1
|
Lim JU, Jung J, Kim YW, Kim CY, Lee SH, Park DW, Choi SI, Ji W, Yeo CD, Lee SH. Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges. Biomedicines 2025; 13:470. [PMID: 40002883 PMCID: PMC11852785 DOI: 10.3390/biomedicines13020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have transformed the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. However, treatment resistance remains a major challenge in clinical practice. The tumor microenvironment (TME) is a complex system composed of tumor cells, immune and non-immune cells, and non-cellular components. Evidence indicates that dynamic changes in TME during TKI treatment are associated with the development of resistance. Research has focused on identifying how each component of the TME interacts with tumors and TKIs to understand therapeutic targets that could address TKI resistance. In this review, we describe how TME components, such as immune cells, fibroblasts, blood vessels, immune checkpoint proteins, and cytokines, interact with EGFR-mutant tumors and how they can promote resistance to TKIs. Furthermore, we discuss potential strategies targeting TME as a novel therapeutic approach.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Sue In Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Bailey S, Ferraresso M, Alonso-Crisostomo L, Ward D, Smith S, Nicholson JC, Saini H, Enright AJ, Scarpini CG, Coleman N, Murray MJ. Targeting oncogenic microRNAs from the miR-371~373 and miR-302/367 clusters in malignant germ cell tumours causes growth inhibition through cell cycle disruption. Br J Cancer 2023; 129:1451-1461. [PMID: 37789102 PMCID: PMC10628203 DOI: 10.1038/s41416-023-02453-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant germ cell tumours (GCTs), regardless of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six of eight microRNAs from these clusters contain the seed sequence 'AAGUGC', determining mRNA targeting. Here we sought to identify the significance of these observations by targeting these microRNAs functionally. METHODS We targeted miR-371~373 and/or miR-302/367 clusters in malignant GCT cell lines, using CRISPR-Cas9, gapmer primary miR-302/367 transcript inhibition, and peptide nucleic acid (PNA) or locked nucleic acid (LNA)-DNA inhibition targeting miR-302a-d-3p, and undertook relevant functional assays. RESULTS MiR-302/367 cluster microRNAs made the largest contribution to AAGUGC seed abundance in malignant GCT cells, regardless of subtype (seminoma/YST/EC). Following the unsuccessful use of CRISPR-Cas9, gapmer, and PNA systems, LNA-DNA-based targeting resulted in growth inhibition in seminoma and YST cells. This was associated with the de-repression of multiple mRNAs targeted by AAGUGC seed-containing microRNAs, with pathway analysis confirming predominant disruption of Rho-GTPase signalling, vesicle organisation/transport, and cell cycle regulation, findings corroborated in clinical samples. Further LNA-DNA inhibitor studies confirmed direct cell cycle effects, with an increase of cells in G0/G1-phase and a decrease in S-phase. CONCLUSION Targeting of specific miR-371~373 and miR-302/367 microRNAs in malignant GCTs demonstrated their functional significance, with growth inhibition mediated through cell cycle disruption.
Collapse
Affiliation(s)
- Shivani Bailey
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Marta Ferraresso
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | | | - Dawn Ward
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Stephen Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - James C Nicholson
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Harpreet Saini
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Anton J Enright
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cinzia G Scarpini
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
3
|
Zhang L, Liang R, Raheem A, Liang L, Zhang X, Cui S. Transcriptomics analysis reveals key lncRNAs and genes related to the infection of feline kidney cell line by panleukopenia virus. Res Vet Sci 2023; 158:203-214. [PMID: 37031469 DOI: 10.1016/j.rvsc.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Feline panleukopenia virus (FPV) can cause a viral disease and is responsible for severe leukopenia, gastroenteritis, and nervous signs with significant economic losses. Biochemically long non-coding RNAs (lncRNAs) can regulate the expression of mRNA in different ways, thereby causing the functional changes in host cells in response to viral infection. However, no attention has been paid until now to investigate the link between FPV pathogenesis and lncRNA. Here, through RNA sequencing, we performed a comprehensive analysis of lncRNA and mRNA in F81 cells after FPV-BJ04 strain infection. Consistent with previous studies, our data showed that lncRNAs have distinct features from mRNA. A total of 291 lncRNAs and 873 mRNAs were differentially expressed in F81 cells after FPV-BJ04 infection. GO and KEGG enrichment analysis showed that the differentially upregulated lncRNAs target genes were mainly involved in the positive regulation of transcription by RNA polymerase II and MAPK signaling pathway. The differentially downregulated lncRNAs target genes were mainly involved in the mRNA splicing and endocytosis. In addition, the differentially expressed immune pathway related genes that are targeted by lncRNA were also screened out to construct a lncRNA-miRNA-mRNA axes as a potential novel biomarkers in regulating the immune response of feline against FPV infection. Our results contribute to understand the basic role of lncRNA in F81 cells during FPV infection and lay the foundation for following research.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276000, China.
| | - Ruiying Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Xinglin Zhang
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276000, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
4
|
The prognostic value of m6A-related LncRNAs in patients with HNSCC: bioinformatics analysis of TCGA database. Sci Rep 2022; 12:579. [PMID: 35022464 PMCID: PMC8755759 DOI: 10.1038/s41598-021-04591-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) modifications play an essential role in tumorigenesis. These modifications modulate RNAs, including mRNAs and lncRNAs. However, the prognostic role of m6A-related lncRNAs in head and neck squamous cell carcinoma (HNSCC) is poorly understood. Based on LASSO Cox regression, enrichment analysis, univariate and multivariate Cox regression analysis, a prognostic risk model, and consensus clustering analysis, we analyzed 12 m6A-related lncRNAs in HNSCC sample data from The Cancer Genome Atlas (TCGA) database. We found 12 m6A-related lncRNAs in the training cohort and validated them in all cohorts by Kaplan–Meier and Cox regression analyses, revealing their independent prognostic value in HNSCC. Moreover, ROC analysis was conducted, confirming the strong predictive ability of this signature for HNSCC survival. GSEA and detailed immune infiltration analyses revealed specific pathways associated with m6A-related lncRNAs. In this study, a novel risk model including twelve genes (SAP30L-AS1, AC022098.1, LINC01475, AC090587.2, AC008115.3, AC015911.3, AL122035.2, AC010226.1, AL513190.1, ZNF32-AS1, AL035587.1 and AL031716.1) was built. It could accurately predict HNSCC outcomes and could provide new therapeutic targets for HNSCC patients.
