1
|
Canson DM, Llinares-Burguet I, Fortuno C, Sanoguera-Miralles L, Bueno-Martínez E, de la Hoya M, Spurdle AB, Velasco-Sampedro EA. TP53 minigene analysis of 161 sequence changes provides evidence for role of spatial constraint and regulatory elements on variant-induced splicing impact. NPJ Genom Med 2025; 10:37. [PMID: 40341019 PMCID: PMC12062376 DOI: 10.1038/s41525-025-00498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
We investigated the role of TP53 splicing regulatory elements (SREs) using exons 3 and 6 and their downstream introns as models. Minigene microdeletion assays revealed four SRE-rich intervals: c.573_598, c.618_641, c.653_669 and c.672+14_672 + 36. A diagnostically reported deletion c.655_670del, overlapping an SRE-rich interval, induced an in-frame transcript Δ(E6q21) from new donor site usage. Deletion of at least four intron 6 G-runs led to 100% aberrant transcript expression. Additionally, assay results suggested a donor-to-branchpoint distance <50 nt for complete splicing aberration due to spatial constraint, and >75 nt for low risk of splicing abnormality. Overall, splicing data for 134 single nucleotide variants (SNVs) and 27 deletions in TP53 demonstrated that SRE-disrupting SNVs have weak splicing impact (up to 26% exon skipping), while deletions spanning multiple SREs have profound splicing effects. Our findings may prove relevant for identifying novel germline TP53 variants causing hereditary cancer predisposition and/or somatic variants contributing to tumorigenesis.
Collapse
Affiliation(s)
- Daffodil M Canson
- Population Health Program, QIMR Berghofer, Herston, QLD, 4006, Australia
| | - Inés Llinares-Burguet
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer, Herston, QLD, 4006, Australia
| | - Lara Sanoguera-Miralles
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Eladio A Velasco-Sampedro
- Splicing and genetic susceptibility to cancer. Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM). Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), 47003, Valladolid, Spain.
| |
Collapse
|
2
|
Karaosmanoğlu O. Recurrent hepatocellular carcinoma is associated with the enrichment of MYC targets gene sets, elevated high confidence deleterious mutations and alternative splicing of DDB2 and BRCA1 transcripts. Adv Med Sci 2025; 70:17-26. [PMID: 39486583 DOI: 10.1016/j.advms.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Recurrence is the main cause of hepatocellular carcinoma (HCC) related deaths. Underlying recurrence biology can be better understood by comparative analysis of the complete set of transcripts between recurrent and non-recurrent HCC. In this study, transcriptomic data (GSE56545) from 21 male patients diagnosed with either recurrent or non-recurrent HCC were reanalyzed to identify deregulated pathways, somatic mutations, fusion transcripts, alternative splicing events, and the immune context in recurrent HCC. MATERIALS AND METHODS DESeq2 was used for differential expression analysis, Mutect2 for somatic mutation analysis, Arriba and STAR-Fusion for fusion transcript analysis, and rMATs for alternative splicing analysis. RESULTS The results revealed that MYC targets gene sets (Hallmark_MYC_targets_V1 and Hallmark_MYC_targets_V2) were significantly enriched in recurrent HCC. Among the MYC targets, CBX3, NOP56, CDK4, NPM1, MCM5, MCM4 and PA2G4 upregulation was significantly associated with poor survival. Somatic mutation analysis demonstrated that the numbers of high confidence deleterious mutations were significantly increased in recurrent HCC. Alternative splicing-mediated production of non-functional DDB2 and oncogenic BRCA1 D11q were discovered in recurrent HCC. Finally, CD8+ T-cells were significantly decreased in recurrent HCC. CONCLUSIONS These results indicated that the enrichment of MYC targets gene sets is one of the most critical factors that leads to the development of recurrent HCC. In addition, elevated deleterious mutation numbers and alternative spliced DDB2 and BRCA1 isoforms have been identified as prominent contributors to increasing genomic instability in male patients with recurrent HCC.
