TINCR), a long non-coding RNA (lncRNA), has been reported in different human cancers, including colorectal carcinoma (CRC). Moreover, the molecular mechanisms that underlie the effects of TINCR on CRC remain unclear. Here, by a set of bioinformatics studies, we found that microRNA-31 (miR-31), the oncogenic miRNA that robustly upregulates in CRC, was a sponge miRNA for TINCR. TINCR and miR-31 levels were inversely correlated in both CRC tissues and CRC cell lines. Luciferase reporter assay revealed a specific binding site on TINCR for miR-31. Suppression of TINCR promoted CRC cell growth and migration in vitro, while overexpression of TINCR inhibited CRC cell growth and migration in vitro. TINCR depletion increased tumor xenograft growth in vivo, while TINCR overexpression inhibited it. Together, our study suggests that re-expressing TINCR may suppress invasive outgrowth of CRC through miR-31.
Collapse
Affiliation(s)
- Zhong Ren
- Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jingzheng Liu
- Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Li
- Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liqing Yao
- Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Guo F, Zhu X, Zhao Q, Huang Q. miR‑589‑3p sponged by the lncRNA TINCR inhibits the proliferation, migration and invasion and promotes the apoptosis of breast cancer cells by suppressing the Akt pathway via IGF1R. Int J Mol Med 2020; 46:989-1002. [PMID: 32705168 PMCID: PMC7388824 DOI: 10.3892/ijmm.2020.4666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
The long non-coding (lnc)RNA named tissue differentiation inducing non-protein coding RNA (TINCR) is a tumor marker that has not been studied in breast cancer. The present study aimed to investigate the TINCR-targeting micro (mi)RNAs and the regulatory mechanisms of TINCR in breast cancer. Following prediction by TargetScan and confirmation by dual-luciferase reporter assay, TINCR was demonstrated to be a target gene for miR-589-3p. The expression of TINCR and miR-589-3p in breast cancer and adjacent tissues was detected by reverse transcription-quantitative (RT-q)PCR, and the correlation between TINCR and miR-589-3p expression was determined by using Spearman correlation analysis. The 5-years survival was analyzed in patients with breast cancer according to TINCR expression (high or low). The effects of TINCR and miR-589-3p on the proliferation, apoptosis, migratory and invasive abilities of some breast cancer cell lines were detected by MTT assay, flow cytometry, wound healing assay and Transwell assay. The target gene of miR-589-3p was predicted and verified by TargetScan and dual-luciferase reporter assay, and the mechanism of miR-589-3p involvement in breast cancer cells was explored by overexpression or downregulation of miR-589-3p in breast cancer cells. RT-qPCR and western blotting were used to determine the expression of the insulin-like growth factor 1 receptor (IGF1R)/AKT pathway-related genes. The results demonstrated that TINCR expression level was negatively correlated with miR-589-3p expression level in breast cancer tissues and that patients with high expression of TINCR presented with lower survival rates. In addition, TINCR overexpression in cancer cells inhibited miR-589-3p expression, and cell transfection with miR-589-3p mimic partially reversed the effect of TINCR overexpression on the promotion of cancer cell proliferation, migration and invasion, and on the inhibition of cancer cell apoptosis. Furthermore, IGF1R, which is a target gene of miR-589-3p, increased cancer cell proliferation, migration and invasion and inhibited cancer cell apoptosis; however, these effects were partially reversed by miR-589-3p mimic. Furthermore, the results demonstrated that miR-589-3p mimic could downregulate the protein expression of IGF1R and p-AKT. In addition, TINCR overexpression downregulated miR-589-3p expression level. miR-589-3p partially reversed the effects of TINCR overexpression on cancer cell proliferation, migration and invasion, and inhibited cancer cell apoptosis by inhibiting the IGF1R-Akt pathway. The results from the present study demonstrated that TINCR may sponge miR-589-3p in order to inhibit IGF1R-Akt pathway activation in breast cancer cells, promoting therefore cancer cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Fangdong Guo
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiaoyu Zhu
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Qingquan Zhao
- Department of Breast and Thyroid Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Qirong Huang
- Department of Breast and Thyroid Surgery, Chengdu Dongli Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
23
|
Overexpression of lncRNA TINCR is associated with high-grade, invasive, and recurring tumors, and facilitates proliferation in vitro and in vivo of urothelial carcinoma of the bladder. Urol Oncol 2020; 38:738.e1-738.e8. [PMID: 32622721 DOI: 10.1016/j.urolonc.2019.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aberrant expression of long noncoding RNAs (lncRNAs) plays roles in cancer development. In this work, we measured the expression of lncRNA terminal differentiation-induced non-coding RNA (TINCR) in urothelial carcinoma of the bladder (UCB), determined its impact on the proliferation of UCB in vitro and in vivo and identified its possible targets. METHODS The expression levels of genes were measured by Real-Time quantitative Polymerase Chain Reaction (qPCR). Cell proliferation, cell motility, and cell apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing assay, and ELISA, respectively. Tumor growth in vivo was determined by xenograft formation assay in nude mice. The predicted binding site between TINCR and hsa-miR-125b was confirmed by dual luciferase reporter assay. RESULTS The expression levels of TINCR were higher in cancerous tissues than that in paired noncancerous tissues of UCB. Higher expression levels of TINCR were positively associated with high-grade, invasive, and recurring tumors. Depletion of TINCR retarded proliferation, decreased motility, increased apoptosis in UCB cells, and markedly reduced tumor growth in xenograft nude mice. The predicted binding site between TINCR and hsa-miR-125b was functional. TINCR downregulated hsa-miR-125b in UCB cells. Hsa-miR-125b mimic reversed the proliferation caused by TINCR up-expression in UCB cells. CONCLUSIONS Up-regulation of TINCR may act as an unfavorable indicator for the diseasing status of UCB. TINCR facilitates bladder cancer proliferation in vitro and in vivo. Hsa-miR-125b is a target for TINCR in UCB.