Collapse
|
5
|
Zhu Y, Lu Y, Yuan L, Ling W, Jiang X, Chen S, Hu B. LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells. Int J Med Microbiol 2021; 311:151515. [PMID: 34146956 DOI: 10.1016/j.ijmm.2021.151515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes (Lm) can lead to high mortality rates relative to other foodborne pathogens. Lm-induced inflammation is partly characterized by macrophage activation. Long non-coding RNAs (lncRNAs) have important roles in various biological processes. However, it is unknown how lncRNAs regulate the host response to Lm infection. To identify the role of lncRNA in Lm infection, we used in vitro and in vivo models. We found that lincRNA-Cox2 was highly expressed in Lm-infected RAW264.7 cells. LincRNA-Cox2 knockdown resulted in reduced proinflammatory cytokines, apoptosis, migration ability and enhanced phagocytosis of Lm. LincRNA-Cox2 knockdown also reduced the phosphorylation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription (STAT3) and the nuclear translocation of nuclear factor (NF)-κB P65, which are known to be involved in inflammatory responses. Experimentally inhibiting the protein and phosphorylation levels of STAT3 resulted in reduced proinflammatory cytokines and enhanced phagocytosis of Lm by the RAW264.7 cells. Our research suggests that lincRNA-Cox2 plays important roles in inflammation, the phagocytic function and cell migration ability of RAW264.7 cells by activating interleukin (IL)-6/JAK3/STAT3 signaling, and lincRNA-Cox2 also regulates NF-κB P65 nuclear translocation. Our research provides new insights into the regulatory role of lincRNA-Cox2 in Lm infection.
Collapse
Affiliation(s)
- Yurong Zhu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, 041000, China
| | - Ye Lu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Clinical Laboratory, Yixing People's Hospital, Affiliated Jiangsu University, Wuxi, 214200, China
| | - Lin Yuan
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Ling
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xugan Jiang
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengxia Chen
- School of medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Bing Hu
- Department of Clinical Laboratory, Northern Jiangsu People' s Hospital, Yangzhou, 225001, China.
| |
Collapse
|
6
|
miRNAs and lncRNAs as Novel Therapeutic Targets to Improve Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13071587. [PMID: 33808190 PMCID: PMC8036682 DOI: 10.3390/cancers13071587] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer onset and progression are promoted by high deregulation of the immune system. Recently, major advances in molecular and clinical cancer immunology have been achieved, offering new agents for the treatment of common tumors, often with astonishing benefits in terms of prolonged survival and even cure. Unfortunately, most tumors are still resistant to current immune therapy approaches, and basic knowledge of the resistance mechanisms is eagerly awaited. We focused our attention on noncoding RNAs, a class of RNA that regulates many biological processes by targeting selectively crucial molecular pathways and that, recently, had their role in cancer cell immune escape and modulation of the tumor microenvironment identified, suggesting their function as promising immunotherapeutic targets. In this scenario, we point out that noncoding RNAs are progressively emerging as immunoregulators, and we depict the current information on the complex network involving the immune system and noncoding RNAs and the promising therapeutic options under investigation. Novel opportunities are emerging from noncoding-RNAs for the treatment of immune-refractory tumors. Abstract Immunotherapy is presently one of the most promising areas of investigation and development for the treatment of cancer. While immune checkpoint-blocking monoclonal antibodies and chimeric antigen receptor (CAR) T-cell-based therapy have recently provided in some cases valuable therapeutic options, the goal of cure has not yet been achieved for most malignancies and more efforts are urgently needed. Noncoding RNAs (ncRNA), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate several biological processes via selective targeting of crucial molecular signaling pathways. Recently, the key roles of miRNA and lncRNAs as regulators of the immune-response in cancer have progressively emerged, since they may act (i) by shaping the intrinsic tumor cell and microenvironment (TME) properties; (ii) by regulating angiogenesis, immune-escape, epithelial-to-mesenchymal transition, invasion, and drug resistance; and (iii) by acting as potential biomarkers for prognostic assessment and prediction of response to immunotherapy. In this review, we provide an overview on the role of ncRNAs in modulating the immune response and the TME. We discuss the potential use of ncRNAs as potential biomarkers or as targets for development or clinical translation of new therapeutics. Finally, we discuss the potential combinatory approaches based on ncRNA targeting agents and tumor immune-checkpoint inhibitor antibodies or CAR-T for the experimental treatment of human cancer.
Collapse
|
7
|
Liu X, Gao J, Wang J, Chu J, You J, Jin Z. Identification of two molecular subtypes of dysregulated immune lncRNAs in ovarian cancer. Exp Biol Med (Maywood) 2020; 246:547-559. [PMID: 33203236 DOI: 10.1177/1535370220972024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNA (lncRNA) has increasingly been identified as a key regulator in pathologies such as cancer. Multiple platforms were used for comprehensive analysis of ovarian cancer to identify molecular subgroups. However, lncRNA and its role in mapping the ovarian cancer subpopulation are still largely unknown. RNA-sequencing and clinical characteristics of ovarian cancer were acquired from The Cancer Genome Atlas database (TCGA). A total of 52 lncRNAs were identified as aberrant immune lncRNAs specific to ovarian cancer. We redefined two different molecular subtypes, C1(188) and C2(184 samples), in "iClusterPlus" R package, among which C2 grouped ovarian cancer samples have higher survival probability and longer median survival time (P <0.05) with activated IFN-gamma response, Wound Healing and Cytotoxic lymphocytes signal; 456 differentially expressed genes were acquired in C1 and C2 subtypes using limma (3.40.6) package, among which 419 were up-regulated and 37 were down-regulated, in TCGA dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis revealed that these genes were actively involved in ECM-receptor interaction, PI3K-Akt signaling pathway interaction KEGG pathway. Compared with the existing immune subtype, the Cluster2 sample showed a substantial increase in the proportion of the existing C2 immune subtype, accounting for 81.37%, which was associated with good prognosis. Our C1 subtype contains only 56.49% of the existing immune C1 and C4, which also explains the poor prognosis of C1. Furthermore, 52 immune-related lncRNAs were used to divide the TCGA-endometrial cancer and cervical cancer samples into two categories, and C2 had a good prognosis. The differentially expressed genes were highly correlated with immune-cell-related pathways. Based on lncRNA, two molecular subtypes of ovarian cancer were identified and had significant prognostic differences and immunological characteristics.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jinghai Gao
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jing Wang
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jing Chu
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiahao You
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhijun Jin
- Department of Gynaecology and Obstetrics, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
8
|
Sharma U, Barwal TS, Acharya V, Tamang S, Vasquez KM, Jain A. Cancer Susceptibility Candidate 9 (CASC9): A Novel Targetable Long Noncoding RNA in Cancer Treatment. Transl Oncol 2020; 13:100774. [PMID: 32450549 PMCID: PMC7256364 DOI: 10.1016/j.tranon.2020.100774] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Based on epidemiological data provided by the World Health Organization (2018), cancer is the second most prevalent cause of death worldwide. Several factors are thought to contribute to the high mortality rate in cancer patients, including less-than-optimal diagnostic and therapeutic strategies. Thus, there is an urgent need to identify accurate biomarkers with diagnostic, prognostic, and potential therapeutic applications. In this regard, long noncoding RNAs (lncRNAs) hold immense potential due to their regulatory roles in cancer development and associated cancer hallmarks. Recently, CASC9 transcripts have attracted significant attention due to their altered expression during the pathogenesis of cancer and their apparent contributions to various cancer-associated phenotypes involving a broad spectrum of molecular mechanisms. Here, we have provided an in-depth review describing the known functions of the lncRNA CASC9 in cancer development and progression.