Collapse
Affiliation(s)
- Oğuzhan Karaosmanoğlu
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, İbrahim Öktem Avenue, No. 124, 70200, Karaman, Turkey.
| |
Collapse
|
3
|
Llinares-Burguet I, Sanoguera-Miralles L, Valenzuela-Palomo A, García-Álvarez A, Bueno-Martínez E, Velasco-Sampedro EA. Splicing Dysregulation of Non-Canonical GC-5' Splice Sites of Breast Cancer Susceptibility Genes ATM and PALB2. Cancers (Basel) 2024; 16:3562. [PMID: 39518003 PMCID: PMC11545216 DOI: 10.3390/cancers16213562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The non-canonical GC-5' splice sites (5'ss) are the most common exception (~1%) to the classical GT/AG splicing rule. They constitute weak 5'ss and can be regulated by splicing factors, so they are especially sensitive to genetic variations inducing the misrecognition of their respective exons. We aimed to investigate the GC-5'ss of the breast/ovarian cancer susceptibility genes, ATM (exon 50), BRIP1 (exon 1), and PALB2 (exon 12), and their dysregulation induced by DNA variants. Methods: Splicing assays of the minigenes, mgATM_49-52, mgBRIP1_1-2, and mgPALB2_5-12, were conducted to study the regulation of the indicated GC-5'ss. Results: A functional map of the splicing regulatory elements (SRE) formed by overlapping exonic microdeletions revealed three essential intervals, ATM c.7335_7344del, PALB2 c.3229_3258del, and c.3293_3322del, which are likely targets for spliceogenic SRE-variants. We then selected 14 ATM and 9 PALB2 variants (Hexplorer score < -40) located at these intervals that were assayed in MCF-7 cells. Nine ATM and three PALB2 variants affected splicing, impairing the recognition of exons 50 and 12, respectively. Therefore, these variants likely disrupt the active SREs involved in the inclusion of both exons in the mature mRNA. DeepCLIP predictions suggested the participation of several splicing factors in exon recognition, including SRSF1, SRSF2, and SRSF7, involved in the recognition of other GC sites. The ATM spliceogenic variants c.7336G>T (p.(Glu2446Ter)) and c.7340T>A (p.(Leu2447Ter)) produced significant amounts of full-length transcripts (55-59%), which include premature termination stop codons, so they would inactivate ATM through both splicing disruption and protein truncation mechanisms. Conclusions: ATM exon 50 and PALB2 exon 12 require specific sequences for efficient recognition by the splicing machinery. The mapping of SRE-rich intervals in minigenes is a valuable approach for the identification of spliceogenic variants that outperforms any prediction software. Indeed, 12 spliceogenic SRE-variants were identified in the critical intervals.
Collapse
Affiliation(s)
| | | | | | | | | | - Eladio A. Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM) de Valladolid, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid (CSIC-UVa), 47003 Valladolid, Spain; (I.L.-B.); (L.S.-M.); (A.V.-P.); (A.G.-Á.); (E.B.-M.)
| |
Collapse
|
4
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
5
|
Galli A, Bellè F, Fargnoli A, Caligo MA, Cervelli T. Functional Characterization of the Human BRCA1 ∆11 Splicing Isoforms in Yeast. Int J Mol Sci 2024; 25:7511. [PMID: 39062754 PMCID: PMC11276823 DOI: 10.3390/ijms25147511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BRCA1, a crucial tumor suppressor gene, has several splicing isoforms, including Δ9-11, Δ11, and Δ11q, which lack exon 11, coding for significant portions of the protein. These isoforms are naturally present in both normal and cancerous cells, exhibiting altered activity compared to the full-length BRCA1. Despite this, the impact on cancer risk of the germline intronic variants promoting the exclusive expression of these Δ11 isoforms remains uncertain. Consequently, they are classified as variants of uncertain significance (VUS), posing challenges for traditional genetic classification methods due to their rarity and complexity. Our research utilizes a yeast-based functional assay, previously validated for assessing missense BRCA1 variants, to compare the activity of the Δ11 splicing isoforms with known pathogenic missense variants. This approach allows us to elucidate the functional implications of these isoforms and determine whether their exclusive expression could contribute to increased cancer risk. By doing so, we aim to provide insights into the pathogenic potential of intronic VUS-generating BRCA1 splicing isoforms and improve the classification of BRCA1 variants.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Arcangelo Fargnoli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Oncology, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| |
Collapse
|
6
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
7
|
Aretini P, Presciuttini S, Pastore A, Galli A, Panepinto S, Tancredi M, Ghilli M, Guglielmi C, Sidoti D, Congregati C, Caligo MA. The BRCA1 c.4096+1G>A Is a Founder Variant Which Originated in Ancient Times. Int J Mol Sci 2023; 24:15507. [PMID: 37958491 PMCID: PMC10648645 DOI: 10.3390/ijms242115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Approximately 30-50% of hereditary breast and ovarian cancer (HBOC) is due to the presence of germline pathogenic variants in the BRCA1 (OMIM 113705) and BRCA2 (OMIM 600185) onco-suppressor genes, which are involved in DNA damage response. Women who carry pathogenic BRCA1 variants are particularly likely to develop breast cancer (BC) and ovarian cancer (OC), with a 45-79 percent and 39-48 percent chance, respectively. The BRCA1 c.4096+1G>A variant has been frequently ascertained in Tuscany, Italy, and it has also been detected in other Italian regions and other countries. Its pathogenetic status has been repeatedly changed from a variant of uncertain significance, to pathogenic, to likely pathogenic. In our study, 48 subjects (38 of whom are carriers) from 27 families were genotyped with the Illumina OncoArray Infinium platform (533,531 SNPs); a 20 Mb region (24.6 cM) around BRCA1, including 4130 SNPs (21 inside BRCA1) was selected for haplotype analysis. We used a phylogenetic method to estimate the time to the most recent common ancestor (MRCA) of BRCA1 c.4096+1G>A founder pathogenic variant. This analysis suggests that the MRCA lived about 155 generations ago-around 3000 years ago.