Collapse
|
24
|
Ghram M, Bonnet-Magnaval F, Hotea DI, Doran B, Ly S, DesGroseillers L. Staufen1 is Essential for Cell-Cycle Transitions and Cell Proliferation Via the Control of E2F1 Expression. J Mol Biol 2020; 432:3881-3897. [DOI: 10.1016/j.jmb.2020.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
|
25
|
Abd-Elmawla MA, Hassan M, Elsabagh YA, Alnaggar ARLR, Senousy MA. Deregulation of long noncoding RNAs ANCR, TINCR, HOTTIP and SPRY4-IT1 in plasma of systemic sclerosis patients: SPRY4-IT1 as a novel biomarker of scleroderma and its subtypes. Cytokine 2020; 133:155124. [PMID: 32442909 DOI: 10.1016/j.cyto.2020.155124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 01/03/2023]
Abstract
Systemic sclerosis or systemic scleroderma (SSc) is an inflammatory autoimmune disease whose pathogenesis remains ambiguous; however, epigenetics, including long noncoding RNAs (lncRNAs) is an emerging paradigm. To date, the expression, role and clinical significance of most lncRNAs in SSc remain unelucidated. Herein, we investigated the plasma expression profiles of lncRNAs; ANCR, TINCR, HOTTIP, and SPRY4-IT1, which were linked to skin biology, in SSc patients and its subtypes, their potential as diagnostic tools and their correlations with autoantibodies and disease manifestations. Sixty-three SSc patients and thirty-five healthy volunteers were recruited. Autoantibody profile (anti-Scl-70, anti-centromere, anti-RNA polymeraseIII, anti-ribonucleoprotein, antinuclear, and anti-phospholipid antibodies) was determined. lncRNAs analysis was conducted using RT-qPCR. Plasma TINCR, HOTTIP, and SPRY4-IT1 upregulation and ANCR downregulation were observed in SSc patients compared with controls. SPRY4-IT1 was superior in SSc diagnosis in ROC analysis and predicted its risk in multivariate logistic analysis. Plasma SPRT4-IT1 was higher in diffuse than limited SSc. SPRY4-IT1 and HOTTIP were positively correlated with modified Rodnan skin score while ANCR showed a negative correlation only in limited SSc. ANCR and TINCR were positively correlated with disease duration and ESR, respectively. ANCR and SPRY4-IT1 were positively correlated with pulmonary hypertension. HOTTIP was positively correlated with antinuclear antibody. SPRY4-IT1 was positively correlated with HOTTIP in the whole group, and with TINCR only in diffuse SSc. We introduce plasma SPRY4-IT1, HOTTIP, ANCR and TINCR as novel candidate biomarkers for SSc, with SPRY4-IT1 could predict SSc diagnosis and discriminate its subtypes. Our findings widen the epigenetic landscape of SSc and provide surrogates for future predictive studies.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yumn A Elsabagh
- Department of Rheumatology and Clinical Immunology, Internal Medicine, Kasr Al Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alshaimaa Rezk L R Alnaggar
- Department of Rheumatology and Clinical Immunology, Internal Medicine, Kasr Al Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
26
|
Li M, Pan M, You C, Zhao F, Wu D, Guo M, Xu H, Shi F, Zheng D, Dou J. MiR-7 reduces the BCSC subset by inhibiting XIST to modulate the miR-92b/Slug/ESA axis and inhibit tumor growth. Breast Cancer Res 2020; 22:26. [PMID: 32143670 PMCID: PMC7060548 DOI: 10.1186/s13058-020-01264-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) are typically seed cells of breast tumor that initiate and maintain tumor growth. MiR-7, as a cancer inhibitor, decreases the BCSC subset and inhibits tumor progression through mechanisms that remain unknown. METHODS We examined miR-7 expression in breast cancer and developed a BCSC-driven xenograft mouse model, to evaluate the effects of miR-7 overexpression on the decrease of the BCSC subset in vitro and in vivo. In addition, we determined how miR-7 decreased the BCSC subset by using the ALDEFLUOR, lentivirus infection, dual-luciferase reporter, and chromatin immunoprecipitation-PCR assays. RESULTS MiR-7 was expressed at low levels in breast cancer tissues compared with normal tissues, and overexpression of miR-7 directly inhibited lncRNA XIST, which mediates the transcriptional silencing of genes on the X chromosome, and reduced epithelium-specific antigen (ESA) expression by increasing miR-92b and inhibiting slug. Moreover, miR-7 suppressed CD44 and ESA by directly inhibiting the NF-κB subunit RELA and slug in breast cancer cell lines and in BCSC-driven xenografts, which confirmed the antitumor activity in mice injected with miR-7 agomir or stably infected with lenti-miR-7. CONCLUSIONS The findings from this study uncover the molecular mechanisms by which miR-7 inhibits XIST, modulates the miR-92b/Slug/ESA axis, and decreases the RELA and CD44 expression, resulting in a reduced BCSC subset and breast cancer growth inhibition. These findings suggest a potentially targeted treatment approach to breast cancer.
Collapse
Affiliation(s)
- Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87 Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87 Ding Jiaqiao Rd., Nanjing, 210009, China.,Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chengzhong You
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87 Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Di Wu
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87 Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87 Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Danfeng Zheng
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87 Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87 Ding Jiaqiao Rd., Nanjing, 210009, China.
| |
Collapse
|
27
|
Visentin S, Cannone G, Doutch J, Harris G, Gleghorn ML, Clifton L, Smith BO, Spagnolo L. A multipronged approach to understanding the form and function of hStaufen protein. RNA (NEW YORK, N.Y.) 2020; 26:265-277. [PMID: 31852734 PMCID: PMC7025507 DOI: 10.1261/rna.072595.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 05/09/2023]
Abstract
Staufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length hStaufen155, showing that its domains are arranged as beads-on-a-string connected by flexible linkers. In analogy with other nucleic acid-binding proteins, this could underpin Stau1 functional plasticity.