Collapse
Affiliation(s)
- Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Varnali Acharya
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Suraksha Tamang
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
9
|
Construction of immune-related and prognostic lncRNA clusters and identification of their immune and genomic alterations characteristics in lung adenocarcinoma samples. Aging (Albany NY) 2020; 12:9868-9881. [PMID: 32445554 PMCID: PMC7288974 DOI: 10.18632/aging.103251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in various biological processes of lung adenocarcinoma (LUAD), such as immune response regulation, tumor microenvironment remodeling and genomic alteration. Nevertheless, immune-related lncRNAs and their immune and genomic alterations characteristics in LUAD samples still remain unreported. Here, using various public databases, statistic and software tools, we constructed two immune-related lncRNA clusters with different immune and genomic alterations characteristics. Notably, cluster 1 had a stronger immunosuppressive tumor microenvironment (TME) and a higher mutation frequency than cluster 2, especially the mutant genes, such as Kelch-like ECH-associated protein 1 (KEAP1) and toll like receptor 4 (TLR4). In cluster 1, both the amplified and deleted portions of copy number variation (CNV) segments were enriched and cyclin dependent kinase inhibitor 2A (CDKN2A) was significantly deleted. GSVA analysis revealed that these immune-related lncRNAs may be involved in stem cell and EMT functions. Furthermore, cluster 1 was related to worse prognosis of LUAD patients. Therefore, we constructed two immune-related and prognostic lncRNA clusters and identified their immune and genomic alterations characteristics in LUAD samples, which could well divide LUAD patients into different immune phenotypes and help to understand immune molecular mechanisms of LUAD.
Collapse
|
10
|
Liang Y, Li H, Gong X, Ding C. Long Non-coding RNA THRIL Mediates Cell Growth and Inflammatory Response of Fibroblast-Like Synoviocytes by Activating PI3K/AKT Signals in Rheumatoid Arthritis. Inflammation 2020; 43:1044-1053. [DOI: 10.1007/s10753-020-01189-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zhang L, Xu X, Su X. Noncoding RNAs in cancer immunity: functions, regulatory mechanisms, and clinical application. Mol Cancer 2020; 19:48. [PMID: 32122338 PMCID: PMC7050126 DOI: 10.1186/s12943-020-01154-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
It is well acknowledged that immune system is deeply involved in cancer initiation and progression, and can exert both pro-tumorigenic and anti-tumorigenic effects, depending on specific microenvironment. With the better understanding of cancer-associated immune cells, especially T cells, immunotherapy was developed and applied in multiple cancers and exhibits remarkable efficacy. However, currently only a subset of patients have responses to immunotherapy, suggesting that a boarder view of cancer immunity is required. Non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are identified as critical regulators in both cancer cells and immune cells, thus show great potential to serve as new therapeutic targets to improve the response of immunotherapy. In this review, we summarize the functions and regulatory mechanisms of ncRNAs in cancer immunity, and highlight the potential of ncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Le Zhang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, FL, 33612-9497, USA
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
12
|
Cancer stem cell-specific expression profiles reveal emerging bladder cancer biomarkers and identify circRNA_103809 as an important regulator in bladder cancer. Aging (Albany NY) 2020; 12:3354-3370. [PMID: 32065779 PMCID: PMC7066924 DOI: 10.18632/aging.102816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
Bladder cancer stem cells (BCSCs), exhibiting self-renewal and differentiation capacities, may contribute to the tumor initiation, metastasis, recurrence and drug resistance of bladder cancer. However, the underlying functional mechanisms of BCSCs remain to be clarified. In this study, we describe the differentially-expressed mRNAs, lncRNAs, and circRNAs in BCSCs compared with that in bladder cancer non-stem cells (BCNSCs) through the transcriptome microarray data analysis using bladder cancer patients’ specimens. CircRNA_103809, the top one among the highly expressed circRNA identified in BCSCs, promotes the self-renewal, migration and invasion capabilities of bladder cancer by acting as a miR-511 sponge. Additionally, GO and KEGG pathway analysis suggest the differentially expressed genes identified may be involved in the cellular metabolism, differentiation and metastasis regulation of the cancer cells. Co-expression networks of lncRNAs/mRNAs and circRNAs/mRNAs constructed by WGCNA give a picture of the non-coding/coding RNAs regulating patterns in BCSCs. Notably, as core genes in the networks, AHCY, C6orf136 and LRIG1 show high potential to be prognosticators for bladder cancer. Therefore, further studies of non-coding RNA functional mechanisms in BCSCs is valuable for detecting the pathogenic mechanisms and discovering novel biomarkers in bladder cancer.