Collapse
Affiliation(s)
- Paolo Aretini
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy;
| | - Silvano Presciuttini
- Dipartimento di Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, 56126 Pisa, Italy;
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, San Giuliano Terme, 56017 Pisa, Italy;
- Laboratorio NEST, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Alvaro Galli
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Sara Panepinto
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Mariella Tancredi
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Matteo Ghilli
- Breast Unit, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Chiara Guglielmi
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Diletta Sidoti
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| | - Caterina Congregati
- Genetica Medica, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Maria Adelaide Caligo
- Laboratorio di Genetica Molecolare, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; (S.P.); (M.T.); (C.G.); (D.S.)
| |
Collapse
|
8
|
A Patient with Corticobasal Syndrome and Progressive Non-Fluent Aphasia (CBS-PNFA), with Variants in ATP7B, SETX, SORL1, and FOXP1 Genes. Genes (Basel) 2022; 13:genes13122361. [PMID: 36553628 PMCID: PMC9778325 DOI: 10.3390/genes13122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our aim was to analyze the phenotypic-genetic correlations in a patient diagnosed with early onset corticobasal syndrome with progressive non-fluent aphasia (CBS-PNFA), characterized by predominant apraxia of speech, accompanied by prominent right-sided upper-limb limb-kinetic apraxia, alien limb phenomenon, synkinesis, myoclonus, mild cortical sensory loss, and right-sided hemispatial neglect. Whole-exome sequencing (WES) identified rare single heterozygous variants in ATP7B (c.3207C>A), SORL1 (c.352G>A), SETX (c.2385_2387delAAA), and FOXP1 (c.1762G>A) genes. The functional analysis revealed that the deletion in the SETX gene changed the splicing pattern, which was accompanied by lower SETX mRNA levels in the patient's fibroblasts, suggesting loss-of-function as the underlying mechanism. In addition, the patient's fibroblasts demonstrated altered mitochondrial architecture with decreased connectivity, compared to the control individuals. This is the first association of the CBS-PNFA phenotype with the most common ATP7B pathogenic variant p.H1069Q, previously linked to Wilson's disease, and early onset Parkinson's disease. This study expands the complex clinical spectrum related to variants in well-known disease genes, such as ATP7B, SORL1, SETX, and FOXP1, corroborating the hypothesis of oligogenic inheritance. To date, the FOXP1 gene has been linked exclusively to neurodevelopmental speech disorders, while our study highlights its possible relevance for adult-onset progressive apraxia of speech, which guarantees further study.