Collapse
Affiliation(s)
- Silvia Visentin
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Giuseppe Cannone
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Michael L Gleghorn
- School of Chemistry and Materials Science, College of Science, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Brian O Smith
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Laura Spagnolo
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
28
|
PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis 2020; 11:81. [PMID: 32015336 PMCID: PMC6997171 DOI: 10.1038/s41419-020-2267-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Glioblastoma is the most common and malignant form of primary central nervous tumor in adults. Long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in modulating gene expression and regulating human tumor’s malignant behaviors. In this study, we confirmed that lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) was downregulated in glioblastoma tissues and cells, interacted and stabilized by polyadenylate-binding protein cytoplasmic 1 (PABPC1). Overexpression of BDNF-AS inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of glioblastoma cells. In the in vivo study, PABPC1 overexpression combined with BDNF-AS overexpression produced the smallest tumor and the longest survival. Moreover, BDNF-AS could elicit retina and anterior neural fold homeobox 2 (RAX2) mRNA decay through STAU1-mediated decay (SMD), and thereby regulated the malignant behaviors glioblastoma cells. Knockdown of RAX2 produced tumor-suppressive function in glioblastoma cells and increased the expression of discs large homolog 5 (DLG5), leading to the activation of the Hippo pathway. In general, this study elucidated that the PABPC1-BDNF-AS-RAX2-DLG5 mechanism may contribute to the anticancer potential of glioma cells and may provide potential therapeutic targets for human glioma.
Collapse
|
29
|
Emerging Roles of Long Non-Coding RNAs as Drivers of Brain Evolution. Cells 2019; 8:cells8111399. [PMID: 31698782 PMCID: PMC6912723 DOI: 10.3390/cells8111399] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 01/09/2023] Open
Abstract
Mammalian genomes encode tens of thousands of long-noncoding RNAs (lncRNAs), which are capable of interactions with DNA, RNA and protein molecules, thereby enabling a variety of transcriptional and post-transcriptional regulatory activities. Strikingly, about 40% of lncRNAs are expressed specifically in the brain with precisely regulated temporal and spatial expression patterns. In stark contrast to the highly conserved repertoire of protein-coding genes, thousands of lncRNAs have newly appeared during primate nervous system evolution with hundreds of human-specific lncRNAs. Their evolvable nature and the myriad of potential functions make lncRNAs ideal candidates for drivers of human brain evolution. The human brain displays the largest relative volume of any animal species and the most remarkable cognitive abilities. In addition to brain size, structural reorganization and adaptive changes represent crucial hallmarks of human brain evolution. lncRNAs are increasingly reported to be involved in neurodevelopmental processes suggested to underlie human brain evolution, including proliferation, neurite outgrowth and synaptogenesis, as well as in neuroplasticity. Hence, evolutionary human brain adaptations are proposed to be essentially driven by lncRNAs, which will be discussed in this review.
Collapse
|
30
|
Meng L, Lin H, Zhang J, Lin N, Sun Z, Gao F, Luo H, Ni T, Luo W, Chi J, Guo H. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J Mol Cell Cardiol 2019; 136:15-26. [PMID: 31445005 DOI: 10.1016/j.yjmcc.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/09/2023]
Abstract
AIMS Doxorubicin (DOX), a widely used powerful chemotherapeutic component for cancer treatment, can give rise to severe cardiotoxicity that limits its clinical use. Pyroptosis is characterized by proinflammation and has been defined as a new type of programmed cell death in recent years. However, whether the DOX-induced cardiotoxicity is related to pyroptosis, and if so, which genes are involved in this process is largely unknown. In this study, we sought to identify the effect of DOX on cardiomyocyte pyroptosis and further reveal the underlying regulatory mechanism. METHODS AND RESULTS In vitro and in vivo experiments showed that DOX treatment induced cardiomyocyte pyroptosis as evidenced by increased cell death and upregulated expression levels of NLR family pyrin domain containing 3 (NLRP3), caspase-3, IL-1β, IL-18 and GMDSD-N. Inhibition of NLRP3 rescued the DOX-induced pyroptosis. qRT-PCR showed that TINCR lncRNA was upregulated by DOX treatment and knockdown of TINCR reversed the DOX-induced pyroptosis both in vitro and in vivo. Mechanistic investigations revealed that TINCR increased NLRP3 level via recruiting IGF2BP1 to enhance NLRP3 mRNA. And the effect of TINCR on cardiomyocyte pyroptosis was attenuated by the inhibition of NLRP3 or IGF2BP1. Finally, TINCR was not involved in DOX-induced pyroptosis in cancer cells. CONCLUSION TINCR mediates the DOX-induced cardiotoxicity and pyroptosis in an IGF2BP1-dependent manner. Therefore, TINCR may serve as a promising therapeutic target to overcome the cardiotoxicity of chemotherapy for cancer therapy.