Collapse
|
13
|
Xia Q, Li J, Yang Z, Zhang D, Tian J, Gu B. Long non-coding RNA small nucleolar RNA host gene 7 expression level in prostate cancer tissues predicts the prognosis of patients with prostate cancer. Medicine (Baltimore) 2020; 99:e18993. [PMID: 32049793 PMCID: PMC7035107 DOI: 10.1097/md.0000000000018993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long non-coding small nucleolar RNA host gene 7 (lncRNA SNHG7) is located on chromosome 9q34.3 in length of 984 bp. SNHG7 has been found to play the role of oncogene in varieties of cancers, and its dysregulation has been found to be associated with carcinogenesis and progression. In the present study, we examined the expression of SNHG7 in prostate cancer tissues and in paired adjacent normal prostate tissues, and we further explored the clinical significance and prognostic value of SNHG7 in prostate cancer patients.A total of 127 prostate cancer tissues were collected from prostate cancer patients who underwent radical prostatectomy between April 2011 and March 2019 at the department of urology, Pudong New Area People's Hospital. Real-time quantitative polymerase chain reaction experiment was performed to detect the relative expressions of SNHG7 in the prostate cancer tissues and normal prostate tissues. The Kaplan-Meier method was used to create survival curves and the log-rank test was used to determine statistical significance. A Cox proportional hazard analysis was used to evaluate the prognostic factors in univariate and multivariate analyses.Compared with paired adjacent normal prostatic tissues, SNHG7 expression was increased in prostate cancer tissues (P < .001). Increased SNHG7 expression correlated with Gleason score (P = .021), bone metastasis (P = .013), pelvic lymph node metastasis (P = .008), and TNM stage (P = .007). Multivariate Cox regression analyses revealed increased SNHG7 expression was independently associated with a poor prognosis of prostate cancer patients (hazard ratio [HR] = 2.839, 95% confidence interval [CI] = 1.921-8.382, P = .038).This study showed that lncRNA-SNHG7 was overexpressed in prostate cancer tissues, and it might contributes to the development and progression of prostate cancer. Furthermore, the SNHG7 expression was associated with the prognosis of prostate cancer, suggesting a potential target for the treatment and prognosis of prostate cancer. Nevertheless, the underlying modulatory mechanism by which SNHG7 aggravates prostate cancer progression need to be further studied.
Collapse
|
14
|
Ghayour-Mobarhan M, Ferns GA, Moghbeli M. Genetic and molecular determinants of prostate cancer among Iranian patients: An update. Crit Rev Clin Lab Sci 2020; 57:37-53. [PMID: 31895010 DOI: 10.1080/10408363.2019.1657061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common age-related cancers among men. Various environmental and genetic factors are involved in the development and progression of PCa. In most cases, the primary symptoms of disease are not severe. Therefore, it is common for patients to be referred with severe clinical manifestations at advanced stages of disease. Since this malignancy is age related and Iran will face a significant increase in the number of seniors, it is expected that the prevalence of PCa among Iranian men will rise. PCa progression has been observed to be associated with genetic and ethnic factors. It may therefore be clinically useful to determine a panel of genetic markers, in addition to routine diagnostic methods, to detect tumors in the early stages. In the present review, we have summarized the reported genetic markers in PCa Iranian patients to pave the way for the determination of an ethnic specific genetic marker panel for the early detection of PCa. To understand the genetic and molecular biology of PCa among Iranians, we have categorized these genetic markers based on their cellular functions.
Collapse
Affiliation(s)
- Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Wang JB, Li J, Zhang TP, Lv TT, Li LJ, Wu J, Leng RX, Fan YG, Pan HF, Ye DQ. Expression of several long noncoding RNAs in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Adv Med Sci 2019; 64:430-436. [PMID: 31563860 DOI: 10.1016/j.advms.2019.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/09/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Accumulating evidence has linked long noncoding RNAs (lncRNAs) to autoimmune and inflammatory disorders. This study aimed to detect the expression levels of five lncRNAs (lnc0640, lnc3643, lnc5150, lnc7514 and lncagf) in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE), as well as their correlation with clinical and laboratory features. MATERIALS/METHODS We recruited 76 patients with SLE and 71 normal controls into the present study, and obtained PBMCs from the blood samples of all study subjects. Expression levels of lncRNAs were determined by quantitative real-time reverse transcription polymerase chain reaction and their associations with clinical and laboratory characteristics were analyzed. RESULTS Lnc5150 expression levels were statistically significantly decreased (Z=-6.016, P < 0.001) compared with normal controls. Lnc3643 levels were also statistically significantly decreased in SLE patients with proteinuria compared with those without (Z=-2.934, P = 0.003), and the lnc7514 levels were statistically significantly lower in anti-dsDNA(+) patients compared with anti-dsDNA(-) patients. The expression levels of lnc3643 were correlated with C-reactive protein and erythrocyte sedimentation rate (ESR), lnc7514 was correlated with disease activity and ESR (all P < 0.01). CONCLUSIONS The aberrant lncRNA expression levels and their associations with laboratory features in SLE suggest their important role in SLE pathogenesis.
Collapse
|
16
|
Rezazadeh M, Hosseinzadeh H, Moradi M, Salek Esfahani B, Talebian S, Parvin S, Gharesouran J. Genetic discoveries and advances in late-onset Alzheimer's disease. J Cell Physiol 2019; 234:16873-16884. [PMID: 30790294 DOI: 10.1002/jcp.28372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/05/2025]
Abstract
Alzheimer's disease (AD) is a heterogeneous disorder with multiple patterns of clinical manifestations. Recently, due to the advance of linkage studies, next-generation sequencing and genome-wide association studies, a large number of putative risk genes for AD have been identified using acquired genome mega data. The genetic association between three causal genes, including amyloid precursor protein, presenilin1, and presenilin2 in early-onset AD (EOAD), was discovered over the past few decades. These discoveries showed that there should be additional genetic risk factors for both EOAD and late-onset AD (LOAD) to help fully explain the leading molecular mechanisms in a single pathophysiological entity. This study reviews the clinical features and genetic etiology of LOAD and discusses a variety of AD-mediated genes that are involved in cholesterol and lipid metabolism, endocytosis, and immune response according to their mutations for more efficient selection of functional candidate genes for LOAD. New mechanisms and pathways have been identified as a result.
Collapse
Affiliation(s)
- Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Moradi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Salek Esfahani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaho Parvin
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Song J, Liu T, Zhao Z, Hu X, Wu Q, Peng W, Chen X, Ying B. Genetic polymorphisms of long noncoding RNA RP11-37B2.1 associate with susceptibility of tuberculosis and adverse events of antituberculosis drugs in west China. J Clin Lab Anal 2019; 33:e22880. [PMID: 30924187 PMCID: PMC6595342 DOI: 10.1002/jcla.22880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 02/05/2023] Open
Abstract
Background Little knowledge about the biological functions of RP11‐37B2.1, a newly defined long noncoding RNA (lncRNA) molecule, is currently available. Previous studies have shown rs160441, located in the RP11‐37B2.1 gene, is significantly associated with tuberculosis (TB) in a Ghanaian and the Gambian populations. Methods We investigated the influence of single‐nucleotide polymorphisms (SNPs) within lncRNA RP11‐37B2.1 on the risk of TB and the possible correlation with adverse drug reactions (ADRs) from TB treatment in a Western Chinese population. Four SNPs within lncRNA RP11‐37B2.1 were genotyped in 554 TB cases and 561 healthy subjects using the improved multiplex ligation detection reaction method, and the patients were followed up monthly to monitor the development of ADRs. Results No significant association between the SNPs of lncRNA RP11‐37B2.1 and TB susceptibility was observed (all P > 0.05). Surprisingly, significant association was observed between two SNPs (rs218916 and rs160441) and thrombocytopenia development during anti‐TB therapy under the dominant model (P = 0.003 and 0.014, respectively). Conclusions Our findings firstly exhibit that rs218916 and rs160441 within lncRNA RP11‐37B2.1 significantly associate with the occurrence of thrombocytopenia and suggest RP11‐37B2.1 genetic variants are potential biosignatures for thrombocytopenia during anti‐TB treatment.