Collapse
|
9
|
Chen SX, Simpson E, Reiter JL, Liu Y. Bioinformatics detection of modulators controlling splicing factor-dependent intron retention in the human brain. Hum Mutat 2022; 43:1629-1641. [PMID: 35391504 PMCID: PMC9537345 DOI: 10.1002/humu.24379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/02/2022] [Accepted: 04/02/2022] [Indexed: 12/30/2022]
Abstract
Alternative RNA splicing is an important means of genetic control and transcriptome diversity. However, when alternative splicing events are studied independently, coordinated splicing modulated by common factors is often not recognized. As a result, the molecular mechanisms of how splicing regulators promote or repress splice site recognition in a context-dependent manner are not well understood. The functional coupling between multiple gene regulatory layers suggests that splicing is modulated by additional genetic or epigenetic components. Here, we developed a bioinformatics approach to identify causal modulators of splicing activity based on the variation of gene expression in large RNA sequencing datasets. We applied this approach in a neurological context with hundreds of dorsolateral prefrontal cortex samples. Our model is strengthened with the incorporation of genetic variants to impute gene expression in a Mendelian randomization-based approach. We identified novel modulators of the splicing factor SRSF1, including UIMC1 and the long noncoding RNA CBR3-AS1, that function over dozens of SRSF1 intron retention splicing targets. This strategy can be widely used to identify modulators of RNA-binding proteins involved in tissue-specific alternative splicing.
Collapse
Affiliation(s)
- Steven X. Chen
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ed Simpson
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jill L. Reiter
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yunlong Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
10
|
Xie T, Dickson KA, Yee C, Ma Y, Ford CE, Bowden NA, Marsh DJ. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival. Cancers (Basel) 2022; 14:4621. [PMID: 36230543 PMCID: PMC9563432 DOI: 10.3390/cancers14194621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of molecular targeted therapies has made a significant impact on survival of women with ovarian cancer who have defects in homologous recombination repair (HRR). High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, with over 50% displaying defective HRR. Poly ADP ribose polymerases (PARPs) are a family of enzymes that catalyse the transfer of ADP-ribose to target proteins, functioning in fundamental cellular processes including transcription, chromatin remodelling and DNA repair. In cells with deficient HRR, PARP inhibitors (PARPis) cause synthetic lethality leading to cell death. Despite the major advances that PARPis have heralded for women with ovarian cancer, questions and challenges remain, including: can the benefits of PARPis be brought to a wider range of women with ovarian cancer; can other drugs in clinical use function in a similar way or with greater efficacy than currently clinically approved PARPis; what can we learn from long-term responders to PARPis; can PARPis sensitise ovarian cancer cells to immunotherapy; and can synthetic lethal strategies be employed more broadly to develop new therapies for women with ovarian cancer. We examine these, and other, questions with focus on improving outcomes for women with ovarian cancer.
Collapse
Affiliation(s)
- Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Caroline E. Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nikola A. Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
- Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
11
|
Ruiz de Garibay G, Fernandez-Garcia I, Mazoyer S, Leme de Calais F, Ameri P, Vijayakumar S, Martinez-Ruiz H, Damiola F, Barjhoux L, Thomassen M, Andersen LVB, Herranz C, Mateo F, Palomero L, Espín R, Gómez A, García N, Jimenez D, Bonifaci N, Extremera AI, Castaño J, Raya A, Eyras E, Puente XS, Brunet J, Lázaro C, Radice P, Barnes DR, Antoniou AC, Spurdle AB, de la Hoya M, Baralle D, Barcellos-Hoff MH, Pujana MA. Altered regulation of BRCA1 exon 11 splicing is associated with breast cancer risk in carriers of BRCA1 pathogenic variants. Hum Mutat 2021; 42:1488-1502. [PMID: 34420246 DOI: 10.1002/humu.24276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ignacio Fernandez-Garcia
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sylvie Mazoyer
- Equipe GENDEV, INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Université St Etienne, Lyon, France
| | - Flavia Leme de Calais
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pietro Ameri
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sangeetha Vijayakumar
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Francesca Damiola
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Laure Barjhoux
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Lars V B Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Carmen Herranz
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Francesca Mateo
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Luis Palomero
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Roderic Espín
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Antonio Gómez
- Gene Regulation, Stem Cells and Cancer, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - Nadia García
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Daniel Jimenez
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Núria Bonifaci
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ana I Extremera
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Julio Castaño
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain.,Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Eduardo Eyras
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain.,Department of Genome Sciences, The John Curtin School of Medical Research, EMBL Australia Partner Laboratory Network, Australian National University, Canberra, Australia
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, University Institute of Oncology, University of Oviedo, Oviedo, Spain.,Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Conxi Lázaro
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | -
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | -
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Miguel de la Hoya
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Molecular Oncology Laboratory, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, Southampton University Hospital NHS Trust, Southampton, UK
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Miquel A Pujana
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Raimundo L, Calheiros J, Saraiva L. Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers (Basel) 2021; 13:cancers13143438. [PMID: 34298653 PMCID: PMC8303227 DOI: 10.3390/cancers13143438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chemical inhibition of central DNA damage repair (DDR) proteins has become a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated proteins constitute important targets for developing DNA repair inhibiting drugs. This review provides relevant insights on DDR biology and pharmacology, aiming to boost the development of more effective DDR targeted therapies. Abstract Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.