Collapse
Affiliation(s)
- Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Na Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Zhenzhu Sun
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Wenqiang Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
31
|
Gao YW, Ma F, Xie YC, Ding MG, Luo LH, Jiang S, Rao L, Liu XL. Sp1-induced upregulation of the long noncoding RNA TINCR inhibits cell migration and invasion by regulating miR-107/miR-1286 in lung adenocarcinoma. Am J Transl Res 2019; 11:4761-4775. [PMID: 31497197 PMCID: PMC6731412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNA tissue differentiation-inducing non-protein coding (TINCR) is associated with the carcinogenesis of several cancers. However, little is known about the function and mechanism of TINCR in lung adenocarcinoma (LUAD). Here, we aimed to analyze expression of TINCR and elucidate its mechanistic involvement in the progression of LUAD. The expression of TINCR was investigated according to Gene Expression Profiling Interactive Analysis at first and then detected in 29 LUAD tissues and paired adjacent normal tissues using qRT-PCR. Results indicated that TINCR was evidently downregulated in LUAD. The association between TINCR and clinicopathological parameters was analyzed by Pearson's chi-square test, suggesting TINCR was closely correlated with TNM stage and lymph mode metastasis. Subsequently, the function role of TINCR was examined by gain- and loss-of-function studies in LUAD (A549 and NCI-H292) cells. As analyzed by the scratch wound-healing and transwell assays, results revealed that TINCR suppressed the migration and invasion of A549 and NCI-H292 cells. However, TINCR exerted no effects on the cell proliferation as determined by CCK8 assay. Furthermore, we reported that loss of Sp1 could inhibit TINCR expression. Expressions of miR-107/miR-1286 were detected by qRT-PCR assay in A549 and NCI-H292 cells after TINCR knockdown or overexpression. In addition, the direct binding ability of the predicted miR-107 or miR-1286 binding site on TINCR was validated by luciferase activity assay. Results indicated TINCR could constrain the expression of miR-107/miR-1286, and was a target of them in LUAD cells. Bioinformatics analyses showed that BTRC and RAB14 was the potential target gene of miR-107 and miR-1286, respectively. These data revealed a possible regulatory mechanism in which upregulation of TINCR induced by Sp1 could constrain the migration and invasion through regulating miR-107 or miR-1286 in LUAD cells. Conjointly, our findings provide a valuable insight into the regulatory mechanism of TINCR in LUAD, supportive to its potential of therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Ya-Wen Gao
- Department of Oncology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Yang-Chun Xie
- Department of Oncology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Meng-Ge Ding
- Department of Oncology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Li-Hua Luo
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Shun Jiang
- Department of Oncology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Le Rao
- Department of Oncology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Xian-Ling Liu
- Department of Oncology, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
32
|
Wu Y, Shao A, Wang L, Hu K, Yu C, Pan C, Zhang S. The Role of lncRNAs in the Distant Metastasis of Breast Cancer. Front Oncol 2019; 9:407. [PMID: 31214490 PMCID: PMC6555305 DOI: 10.3389/fonc.2019.00407] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) remains the most frequently diagnosed cancer worldwide. Among breast cancer patients, distant metastasis and invasion is the leading cause of BC related death. Recently, long non-coding RNAs (lncRNAs), which used to be considered a genetic byproduct (owing to their unknown biological function), have been reported to be highly implicated in the development and progression of BC. In this review, we produce a summary of the functions and mechanisms of lncRNAs implicated in the different distant metastases of BC. The functions of lncRNAs have been divided into two types: oncogenic type and tumor suppressor. Furthermore, the majority of them exert their roles through the regulation of invasion, migration, epithelial-mesenchymal transition (EMT), and the metastasis process. In the final part, we briefly addressed future research prospects of lncRNAs, especially the testing methods through which to detect lncRNAs in the clinical work, and introduced several different tools with which to detect lncRNAs more conveniently. Although lncRNA research is still in the initial stages, it is a promising prognosticator and a novel therapeutic target for BC metastasis, which requires more research in the future.
Collapse
Affiliation(s)
- Yinan Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kaimin Hu
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chi Pan
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Suzhan Zhang
- Department of Surgical Oncology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Huang W, Zhou H, Pi L, Xu Y, Fu L, Yang Y, Che D, Gu X. Association between the rs2288947 polymorphism of the lncRNA TINCR gene and the risk of recurrent miscarriage in a Southern Chinese population. J Clin Lab Anal 2019; 33:e22919. [PMID: 31124188 PMCID: PMC6642304 DOI: 10.1002/jcla.22919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/01/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Studies have shown that many genes that regulate cell migration are associated with susceptibility to recurrent miscarriage. Terminal differentiation-induced non-coding RNA (TINCR) regulates the migration and invasion of a variety of tumor cells and is associated with susceptibility to various diseases. However, whether the lncRNA TINCR polymorphism is associated with susceptibility to recurrent miscarriage is unclear. Therefore, we investigated the relationship between the rs2288947 A > G polymorphism of the lncRNA TINCR and susceptibility to recurrent abortion. We recruited 248 recurrent spontaneous abortion patients and 392 healthy control subjects from the Southern Chinese population and used the TaqMan method for genotyping. There was no evidence that this polymorphism is associated with recurrent miscarriage (AG vs AA: adjusted OR = 0.904, 95% CI = 0.647-1.264, P = 0.5552; GG and AA: adjusted OR = 0.871, 95% CI = 0.475-1.597, P = 0.6542; dominant model: AG/GG vs AA: adjusted OR = 0.898, 95% CI = 0.653-1.236, P = 0.5101; and recessive model: GG vs AA/AG: adjusted OR = 0.910, 95% CI = 0.505-1.639, P = 0.7527). The stratified analysis also showed no significant associations. This study suggests that the rs2288947 A > G polymorphism of the lncRNA TINCR may not be associated with recurrent miscarriage in a Southern Chinese population. A larger multicenter study is needed to confirm our conclusions.
Collapse
Affiliation(s)
- Wendong Huang
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - LanYan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanfang Yang
- Department of Prenatal Diagnosis, Maoming People's Hospital, Maoming, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Fico A, Fiorenzano A, Pascale E, Patriarca EJ, Minchiotti G. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci 2019; 76:1459-1471. [PMID: 30607432 PMCID: PMC6439142 DOI: 10.1007/s00018-018-3000-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
LncRNAs have recently emerged as new and fundamental transcriptional and post-transcriptional regulators acting at multiple levels of gene expression. Indeed, lncRNAs participate in a wide variety of stem cell and developmental processes, acting in cis and/or in trans in the nuclear and/or in the cytoplasmic compartments, and generating an intricate network of interactions with RNAs, enhancers, and chromatin-modifier complexes. Given the versatility of these molecules to operate in different subcellular compartments, via different modes of action and with different target specificity, the interest in this research field is rapidly growing. Here, we review recent progress in defining the functional role of lncRNAs in stem cell biology with a specific focus on the underlying mechanisms. We also discuss recent findings on a new family of evolutionary conserved lncRNAs transcribed from ultraconserved elements, which show perfect conservation between human, mouse, and rat genomes, and that are emerging as new player in this complex scenario.