Collapse
Affiliation(s)
- Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wu Peng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuerong Chen
- Division of Pulmonary Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Pang B, Sui S, Wang Q, Wu J, Yin Y, Xu S. Upregulation of DLEU1 expression by epigenetic modification promotes tumorigenesis in human cancer. J Cell Physiol 2019; 234:17420-17432. [PMID: 30793303 DOI: 10.1002/jcp.28364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
The function of DLEU1 in human cancer is largely unknown. The Cancer Genome Atlas data were applied to identify the landscape of differential genes between tumor tissues and normal tissues, which was further validated by our cohort data and pan-cancer data including 33 cancer types with 11,060 patients. Next, DLEU1 was selected to validate the novel finding and result showed that it promoted tumorigenesis in vitro and in vivo. Mechanistically, DLEU1 promotes SRP4 expression via increasing H3K27ac enrichment to SRP4 locus epigenetically. Moreover, epigenetic modification leads to upregulation of DLEU1 expression via decreased DNA methylation and increased H3K27ac and H3K4me3 histone modification in its locus. Finally, high expression of DLEU1 correlates with worse prognosis not only in specific cancer type patients but also in patients in the pan-cancer cohort. In summary, the work broadens the function landscape of known long noncoding RNAs in human cancer and provides novel insights into their roles in tumorigenesis.
Collapse
Affiliation(s)
- Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junqiang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
19
|
Sattarifard H, Hashemi M, Hassanzarei S, Basiri A, Narouie B, Ghavami S. Long non-coding RNA POLR2E gene polymorphisms increased the risk of prostate cancer in a sample of the Iranian population. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 38:1-11. [PMID: 30587086 DOI: 10.1080/15257770.2017.1391394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The current study aimed to examine the impact of POLR2E rs1046040 and rs3787016 polymorphisms on prostate cancer (PCa) risk in a sample of southeast Iranian population. The present case-control study was performed on 178 patients with PCa and 180 benign prostatic hyperplasia (BPH). Genotyping of the variants was done by mismatch PCR-RFLP. The findings showed that the rs3787016 C > T variant significantly increased the risk of PCa in codominant (OR = 1.84, 95% CI = 1.12-3.03, P = 0.018, CT vs CC), dominant (OR = 1.88, 95% CI = 1.63-3.05, P = 0.011, CT + TT vas CC) and allele (OR = 1.77, 95% CI = 1.52-2.72, P = 0.010, T vs C) inheritance model. Regarding rs1046040 C > T polymorphism, the findings revealed that the CT genotype significantly increased the risk of PCa compared to the CC genotype (OR = 1.60, 95% CI = 1.03-2.49, P = 0.043). Furthermore, rs3787016 CT/rs1046040 CC as well as rs3787016 CT/rs1046040 CT increased the risk of PCa compared to the CC/CC genotype (p = 0.029 and p = 0.014, respectively). Haplotype analysis proposed that rs3787016 T/rs1046040 C significantly increased the risk of PCa compared to C/C (p = 0.037). No significant association was observed between POLR2E variants and clinicopathological characteristics of PCa patients. In conclusion, the findings propose that POLR2E variants may be a risk factor for susceptibility to PCa in a sample of Iranian population.
Collapse
Affiliation(s)
- Hedieh Sattarifard
- a Cellular and Molecular Research Center , Zahedan University of Medical Sciences , Zahedan , Iran.,b Department of Clinical Biochemistry, School of Medicine , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Mohammad Hashemi
- a Cellular and Molecular Research Center , Zahedan University of Medical Sciences , Zahedan , Iran.,b Department of Clinical Biochemistry, School of Medicine , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Shekoufeh Hassanzarei
- b Department of Clinical Biochemistry, School of Medicine , Zahedan University of Medical Sciences , Zahedan , Iran
| | - Abbas Basiri
- c Department of Urology, Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Behzad Narouie
- c Department of Urology, Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeid Ghavami
- d Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine , University of Manitoba , Winnipeg , Canada.,e Health Policy Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
20
|
Jin C, Bao J, Wang Y, Chen W, Wu T, Wang L, Lv X, Gao W, Wang B, Zhu G, Dai G, Sun W. Changes in long non-coding RNA expression profiles related to the antagonistic effects of Escherichia coli F17 on lamb spleens. Sci Rep 2018; 8:16514. [PMID: 30410073 PMCID: PMC6224397 DOI: 10.1038/s41598-018-34291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 10/18/2018] [Indexed: 12/17/2022] Open
Abstract
Sheep colibacillosis is one of the most common bacterial diseases found at large-scale sheep farms. The aim of this study was to employ RNA-seq to screen differentially expressed (DE) long non-coding RNAs (lncRNAs) that impart antagonistic or sensitive effects on Escherichia coli F17. In this study, individuals who had antagonistic or sensitive responses to E. coli F17 were identified by feeding E. coli F17 strains to Hu lambs. The sensitive group had higher levels of intestinal bacteria than that in the antagonistic group (P < 0.05), the jejunum showed various levels of mucosal tissue damage and had a dark colour, and disintegration of part of the small intestinal villi was observed. Totals of 34 DE lncRNAs and 703 DE mRNAs in two groups were identified. qRT-PCR results for 12 randomly selected DE lncRNAs and DE mRNAs were consistent with the RNA-seq data. Gene Ontology (GO), KEGG Pathway enrichment and lncRNA-mRNA interaction analyses identified 6 co-expressed genes, namely, MYO1G, TIMM29, CARM1, ADGRB1, SEPT4, and DESI2. This is the first study that has performed expression profiling of lncRNAs in the spleen of antagonistic and sensitive lambs. The identification of DE lncRNAs can facilitate investigations into the molecular mechanism underlying resistance to diarrhoea in sheep.