Collapse
|
13
|
The BRCA1 c.788G > T (NM_007294.4) variant in a high grade serous ovarian cancer (HGSOC) patient: foods for thought. Mol Biol Rep 2021; 48:2985-2992. [PMID: 33656647 DOI: 10.1007/s11033-021-06243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
In this report we described the case of a BRCA1/2 (BRCA) molecular testing performed on tumor sample in a High Grade Serous Ovarian Cancer (HGSOC) patient with two different Next Generation Tumor Sequencing (NGTS) pipelines. The two clinical reports leaded to apparently different BRCA status, providing important foods for thought. After NGTS, the gene sequencing information (i.e., reads) are aligned to the reference gene sequences obtained from public databases, in order to provide an uniform nomenclature for unambiguous variant designation. However, the criteria adopted for variant reporting in tissue test are not always univocal. Particularly, this is the case of rare and unclassified BRCA variants for which the molecular evaluation may be a relevant challenge. Here we described a BRCA1 unclassified variant that may be re-evaluated in the context of alternative BRCA1 transcripts due to its different biological effect. We underlined that an in-depth knowledge of BRCA testing is mandatory for its appropriate use.
Collapse
|
14
|
Raimundo L, Ramos H, Loureiro JB, Calheiros J, Saraiva L. BRCA1/P53: Two strengths in cancer chemoprevention. Biochim Biophys Acta Rev Cancer 2020; 1873:188339. [PMID: 31917206 DOI: 10.1016/j.bbcan.2020.188339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players. Indeed, it compiles the most recent advances on the topic, highlighting the unique potential of BRCA1 and p53 germline mutations as molecular biomarkers for risk assessment and targets for chemoprevention. Relevant evidences are herein provided supporting the effectiveness of distinct pharmacological agents in cancer prevention, by targeting BRCA1 and p53. Moreover, the rationale for using germline mutant BRCA1- or p53-related cancer syndromes as model systems to investigate effective chemopreventive agents is also addressed. Altogether, this work provides an innovative conception about the dependence on p53 and BRCA1 co-inactivation in tumor formation and development, emphasizing the relationship between these two proteins as an encouraging direction for future personalized pharmacological interventions in cancer prevention.
Collapse
Affiliation(s)
- Liliana Raimundo
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Juliana Calheiros
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Elman JS, Ni TK, Mengwasser KE, Jin D, Wronski A, Elledge SJ, Kuperwasser C. Identification of FUBP1 as a Long Tail Cancer Driver and Widespread Regulator of Tumor Suppressor and Oncogene Alternative Splicing. Cell Rep 2019; 28:3435-3449.e5. [PMID: 31553912 PMCID: PMC7297508 DOI: 10.1016/j.celrep.2019.08.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Comprehensive sequencing approaches have allowed for the identification of the most frequent contributors to cancer, known as drivers. They have also revealed a class of mutations in understudied, infrequently altered genes, referred to as "long tail" (LT) drivers. A key challenge has been to find clinically relevant LT drivers and to understand how they cooperate to drive disease. Here, we identified far upstream binding protein 1 (FUBP1) as an LT driver using an in vivo CRISPR screen. FUBP1 cooperates with other tumor suppressor genes to transform mammary epithelial cells by disrupting cellular differentiation and tissue architecture. Mechanistically, FUBP1 participates in regulating N6-methyladenosine (m6A) RNA methylation, and its loss leads to global changes in RNA splicing and widespread expression of aberrant driver isoforms. These findings suggest that somatic alteration of a single gene involved in RNA splicing and m6A methylation can produce the necessary panoply of contributors for neoplastic transformation.