Collapse
Affiliation(s)
- Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Alessandro Fiorenzano
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Emilia Pascale
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| |
Collapse
|
35
|
Chen F, Qi S, Zhang X, Wu J, yang X, Wang R. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β‑catenin pathway in oral squamous cell carcinoma. Int J Oncol 2019; 54:1183-1194. [PMID: 30720068 PMCID: PMC6411352 DOI: 10.3892/ijo.2019.4707] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
As a new group of important effector molecules involved in multiple cancer types, including breast cancer, lung cancer and oral squamous cell carcinoma, long noncoding RNAs (lncRNAs) have attracted considerable attention recently. However, the underlying cause that induces the dysregulated lncRNAs in cancer remains poorly understood. In the present study, the regulatory model of the lncRNA placenta‑specific protein 2 (PLAC2) upregulation in oral squamous cell carcinoma (OSCC) was investigated and its biological functions in OSCC malignant progression was identified. A reverse transcription‑quantitative polymerase chain reaction assay identified that PLAC2 is upregulated in OSCC cell lines and primary tissue samples. Furthermore, bioinformatic analysis followed by chromatin immunoprecipitation verified an enriched histone H3 on lysine 27 (H3K27) acetylation (H3K27ac) at the promoter region of the PLAC2 gene. Knockdown of cAMP‑response element binding protein‑binding protein (CBP) significantly reduced the enrichment level of H3K27ac, and thereby induced a decreased expression of PLAC2. Functionally, overexpression of PLAC2 promotes OSCC cell proliferation, migration and invasion, whereas knockdown of PLAC2 exerted an opposite effect. Furthermore, the Wnt/β‑catenin signaling pathway was activated by PLAC2 and mediated the PLAC2‑induced malignant progress of OSCC. In conclusion, the present results indicated that lncRNA PLAC2 is transcriptionally activated by H3K27ac modification at the promoter region in OSCC, and promotes cell growth and metastasis via activating Wnt/β‑catenin signaling pathway. Therefore, PLAC2 may serve as a promising biomarker for OSCC prognosis and therapy.
Collapse
Affiliation(s)
- Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Jinjin Wu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| | - Xi yang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072
| |
Collapse
|
36
|
Qin G, Song Y, Guo Y, Sun Y, Zeng W. LincRNA TINCR facilitates excessive proliferation and inflammation in post-burn skin fibroblasts by directly binding with SND1 protein and inducing SND1-mediated TGF-β1 expression. Biochem Biophys Res Commun 2019; 509:903-910. [DOI: 10.1016/j.bbrc.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
|
37
|
Li L, Zhuang Y, Zhao X, Li X. Long Non-coding RNA in Neuronal Development and Neurological Disorders. Front Genet 2019; 9:744. [PMID: 30728830 PMCID: PMC6351443 DOI: 10.3389/fgene.2018.00744] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts which are usually more than 200 nt in length, and which do not have the protein-coding capacity. LncRNAs can be categorized based on their generation from distinct DNA elements, or derived from specific RNA processing pathways. During the past several decades, dramatic progress has been made in understanding the regulatory functions of lncRNAs in diverse biological processes, including RNA processing and editing, cell fate determination, dosage compensation, genomic imprinting and development etc. Dysregulation of lncRNAs is involved in multiple human diseases, especially neurological disorders. In this review, we summarize the recent progress made with regards to the function of lncRNAs and associated molecular mechanisms, focusing on neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Ling Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingliang Zhuang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingsen Zhao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, Chen X, Han M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer 2019; 18:3. [PMID: 30621694 PMCID: PMC6323810 DOI: 10.1186/s12943-018-0931-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Trastuzumab resistance followed by metastasis is a major obstacle for improving the clinical outcome of patients with advanced human epidermal growth factor receptor 2-positive (HER-2+) breast cancer. While long non-coding RNAs (lncRNAs) can modulate cell behavior, the contribution of these RNAs in trastuzumab resistance and metastasis of HER-2+ breast cancer is not well known. In this study, we sought to identify the regulatory role of lncRNA in trastuzumab resistance and accompanied Epithelial-mesenchymal Transition (EMT) process in advanced HER-2+ breast cancer. METHODS Trastuzumab-resistant SKBR-3-TR and BT474-TR cell lines were established by grafting SKBR-3 and BT474 cells into mouse models and subjected to trastuzumab treatment. LncRNA microarray followed by quantitative reverse transcription PCR (qRT-PCR) was carried out to verify the differentially expressed lncRNAs. Western blotting, bioinformatics analysis, immunofluorescence assay and immunoprecipitation assays (ChIP and RIP) were performed to identify the involvement and functional interactions between H3K27 acetylation and terminal differentiation-induced non-coding RNA (TINCR) or between TINCR and its downstream genes including miR-125b, HER-2 and Snail-1. In addition, a series of in vitro and in vivo assays were performed to assess the functions of TINCR. RESULTS An increase in both, IC50 value of trastuzumab and EMT was observed in the established trastuzumab-resistant cell lines. The expression level of TINCR was significantly increased in trastuzumab-resistant cells when compared with sensitive cells. Knockdown of TINCR reversed the trastuzumab resistance and the acquired EMT in these cells. TINCR was detected in the cytoplasm of breast cancer cells and could sponge miR-125b, thereby releasing HER-2 and inducing trastuzumab resistance. In addition, Snail-1 was found to be the target gene of miR-125b and overexpression of Snail-1 could reverse the suppressed migration, invasion, and EMT caused by TINCR silencing. The upregulation of TINCR in breast cancer was attributed to the CREB-binding protein (CBP)-mediated H3K27 acetylation at the promoter region of TINCR. Clinically, HER-2+ breast cancer patients with high TINCR expression levels were associated with poor response to trastuzumab therapy and shorter survival time. CONCLUSION TINCR could promote trastuzumab resistance and the accompanied EMT process in breast cancer. Therefore, TINCR might be a potential indicator for prognosis and a therapeutic target to enhance the clinical efficacy of trastuzumab treatment.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China.
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Mulin Ye
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, 400062, China
| | - Chengyi Wu
- Department of General Surgery, The Frist Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Chen
- Department of General Surgery, The Frist Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
39
|
Abstract
SIGNIFICANCE The emerging connections between an increasing number of long noncoding RNAs (lncRNAs) and oncogenic hallmarks provide a new twist to tumor complexity. Recent Advances: In the present review, we highlight specific lncRNAs that have been studied in relation to tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to microenvironmental conditions such as hypoxia. CRITICAL ISSUES Among these transcripts are lncRNAs sufficiently divergent between mouse and human genomes that may contribute to biological differences between species. FUTURE DIRECTIONS From a translational standpoint, knowledge about primate-specific lncRNAs may help explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based systems. Antioxid. Redox Signal. 29, 922-935.