Collapse
Affiliation(s)
- Chengyan Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Jianjun Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yue Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Weihao Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Tianyi Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Lihong Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaoyang Lv
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Wen Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Buzhong Wang
- Jiangsu Xilaiyuan Ecological Agriculture Co., Ltd. Taizhou, 225300, Jiangsu, P. R. China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Guojun Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Wei Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China. .,Joint international research laboratory of agriculture and agri - product safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| |
Collapse
|
21
|
Ji S, Zhu M, Zhang J, Cai Y, Zhai X, Wang D, Li G, Su S, Zhou J. Microarray analysis of lncRNA expression in rabies virus infected human neuroblastoma cells. INFECTION GENETICS AND EVOLUTION 2018; 67:88-100. [PMID: 30391720 DOI: 10.1016/j.meegid.2018.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Rabies, caused by the rabies virus (RABV), is the oldest known zoonotic infectious disease. Although the molecular mechanisms of RABV pathogenesis have been investigated extensively, the interactions between host and RABV are not clearly understood. It is now known that long non-coding RNAs (lncRNAs) participate in various physiological and pathological processes, but their possible roles in the host response to RABV infection remain to be elucidated. To better understand the pathogenesis of RABV, RNAs from RABV-infected and uninfected human neuroblastoma cells (SK-N-SH) were analyzed using human lncRNA microarrays. We identified 896 lncRNAs and 579 mRNAs that were differentially expressed after infection, indicating a potential role for lncRNAs in the immune response to RABV. Differentially expressed RNAs were examined using Gene Ontology (GO) analysis and were tentatively assigned to biological pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG). A lncRNA-mRNA-transcription factor co-expression network was constructed to relate lncRNAs to regulatory factors and pathways that may be important in virus-host interactions. The network analysis suggests that E2F4, TAF7 and several lncRNAs function as transcriptional regulators in various signaling pathways. This study is the first global analysis of lncRNA and mRNA co-expression during RABV infection, provides deeper insight into the mechanism of RABV pathogenesis, and reveals promising candidate for future investigation.
Collapse
Affiliation(s)
- Senlin Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengyan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junyan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuchen Cai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaofeng Zhai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dong Wang
- China Institute of Veterina Drug Control, China
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Jiyong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
22
|
Chen L, Zhang YH, Pan X, Liu M, Wang S, Huang T, Cai YD. Tissue Expression Difference between mRNAs and lncRNAs. Int J Mol Sci 2018; 19:ijms19113416. [PMID: 30384456 PMCID: PMC6274976 DOI: 10.3390/ijms19113416] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
Messenger RNA (mRNA) and long noncoding RNA (lncRNA) are two main subgroups of RNAs participating in transcription regulation. With the development of next generation sequencing, increasing lncRNAs are identified. Many hidden functions of lncRNAs are also revealed. However, the differences in lncRNAs and mRNAs are still unclear. For example, we need to determine whether lncRNAs have stronger tissue specificity than mRNAs and which tissues have more lncRNAs expressed. To investigate such tissue expression difference between mRNAs and lncRNAs, we encoded 9339 lncRNAs and 14,294 mRNAs with 71 expression features, including 69 maximum expression features for 69 types of cells, one feature for the maximum expression in all cells, and one expression specificity feature that was measured as Chao-Shen-corrected Shannon's entropy. With advanced feature selection methods, such as maximum relevance minimum redundancy, incremental feature selection methods, and random forest algorithm, 13 features presented the dissimilarity of lncRNAs and mRNAs. The 11 cell subtype features indicated which cell types of the lncRNAs and mRNAs had the largest expression difference. Such cell subtypes may be the potential cell models for lncRNA identification and function investigation. The expression specificity feature suggested that the cell types to express mRNAs and lncRNAs were different. The maximum expression feature suggested that the maximum expression levels of mRNAs and lncRNAs were different. In addition, the rule learning algorithm, repeated incremental pruning to produce error reduction algorithm, was also employed to produce effective classification rules for classifying lncRNAs and mRNAs, which gave competitive results compared with random forest and could give a clearer picture of different expression patterns between lncRNAs and mRNAs. Results not only revealed the heterogeneous expression pattern of lncRNA and mRNA, but also gave rise to the development of a new tool to identify the potential biological functions of such RNA subgroups.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
- Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, 3000 CA Rotterdam, The Netherlands.
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Shaopeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
23
|
Ali A, Al-Tobasei R, Kenney B, Leeds TD, Salem M. Integrated analysis of lncRNA and mRNA expression in rainbow trout families showing variation in muscle growth and fillet quality traits. Sci Rep 2018; 8:12111. [PMID: 30108261 PMCID: PMC6092380 DOI: 10.1038/s41598-018-30655-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Muscle yield and quality traits are important for the aquaculture industry and consumers. Genetic selection for these traits is difficult because they are polygenic and result from multifactorial interactions. To study the genetic architecture of these traits, phenotypic characterization of whole body weight (WBW), muscle yield, fat content, shear force and whiteness were measured in ~500 fish representing 98 families from a growth-selected line. RNA-Seq was used to sequence the muscle transcriptome of different families exhibiting divergent phenotypes for each trait. We have identified 240 and 1,280 differentially expressed (DE) protein-coding genes and long noncoding RNAs (lncRNAs), respectively, in fish families exhibiting contrasting phenotypes. Expression of many DE lncRNAs (n = 229) was positively correlated with overlapping, neighboring or distantly located protein-coding genes (n = 1,030), resulting in 3,392 interactions. Three DE antisense lncRNAs were co-expressed with sense genes known to impact muscle quality traits. Forty-four DE lncRNAs had potential sponge functions to miRNAs that affect muscle quality traits. This study (1) defines muscle quality associated protein-coding and noncoding genes and (2) provides insight into non-coding RNAs involvement in regulating growth and fillet quality traits in rainbow trout.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294-0022, USA
| | - Brett Kenney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, 26506-6108, USA
| | - Timothy D Leeds
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, 25430, USA
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA. .,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
24
|
Yan F, Wang X, Zeng Y. 3D genomic regulation of lncRNA and Xist in X chromosome. Semin Cell Dev Biol 2018; 90:174-180. [PMID: 30017906 DOI: 10.1016/j.semcdb.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/19/2023]
Abstract
Long noncoding RNAs (lncRNAs) act as important regulators in cardiovascular diseases, neural degenerative disease, or cancers, by localizing and spreading across chromatins. lncRNA can regulate the 3D architecture of the enhancer cluster at the target gene locus, relevant to analogous lncRNA-protein coding gene pairs. X inactive specific transcript (Xist) plays a critical role in the process and biological function of lncRNAs. The lncRNA Jpx, Xist activator, is a nonprotein-coding RNA transcribed from a gene within the X-inactivation center and acts as a numerator element to control X-chromosome number and activate Xist transcription by interacting with CCCTC-binding factor. Up-regulated lncRNA Xist initiates X chromosome inactivation process and attracts specific chromatin modifiers. A number of chromatin-modified factors interact with lncRNAs modify 3D genome architecture and mediate Xist function in embryo development. Thus, the regulation of lncRNAs in 3D genome progresses is the key mechanism of Xist, as a therapeutic potential for Xist associated diseases.