Collapse
Affiliation(s)
- Jessica S Elman
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Thomas K Ni
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Kristen E Mengwasser
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dexter Jin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ania Wronski
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA, USA; Department of Genetics, Program in Virology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|
16
|
Li D, Harlan-Williams LM, Kumaraswamy E, Jensen RA. BRCA1-No Matter How You Splice It. Cancer Res 2019; 79:2091-2098. [PMID: 30992324 PMCID: PMC6497576 DOI: 10.1158/0008-5472.can-18-3190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/09/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
BRCA1 (breast cancer 1, early onset), a well-known breast cancer susceptibility gene, is a highly alternatively spliced gene. BRCA1 alternative splicing may serve as an alternative regulatory mechanism for the inactivation of the BRCA1 gene in both hereditary and sporadic breast cancers, and other BRCA1-associated cancers. The alternative transcripts of BRCA1 can mimic known functions, possess unique functions compared with the full-length BRCA1 transcript, and in some cases, appear to function in opposition to full-length BRCA1 In this review, we will summarize the functional "naturally occurring" alternative splicing transcripts of BRCA1 and then discuss the latest next-generation sequencing-based detection methods and techniques to detect alternative BRCA1 splicing patterns and their potential use in cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Dan Li
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Lisa M Harlan-Williams
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Easwari Kumaraswamy
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Roy A Jensen
- The University of Kansas Cancer Center, Kansas City, Kansas.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
17
|
Llorens-Agost M, Luessing J, van Beneden A, Eykelenboom J, O’Reilly D, Bicknell LS, Reynolds JJ, van Koegelenberg M, Hurles ME, Brady AF, Jackson AP, Stewart GS, Lowndes NF. Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome. Hum Mutat 2018; 39:1847-1853. [PMID: 30199583 PMCID: PMC7615757 DOI: 10.1002/humu.23648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/17/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023]
Abstract
Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
Collapse
Affiliation(s)
- Marta Llorens-Agost
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Janna Luessing
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Amandine van Beneden
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - John Eykelenboom
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
- School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Dawn O’Reilly
- Oxford Stem Cell Institute, University of Oxford, Oxford, UK
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Angela F Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Andrew P Jackson
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburg, Scotland
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Noel F Lowndes
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| |
Collapse
|
18
|
Abstract
Breast cancer is known to be a heterogeneous disease driven by a large repertoire of molecular abnormalities, which contribute to its diverse clinical behaviour. Despite the success of targeted therapy approaches for breast cancer patient management, there is still a lack of the molecular understanding of aggressive forms of the disease and clinical management of these patients remains difficult. The advent of high-throughput sequencing technologies has paved the way for a more complete understanding of the molecular make-up of the breast cancer genome. As such, it is becoming apparent that disruption of canonical splicing within breast cancer governs its clinical progression. In this review, we discuss the role of dysregulation of spliceosomal component genes and associated factors in the progression of breast cancer, their role in therapy resistance and the use of quantitative isoform expression as potential prognostic and predictive biomarkers with a particular focus on oestrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Abigail Read
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| |
Collapse
|
19
|
Baert A, Machackova E, Coene I, Cremin C, Turner K, Portigal-Todd C, Asrat MJ, Nuk J, Mindlin A, Young S, MacMillan A, Van Maerken T, Trbusek M, McKinnon W, Wood ME, Foulkes WD, Santamariña M, de la Hoya M, Foretova L, Poppe B, Vral A, Rosseel T, De Leeneer K, Vega A, Claes KBM. Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11. Hum Mutat 2018; 39:515-526. [PMID: 29280214 DOI: 10.1002/humu.23390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/03/2017] [Accepted: 12/17/2017] [Indexed: 12/31/2022]
Abstract
For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5' breakpoint in intron 4; 3' breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G > C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies.
Collapse
Affiliation(s)
- Annelot Baert
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ilse Coene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Carol Cremin
- BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | - Jennifer Nuk
- BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Sean Young
- BC Cancer Agency, Vancouver, British Columbia, Canada.,Cancer Genetics and Genomics Laboratory, Department of Pathology and Laboratory Medicine, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Andree MacMillan
- Provincial Medical Genetics Program, Eastern Health, St. John's, Newfoundland and Labrador, Canada
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Wendy McKinnon
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Marie E Wood
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont, United States
| | - William D Foulkes
- Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Toon Rosseel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | | |
Collapse
|
20
|
Yang H, Jaeger M, Walker A, Wei D, Leiker K, Weitao T. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing. J Cancer 2018; 9:219-231. [PMID: 29344267 PMCID: PMC5771328 DOI: 10.7150/jca.22554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.