Collapse
Affiliation(s)
- Xue Wu
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Oana M Tudoran
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I. Chiricuta," Cluj-Napoca, Romania
| | - George A Calin
- 4 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, Texas.,5 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Mircea Ivan
- 1 Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
40
|
Liu Y, Wang Y, He X, Zhang S, Wang K, Wu H, Chen L. LncRNA TINCR/miR-31-5p/C/EBP-α feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Res 2018; 32:35-42. [PMID: 30172905 DOI: 10.1016/j.scr.2018.08.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
The adipogenic differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) is a critical issue in many obesity-related disorders and it can be regulated by a crucial transcription factor, CCAAT enhancer binding protein α (C/EBP-α). Apart from, the involvement of non-coding RNAs in adipogenic differentiation has also been reported. As we know, Terminal differentiation-induced ncRNA (TINCR) is required in somatic tissue differentiation. Recently, we found that TINCR could modulate adipogenic differentiation in hADSCs. As predicted by JASPAR and further confirmed by luciferase reporter gene and ChIP assays, C/EBP-α could bind to the promoter region of lncRNA TINCR to activate its expression. Further, miR-31 was confirmed as a direct target of TINCR and could be negatively regulated by TINCR via competing endogenous RNA (ceRNA) mechanism; miR-31 inhibition enhanced the adipogenic differentiation in hADSCs. More importantly, we found that miR-31 directly bound to the 3'-UTR of C/EBP-α to inhibit its expression. Taken together, in hADSCs, lncRNA TINCR, miR-31 and C/EBP-α formed a feedback loop to modulate the adipogenic differentiation process. From the perspective of lncRNA-miRNA-mRNA regulation, we provided a novel regulatory mechanism of hADSCs adipogenic differentiation.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Yiqun Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Xifan He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Hanjiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Lin Chen
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| |
Collapse
|
41
|
Szlavicz E, Olah P, Szabo K, Pagani F, Bata-Csorgo Z, Kemeny L, Szell M. Analysis of psoriasis-relevant gene expression and exon usage alterations after silencing of SR-rich splicing regulators. Exp Dermatol 2018. [DOI: 10.1111/exd.13530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eszter Szlavicz
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
| | - Peter Olah
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
- Department of Dermatology; University Hospital Düsseldorf; Düsseldorf Germany
| | - Kornélia Szabo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology; Trieste Italy
| | - Zsuzsanna Bata-Csorgo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Lajos Kemeny
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Márta Szell
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Medical Genetics; University of Szeged; Szeged Hungary
| |
Collapse
|
42
|
Agrin has a pathological role in the progression of oral cancer. Br J Cancer 2018; 118:1628-1638. [PMID: 29872149 PMCID: PMC6008410 DOI: 10.1038/s41416-018-0135-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Background The extracellular matrix modulates the hallmarks of cancer. Here we examined the role of agrin—a member of this matrix—in progression of oral squamous cell carcinoma (OSCC). Methods We evaluated the immunohistochemical expression of agrin in OSCC and dysplasias. Benign lesions were used as control. In subsequent experiments, we investigated whether the silencing of agrin interferes with tumour expansion both in vitro as well as in vivo. To gain insights into the role of agrin, we identified its protein network (interactome) using mass spectrometry-based proteomics and bioinformatics. Finally, we evaluated the clinical relevance of agrin interactome. Results Agrin was elevated in malignant and premalignant lesions. Further, we show that agrin silencing interferes with cancer cell motility, proliferation, invasion, colony and tumour spheroid formation, and it also reduces the phosphorylation of FAK, ERK and cyclin D1 proteins in OSCC cells. In orthotopic model, agrin silencing reduces tumour aggressiveness, like vascular and neural invasion. From a clinical perspective, agrin contextual hubs predict a poor clinical prognosis related with overall survival. Conclusions Altogether, our results demonstrate that agrin is a histological marker for the progression of oral cancer and is a strong therapeutic target candidate for both premalignant and OSCC lesions.
Collapse
|
43
|
Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C. LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget 2018; 8:47565-47573. [PMID: 28548932 PMCID: PMC5564587 DOI: 10.18632/oncotarget.17735] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023] Open
Abstract
In the previous study, we established a mouse model of cardiac hypertrophy using transverse aortic constriction (TAC) and found that the expression of long non-coding RNAs TINCR was downregulated in myocardial tissue. The present study was designed to determine the potential role of TINCR in the pathogenesis of cardiac hypertrophy. Our results showed that enforced expression of TINCR could attenuate cardiac hypertrophy in TAC mice. Angiotensin II (Ang-II) was found to be associated with reduced TINCR expression and increased hypertrophy in cultured neonatal cardiomyocytes. RNA-binding protein immunoprecipitation assay confirmed that TINCR could directly bind with EZH2 in cardiomyocytes. The results of chromatin immunoprecipitation assay revealed that EZH2 could directly bind to CaMKII promoter region and mediate H3K27me3 modification. Knockdown of TINCR was found to reduce EZH2 occupancy and H3K27me3 binding in the promoter of CaMKII in cardiomyocytes. In addition, enforced expression of TINCR was found to decrease CaMKII expression and attenuate Ang-II-induced cardiomyocyte hypertrophy. Furthermore, our results also showed that Ang-II could increase CaMKII expression in cardiomyocytes, which consequently contributed to cellular hypertrophy. In conclusion, our findings demonstrated that TINCR could attenuate myocardial hypertrophy by epigenetically silencing of CaMKII, which may provide a novel therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Mingjing Shao
- National Integrated Traditional and Western Medicine Center for Cardivascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Guangdong Chen
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Fengli Lv
- Department of Rehabilitation, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Liu
- Department of Psychological Medicine, Tianjin Anning Hospital, Tianjin, China
| | - Hongjun Tian
- Department of Psychological Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Ran Tao