Collapse
Affiliation(s)
- Furong Yan
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiangdong Wang
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, China.
| |
Collapse
|
25
|
Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. miR-410-3p promotes prostate cancer progression via regulating PTEN/AKT/mTOR signaling pathway. Biochem Biophys Res Commun 2018; 503:2459-2465. [PMID: 29969630 DOI: 10.1016/j.bbrc.2018.06.176] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 01/30/2023]
Abstract
Prostate cancer has become one of commonest urologic tumors in male. In recent years, miRNAs are continually attracting attentions of researchers for their special regulatory function in human cancers. Previous study has revealed that miR-410 acts as a biomarker for the diagnosis of prostate cancer. Whereas, the specific biological function of miR-410-3p in prostate cancer remains unknown. The aim of this study is to explore the function and molecular mechanism of miR-410-3p in prostate cancer. The high expression of miR-410-3p was examined in prostate cancer tissues and cell lines by qRT-PCR. Next, the prognostic value was identified by Kaplan Meier method. High expression of miR-410-3p indicated poor prognosis of prostate cancer patients. To investigate the biological function of miR-410-3p in prostate cancer, loss-of function assays were designed and performed in two prostate cancer cell lines (PC3 and DU145). As a result, downregulated miR-410-3p suppressed cell proliferation, migration and EMT progress. Moreover, flow cytometry analysis was performed to determine that the acceleration effects of miR-410-3p on cell apoptosis. Mechanistically, further analysis demonstrated that the effects of miR-410-3p exert oncogenic functions through downregulating PTEN. All findings in this study revealed that miR-410-3p inhibits prostate cancer progression via downregulating PTEN/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuelong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou City, Zhejiang province, 310014, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou City, Zhejiang province, 310014, China
| | - Jia Lv
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou City, Zhejiang province, 310014, China
| | - Shuai Wang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou City, Zhejiang province, 310014, China
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou City, Zhejiang province, 310014, China.
| |
Collapse
|
26
|
|
27
|
Ren GJ, Fan XC, Liu TL, Wang SS, Zhao GH. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs during Cryptosporidium baileyi infection. BMC Genomics 2018; 19:356. [PMID: 29747577 PMCID: PMC5946474 DOI: 10.1186/s12864-018-4754-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
Background Cryptosporidium baileyi is the most common Cryptosporidium species in birds. However, effective prevention measures and treatment for C. baileyi infection were still not available. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play important roles in regulating occurrence and progression of many diseases and are identified as effective biomarkers for diagnosis and prognosis of several diseases. In the present study, the expression profiles of host mRNAs, lncRNAs and circRNAs associated with C. baileyi infection were investigated for the first time. Results The tracheal tissues of experimental (C. baileyi infection) and control chickens were collected for deep RNA sequencing, and 545,479,934 clean reads were obtained. Of them, 1376 novel lncRNAs were identified, including 1161 long intergenic non-coding RNAs (lincRNAs) and 215 anti-sense lncRNAs. A total of 124 lncRNAs were found to be significantly differentially expressed between the experimental and control groups. Additionally, 14,698 mRNAs and 9085 circRNAs were identified, and significantly different expressions were observed for 1317 mRNAs and 104 circRNAs between two groups. Bioinformatic analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for their targets and source genes suggested that these dysregulated genes may be involved in the interaction between the host and C. baileyi. Conclusions The present study revealed the expression profiles of mRNAs, lncRNAs and circRNAs during C. baileyi infection for the first time, and sheds lights on the roles of lncRNAs and circRNAs underlying the pathogenesis of Cryptosporidium infection. Electronic supplementary material The online version of this article (10.1186/s12864-018-4754-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guan-Jing Ren
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Sha-Sha Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
28
|
Wang X, Zhang Q, Cai Z, Dai Y, Mou L. Identification of novel diagnostic biomarkers for thyroid carcinoma. Oncotarget 2017; 8:111551-111566. [PMID: 29340074 PMCID: PMC5762342 DOI: 10.18632/oncotarget.22873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Abstract
Thyroid carcinoma (THCA) is the most universal endocrine malignancy worldwide. Unfortunately, a limited number of large-scale analyses have been performed to identify biomarkers for THCA. Here, we conducted a meta-analysis using 505 THCA patients and 59 normal controls from The Cancer Genome Atlas. After identifying differentially expressed long non-coding RNA (lncRNA) and protein coding genes (PCG), we found vast difference in various lncRNA-PCG co-expressed pairs in THCA. A dysregulation network with scale-free topology was constructed. Four molecules (LA16c-380H5.2, RP11-203J24.8, MLF1 and SDC4) could potentially serve as diagnostic biomarkers of THCA with high sensitivity and specificity. We further represent a diagnostic panel with expression cutoff values. Our results demonstrate the potential application of those four molecules as novel independent biomarkers for THCA diagnosis.
Collapse
Affiliation(s)
- Xiliang Wang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.,Department of Biochemistry in Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qing Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
29
|
Sattarifard H, Hashemi M, Hassanzarei S, Narouie B, Bahari G. Association between genetic polymorphisms of long non-coding RNA PRNCR1 and prostate cancer risk in a sample of the Iranian population. Mol Clin Oncol 2017; 7:1152-1158. [PMID: 29285392 DOI: 10.3892/mco.2017.1462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to determine whether there is an association between the long non-coding RNA (lncRNA) prostate cancer-associated non-coding RNA 1 (PRNCR1) polymorphisms and prostate cancer (PCa) risk in a sample of the Iranian population. This case-control study was performed on 178 patients with PCa and 180 subjects with benign prostatic hyperplasia (BPH). Genotyping assay was performed by polymerase chain reaction-restriction fragment length polymorphism. The findings indicated that the GG genotype of the rs13252298 A>G variant significantly increased the risk of PCa (odds ratio=3.49, 95% confidence interval: 1.79-6.81, P=0.0001) compared with AA+AG. As regards the rs1456315 G>A polymorphism, the AG genotype and G allele significantly increased the risk of PCa. As regards the rs7841060 T>G variant, the findings demonstrated that this TG genotype and the G allele significantly increased the risk of PCa. The rs7007694 T>C variant was not found to be associated with the risk of PCa. Haplotype analysis indicated that GTGA and GTGG significantly increased the risk of PCa compared with rs1456315A/rs7007694T/rs7841060T/rs13252298G (ATTG). The PRNCR1 variants were not found to be significantly associated with the clinicopathological characteristics of PCa patients. In conclusion, our findings support an association between PRNCR1 variants and the risk of PCa in a sample of the Iranian population.