Collapse
Affiliation(s)
- Haitao Yang
- Laboratory for Cancer Genome Editing, Zhuhai Lifecode Medical Technologies. Inc. Department of Prenatal Diagnosis, Huizhou 2nd Hospital for Children and Women, #101 University Road, Tangjiawan, Zhuhai, 518900, Guangdong, China
| | - MariaLynn Jaeger
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Averi Walker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Daniel Wei
- University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Katie Leiker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| |
Collapse
|
21
|
Wang Y, Bernhardy AJ, Cruz C, Krais JJ, Nacson J, Nicolas E, Peri S, van der Gulden H, van der Heijden I, O'Brien SW, Zhang Y, Harrell MI, Johnson SF, Candido Dos Reis FJ, Pharoah PDP, Karlan B, Gourley C, Lambrechts D, Chenevix-Trench G, Olsson H, Benitez JJ, Greene MH, Gore M, Nussbaum R, Sadetzki S, Gayther SA, Kjaer SK, D'Andrea AD, Shapiro GI, Wiest DL, Connolly DC, Daly MB, Swisher EM, Bouwman P, Jonkers J, Balmaña J, Serra V, Johnson N. The BRCA1-Δ11q Alternative Splice Isoform Bypasses Germline Mutations and Promotes Therapeutic Resistance to PARP Inhibition and Cisplatin. Cancer Res 2017; 76:2778-90. [PMID: 27197267 DOI: 10.1158/0008-5472.can-16-0186] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Breast and ovarian cancer patients harboring BRCA1/2 germline mutations have clinically benefitted from therapy with PARP inhibitor (PARPi) or platinum compounds, but acquired resistance limits clinical impact. In this study, we investigated the impact of mutations on BRCA1 isoform expression and therapeutic response. Cancer cell lines and tumors harboring mutations in exon 11 of BRCA1 express a BRCA1-Δ11q splice variant lacking the majority of exon 11. The introduction of frameshift mutations to exon 11 resulted in nonsense-mediated mRNA decay of full-length, but not the BRCA1-Δ11q isoform. CRISPR/Cas9 gene editing as well as overexpression experiments revealed that the BRCA1-Δ11q protein was capable of promoting partial PARPi and cisplatin resistance relative to full-length BRCA1, both in vitro and in vivo Furthermore, spliceosome inhibitors reduced BRCA1-Δ11q levels and sensitized cells carrying exon 11 mutations to PARPi treatment. Taken together, our results provided evidence that cancer cells employ a strategy to remove deleterious germline BRCA1 mutations through alternative mRNA splicing, giving rise to isoforms that retain residual activity and contribute to therapeutic resistance. Cancer Res; 76(9); 2778-90. ©2016 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Cristina Cruz
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain. Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph Nacson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Shane W O'Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yong Zhang
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maribel I Harrell
- Department of Obstetrics and Gynecology and Medicine, University of Washington, Seattle, Washington
| | - Shawn F Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Beth Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Charlie Gourley
- University of Edinburgh Cancer Research UK Centre, MRC IGMM, Edinburgh, United Kingdom
| | | | | | - Håkan Olsson
- Departments of Cancer Epidemiology and Oncology, Lund University, Lund, Sweden
| | - Javier J Benitez
- Human Genetics Group and Human Genotyping Unit Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Martin Gore
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Robert Nussbaum
- University of California San Francisco, Cancer Risk Program, San Francisco, California
| | - Siegal Sadetzki
- Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Department of Pediatrics, Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David L Wiest
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mary B Daly
- Risk Assessment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology and Medicine, University of Washington, Seattle, Washington
| | - Peter Bouwman
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Dimitrova D, Ruscito I, Olek S, Richter R, Hellwag A, Türbachova I, Woopen H, Baron U, Braicu EI, Sehouli J. Germline mutations of BRCA1 gene exon 11 are not associated with platinum response neither with survival advantage in patients with primary ovarian cancer: understanding the clinical importance of one of the biggest human exons. A study of the Tumor Bank Ovarian Cancer (TOC) Consortium. Tumour Biol 2016; 37:12329-12337. [DOI: 10.1007/s13277-016-5109-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
|
23
|
Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1540-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Wiener D, Gajardo-Meneses P, Ortega-Hernández V, Herrera-Cares C, Díaz S, Fernández W, Cornejo V, Gamboa J, Tapia T, Alvarez C, Carvallo P. BRCA1 and BARD1 colocalize mainly in the cytoplasm of breast cancer tumors, and their isoforms show differential expression. Breast Cancer Res Treat 2015; 153:669-78. [PMID: 26395808 DOI: 10.1007/s10549-015-3575-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