- Department of Psychological Medicine, Beijing Shijian Integrated Medicine Science Institute, Beijing, China.,Department of Psychological Medicine, Chinese Land Force General Hospital, Beijing, China
| | - Ronghuan Jiang
- Department of Psychological Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Psychological Medicine, Chinese People's Liberation Army, Medical School, Beijing, China
| | - Wei Zhang
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Chuanjun Zhuo
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychological Medicine, Tianjin Anning Hospital, Tianjin, China.,Department of Psychological Medicine, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
44
|
Liu Y, Du Y, Hu X, Zhao L, Xia W. Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. BMC Cancer 2018; 18:367. [PMID: 29614984 PMCID: PMC5883880 DOI: 10.1186/s12885-018-4255-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/20/2018] [Indexed: 01/06/2023] Open
Abstract
Background Assembling evidences suggested that aberrant expression of tissue differentiation-inducing non-protein coding RNA (TINCR) intimately associated with variety of human cancer. However, the expression pattern and involvement of TINCR in breast cancer has not been fully investigated. Here we set out to analyze expression of TINCR in breast cancer and elucidate its mechanistic involvement in tumor incidence and progression. Methods The expression of TINCR was determined by q-PCR. SP1 binding sites were analyzed by ChIP-qPCR. The relative transcription activity was measured with luciferase reporter assay. Cell viability was measured with CCK-8 method. Clonogenic capacity was evaluated by soft agar assay. Cell apoptosis was analyzed by Annexin V/7-AAD staining. The migration and invasion were determined by trans-well assay and wound healing. The tumor growth in vivo was evaluated in xenograft mice model. Protein expression was quantified by immunoblotting. Results TINCR was aberrantly up-regulated by SP1, which in turn stimulated cell proliferation, anchorage-independent growth and suppressed cell apoptosis in breast cancer. TINCR silencing significantly suppressed migration and invasion in vitro and xenograft tumor growth in vivo. Mechanistically, TINCR modulated KLF4 expression via competing with miR-7, which consequently contributed to its oncogenic potential. MiR-7 inhibition severely compromised TINCR silencing-elicited tumor repressive effects. Conclusion Our data uncovered a crucial role of TINCR-miR-7-KLF4 axis in human breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4255-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Liu
- Department of ENT, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yaying Du
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Xiaopeng Hu
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Lu Zhao
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wenfei Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
45
|
Ma X, Huang C, Luo D, Wang Y, Tang R, Huan X, Zhu Y, Xu Z, Liu P, Yang L. Tag SNPs of long non-coding RNA TINCR affect the genetic susceptibility to gastric cancer in a Chinese population. Oncotarget 2018; 7:87114-87123. [PMID: 27893425 PMCID: PMC5349975 DOI: 10.18632/oncotarget.13513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023] Open
Abstract
Tissue differentiation-inducing non-protein coding RNA (TINCR) is required for normal epidermal differentiation. TINCR is also strongly overexpressed in human gastric cancer (GC) and contributes to carcinogenesis and tumor progression. However, the association between TINCR polymorphisms and the risk of any diseases, such as GC, remains unknown. In the present study, the tag single nucleotide polymorphisms rs8113645, rs2288947, rs8105637, and rs12610531 were analyzed in 602 patients with GC and 602 age- and sex-matched controls. Polymorphisms were genotyped using TaqMan technology. Carriers of variant rs8113645 and rs2288947 alleles indicated reduced risks of GC (p = 0.003 and 0.037, respectively). A allele genotypes of rs8113645 and G allele genotypes of rs2288947 (rs8113645 GA and AA; rs2288947 AG and GG) were also significantly associated with decreased GC risk (p < 0.05). Stratification analysis displayed that the correlations between GC risk and variant genotypes of both rs8113645 and rs2288947were more evident in younger individuals, men, nonsmokers, and individuals from rural areas. We also demonstrated that rs8113645 GA+AA genotype carriers had lower TINCR mRNA expression levels compared with common genotype in both normal and GC tissues (p < 0.05). These results suggest that long non-coding RNA TINCR polymorphisms may be implicated in GC development.
Collapse
Affiliation(s)
- Xiang Ma
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dakui Luo
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Younan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ran Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangkun Huan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Zhang ZY, Lu YX, Zhang ZY, Chang YY, Zheng L, Yuan L, Zhang F, Hu YH, Zhang WJ, Li XN. Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget 2017; 7:22639-49. [PMID: 27009809 PMCID: PMC5008388 DOI: 10.18632/oncotarget.8141] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in kinds of human diseases, including colorectal cancer (CRC). TINCR, a 3.7 kb long non coding RNA, was associated with cell differentiation in keratinocyte and gastric cancer cells. However, little is known about the role of TINCR in regulation CRC progression. Here, we showed that lncRNA TINCR was associated with CRC proliferation and metastasis. TINCR was statistically downregulated in CRC tissues and metastatic CRC cell lines compared with their counterparts. TINCR was reversely correlated with CRC progression and promoted tumor cells growth, metastasis in vivo and in vitro. While overexpression of TINCR had opposite effect. In addition, we also found that TINCR specifically bound to EpCAM through RNA IP and RNA pull down assays. Loss of TINCR promoted hydrolysis of EpCAM and then released EpICD, subsequently, activated the Wnt/β-catenin pathway. Further studies shown that c-Myc repressed the expression of TINCR through repressing sp1 transcriptive activity, which established a positive feedback loop controlling c-Myc and TINCR expression. These findings elucidate that loss of TINCR expression promotes proliferation and metastasis in CRC and it could be considered as a potential cancer suppressor gene.
Collapse
Affiliation(s)
- Zuo-Yang Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhe-Ying Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ya-Ya Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li Yuan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou 510515, China
| | - Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
47
|
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2017; 19:143-157. [PMID: 29138516 DOI: 10.1038/nrm.2017.104] [Citation(s) in RCA: 965] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.