BRCA1 has been found to be absent or miss localized in the cytoplasm in a relevant proportion of breast cancer tumors with no germline mutations. BRCA1 main function is in the nucleus, and its interaction with BARD1 is relevant for its nuclear translocation and retention. Our aim was to analyze the sub-cellular localization of BRCA1 and BARD1 in breast cancer tumors, and determine the level of expression of their splice variants BRCA1-Δ11q and BARD1-α and BARD1-β. BRCA1 and BARD1 expressions were performed by immunohistochemistry and immunofluorescence in 103 breast cancer tumors. Colocalization was determined by confocal microscopy. Transcript variants were determined by qRT-PCR. We found BRCA1 localized in the cytoplasm with BARD1 in 51.4 % of tumors. An exclusive nuclear localization of both proteins was observed in 7/103 tumors (6.8 %). Indeed, these tumors displayed an apparent nucleolar colocalization of BARD1 and BRCA1. In relation to splice variants, there is a tendency to an overexpression of BARD1-α mRNA (30 % of tumors) and a decreased expression of BARD1-β (41 %). BRCA1 full-length was downregulated in 63 % of tumors, and 37 % showed BRCA1-Δ11q variant overexpressed. Our findings contribute to a better understanding of the expression and sub-cellular localization of BRCA1 in breast cancer tumors. Interaction of BRCA1 and BARD1 seems to be not affected in 58.2 % of tumors, which showed colocalization of both proteins. The absence of BRCA1 in 41 % of tumors reveals a BRCAness phenotype, constituting an excellent marker for therapy sensitivity, to platinum drugs or PARP inhibitors.
Collapse
Affiliation(s)
- David Wiener
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile
| | - Patricia Gajardo-Meneses
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile
| | - Victoria Ortega-Hernández
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile
| | - Cristóbal Herrera-Cares
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile
| | - Sebastián Díaz
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile
| | - Wanda Fernández
- Unidad de Anatomía Patológica, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Valeria Cornejo
- Unidad de Anatomía Patológica, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Jorge Gamboa
- Unidad de Patología Mamaria, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Teresa Tapia
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile
| | - Carolina Alvarez
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile
| | - Pilar Carvallo
- Laboratory of Human Molecular Genetics, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49 3rd floor, Postal code 8330025, Santiago, Chile.
| |
Collapse
|
25
|
Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7:388-401. [PMID: 25948865 DOI: 10.1093/jmcb/mjv027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
It is well known that many genes implicated in the development and progression of breast cancer undergo aberrant alternative splicing events to produce proteins with pro-cancer properties. These changes in alternative splicing can arise from mutations or single-nucleotide polymorphisms (SNPs) within the DNA sequences of cancer-related genes, which can strongly affect the activity of splicing factors and influence the splice site choice. However, it is important to note that absence of mutations is not sufficient to prevent misleading choices in splice site selection. There is now increasing evidence to demonstrate that the expression profile of ten splicing factors (including SRs and hnRNPs) and eight RNA-binding proteins changes in breast cancer cells compared with normal cells. These modifications strongly influence the alternative splicing pattern of many cancer-related genes despite the absence of any detrimental mutations within their DNA sequences. Thus, a comprehensive assessment of the splicing factor status in breast cancer is important to provide insights into the mechanisms that lead to breast cancer development and metastasis. Whilst most studies focus on mutations that affect alternative splicing in cancer-related genes, this review focuses on splicing factors and RNA-binding proteins that are themselves deregulated in breast cancer and implicated in cancer-related alternative splicing events.
Collapse
Affiliation(s)
- Marco Silipo
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
Patel RS, Carter G, Cooper DR, Apostolatos H, Patel NA. Transformer 2β homolog (Drosophila) (TRA2B) regulates protein kinase C δI (PKCδI) splice variant expression during 3T3L1 preadipocyte cell cycle. J Biol Chem 2014; 289:31662-31672. [PMID: 25261467 DOI: 10.1074/jbc.m114.592337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834-26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.
Collapse
Affiliation(s)
- Rekha S Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Gay Carter
- James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Denise R Cooper
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Hercules Apostolatos
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612.
| |
Collapse
|