Collapse
Affiliation(s)
- Julia D Ransohoff
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Yuning Wei
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA
| |
Collapse
|
48
|
Oh Y, Park J, Kim JI, Chang MY, Lee SH, Cho YH, Hwang J. Lin28B and miR-142-3p regulate neuronal differentiation by modulating Staufen1 expression. Cell Death Differ 2017; 25:432-443. [PMID: 29099484 DOI: 10.1038/cdd.2017.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Staufen1 (STAU1) and Lin28B are RNA-binding proteins that are involved in neuronal differentiation as a function of post-transcriptional regulation. STAU1 triggers post-transcriptional regulation, including mRNA export, mRNA relocation, translation and mRNA decay. Lin28B also has multiple functions in miRNA biogenesis and the regulation of translation. Here, we examined the connection between STAU1 and Lin28B and found that Lin28B regulates the abundance of STAU1 mRNA via miRNA maturation. Decreases in the expression of both STAU1 and Lin28B were observed during neuronal differentiation. Depletion of STAU1 or Lin28B inhibited neuronal differentiation, and overexpression of STAU1 or Lin28B enhanced neuronal differentiation. Interestingly, the stability of STAU1 mRNA was modulated by miR-142-3p, whose maturation was regulated by Lin28B. Thus, miR-142-3p expression increased as Lin28B expression decreased during differentiation, leading to the reduction of STAU1 expression. The transcriptome from Staufen-mediated mRNA decay (SMD) targets during differentiation was analyzed, confirming that STAU1 was a key factor in neuronal differentiation. In support of this finding, regulation of STAU1 expression in mouse neural precursor cells had the same effects on neuronal differentiation as it did in human neuroblastoma cells. These results revealed the collaboration of two RNA-binding proteins, STAU1 and Lin28B, as a regulatory mechanism in neuronal differentiation.
Collapse
Affiliation(s)
- Younseo Oh
- Graduate School for Biomedical Science & Engineering, Seoul, Korea
| | - Jungyun Park
- Graduate School for Biomedical Science & Engineering, Seoul, Korea
| | - Jin-Il Kim
- Graduate School for Biomedical Science & Engineering, Seoul, Korea
| | | | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul, Korea
| | - Youl-Hee Cho
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul, Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, Seoul, Korea.,Department of Medical Genetics, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
49
|
TINCR expression is associated with unfavorable prognosis in patients with hepatocellular carcinoma. Biosci Rep 2017; 37:BSR20170301. [PMID: 28546230 PMCID: PMC5529205 DOI: 10.1042/bsr20170301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence are accumulating that long noncoding RNAs (lncRNAs) have recently been identified to participate in various cellular processes. Terminal differentiation induced ncRNA (TINCR) is a newly identified lncRNA with its functional roles not fully elucidated in human malignancy. The current study aims to identify the clinical significance of TINCR in prognosis and malignant progression of hepatocellular carcinoma (HCC). TINCR expression in HCC specimens at various stages of tumorigenesis were measured by quantitative real-time RT PCR (qRT-PCR). The matched para-carcinoma tissues were used as controls. The associations of TINCR with clinicopathological characteristics, disease-free survival (DFS) and overall survival (OS) of patients were further evaluated. Results revealed that high TINCR expression was significantly correlated with tumor size (P=0.005), tumor differentiation status (P=0.017), TNM stage (P=0.010), and vascular invasion (P=0.004). Moreover, Kaplan-Meier analysis demonstrated that TINCR was correlated to both DFS and OS in HCC cohorts. Patients with high TINCR expression tended to have worse prognosis. Multivariate Cox regression analysis indicated that TINCR was an independent poor prognostic indicator for DFS (HR =1.32, 95% CI: 1.00-1.57, P=0.000) and OS (HR =1.57, 95% CI: 1.30-1.86, P=0.004) in HCC. TINCR was demonstrated as a direct target of miR-137 and miR-133a, and was suppressed by miR-137/miR-133a These results provide the first evidence that the expression of TINCR in HCC may play an oncogenic role in HCC differentiation, invasion, and metastasis. miR-137/miR-133a-TINCR pathway may serve as a promising target for tumor recurrence and prognosis of patients with HCC.
Collapse
|
50
|
Chen Z, Liu H, Yang H, Gao Y, Zhang G, Hu J. The long noncoding RNA, TINCR, functions as a competing endogenous RNA to regulate PDK1 expression by sponging miR-375 in gastric cancer. Onco Targets Ther 2017; 10:3353-3362. [PMID: 28744139 PMCID: PMC5513873 DOI: 10.2147/ott.s137726] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that the long noncoding RNA, TINCR, plays a critical role in cancer progression and metastasis. However, the overall biological role and mechanisms of TINCR that were involved in human gastric cancer (GC) progression remain largely unknown. METHODS TINCR expression was measured in 56 paired tumor and adjacent nontumor tissue samples by real-time polymerase chain reaction (PCR). Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were gained from bioinformatic analysis, luciferase assays. The effects of TINCR and miR-375 on GC cell apoptosis and proliferation were studied by RNA interference approaches in vitro and in vivo. The correlation of TINCR and PDK1 was identified by real-time PCR and Western blot analysis. RESULTS Our results showed that miR-375 level decreased and TINCR level increased in tumor tissues. In addition, TINCR was a target of miR-375 and inhibited its expression in GC cells. Furthermore, the low expression of TINCR increased cell apoptosis and inhibited the proliferation of GC cells, while the downregulation of miR-375 reversed the function. In particular, TINCR could negatively regulate the miR-375 expression and increased the PDK1 expression in GC cells. Finally, tumor growth suppression was retarded with miR-375 downregulated in TINCR knockdown of GC cell xenografts. CONCLUSION The long noncoding RNA TINCR functions as a competing endogenous RNA to regulate PDK1 expression by sponging miR-375 in GC. The ceRNA regulatory network of TINCR/miR-375/PDK1 allows us to better understand the pathogenesis of GC and facilitate the development of long noncoding RNA (lncRNA)-directed diagnostics in GC.
Collapse
Affiliation(s)
- Zhaoliang Chen
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong
| | - Hong Liu
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong
| | - Huili Yang
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong
| | - Yukai Gao
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong
| | - Gongwen Zhang
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong
| | - Jiaojiao Hu
- Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|