Collapse
Affiliation(s)
- Hedieh Sattarifard
- Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Shekoofeh Hassanzarei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Behzad Narouie
- Urology and Nephrology Research Center, Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| |
Collapse
|
30
|
Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y. New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8201672. [PMID: 28831399 PMCID: PMC5558637 DOI: 10.1155/2017/8201672] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohn's disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing He
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yujie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
31
|
Xu S, Kong D, Chen Q, Ping Y, Pang D. Oncogenic long noncoding RNA landscape in breast cancer. Mol Cancer 2017; 16:129. [PMID: 28738804 PMCID: PMC5525255 DOI: 10.1186/s12943-017-0696-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Background Few long noncoding RNAs (lncRNAs) that act as oncogenic genes in breast cancer have been identified. Methods Oncogenic lncRNAs associated with tumourigenesis and worse survival outcomes were examined and validated in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), respectively. Then, the potential biological functions and expression regulation of these lncRNAs were studied via bioinformatics and genome data analysis. Moreover, progressive breast cancer subtype-specific lncRNAs were investigated via high-throughput sequencing in our cohort and TCGA validation. To elucidate the mechanisms of the regulation of these lncRNAs, genomic alterations from the TCGA, Broad, Sanger and BCCRC data, as well as epigenetic modifications from GEO data, were then applied and examined to meet this objective. Finally, cell proliferation assays, flow cytometry analyses and TUNEL assays were applied to validate the oncogenic roles of these lncRNAs in vitro. Results A cluster of oncogenic lncRNAs that was upregulated in breast cancer tissue and was associated with worse survival outcomes was identified. These oncogenic lncRNAs are involved in regulating immune system activation and the TGF-beta and Jak-STAT signalling pathways. Moreover, TINCR, LINC00511, and PPP1R26-AS1 were identified as subtype-specific lncRNAs associated with HER-2, triple-negative and luminal B subtypes of breast cancer, respectively. The up-regulation of these oncogenic lncRNAs is mainly caused by gene amplification in the genome in breast cancer and other solid tumours. Finally, the knockdown of TINCR, DSCAM-AS1 or HOTAIR inhibited breast cancer cell proliferation, increased apoptosis and inhibited cell cycle progression in vitro. Conclusions These findings enhance the landscape of known oncogenic lncRNAs in breast cancer and provide insights into their roles. This understanding may potentially aid in the comprehensive management of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0696-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Dejia Kong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qianlin Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
32
|
Hosseini ES, Meryet-Figuiere M, Sabzalipoor H, Kashani HH, Nikzad H, Asemi Z. Dysregulated expression of long noncoding RNAs in gynecologic cancers. Mol Cancer 2017. [PMID: 28637507 PMCID: PMC5480155 DOI: 10.1186/s12943-017-0671-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cancers of the female reproductive system include ovarian, uterine, vaginal, cervical and vulvar cancers, which are termed gynecologic cancer. The emergence of long noncoding RNAs (lncRNAs), which are believed to play a crucial role in several different biological processes, has made the regulation of gene expression more complex. Although the function of lncRNAs is still rather elusive, their broad involvement in the initiation and progression of various cancers is clear. They are also involved in the pathogenesis of cancers of the female reproductive system. LncRNAs play a critical physiological role in apoptosis, metastasis, invasion, migration and cell proliferation in these cancers. Different expression profiles of lncRNAs have been observed in various types of tumors compared with normal tissues and between malignant and benign tumors. These differential expression patterns may lead to the promotion or suppression of cancer development and tumorigenesis. In the current review, we present the lncRNAs that show a differential expression between cancerous and normal tissues in ovarian, cervical and endometrial cancers, and highlight the associations between lncRNAs and some of the molecular pathways involved in these cancers.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Matthieu Meryet-Figuiere
- Normandie Univ, UNICAEN, INSERM, ANTICIPE U1086 (Interdisciplinary Research for Cancers prevention and treatment, axis BioTICLA (Biology and Innovative Therapeutics for Ovarian Cancer), Caen, France. .,UNICANCER, Comprehensive Cancer Centre François Baclesse, Caen, France.
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan, Iran
| |
Collapse
|
33
|
Mumtaz PT, Bhat SA, Ahmad SM, Dar MA, Ahmed R, Urwat U, Ayaz A, Shrivastava D, Shah RA, Ganai NA. LncRNAs and immunity: watchdogs for host pathogen interactions. Biol Proced Online 2017; 19:3. [PMID: 28465674 PMCID: PMC5406993 DOI: 10.1186/s12575-017-0052-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/06/2017] [Indexed: 01/23/2023] Open
Abstract
Immune responses combat various infectious agents by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. The polygenic responses to these external stimuli are temporally and coordinately regulated. Specific lncRNAs are induced to modulate innate and adaptive immune responses which can function through various target interactions like RNA-DNA, RNA-RNA, and RNA-protein interaction and hence affect the immunogenic regulation at various stages of gene expression. LncRNA are found to be present in various immune cells like monocytes, macrophages, dendritic cells, neutrophils, T cells and B cells. They have been shown to be involved in many biological processes, including the regulation of the expression of genes, the dosage compensation and genomics imprinting, but the knowledge how lncRNAs are regulated and how they alter cell differentiation/function is still obscure. Further dysregulation of lncRNA has been seen in many diseases, but as yet very less research has been carried out to understand the role of lncRNAs in regulation during host-pathogens interactions. In this review, we summarize the functional developments and mechanism of action of lncRNAs, in immunity and defense of host against pathogens.
Collapse
Affiliation(s)
- Peerzada Tajamul Mumtaz
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
- School of Life Sciences Jaipur National University, Jaipur, Rajasthan India
| | - Shakil Ahmad Bhat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Syed Mudasir Ahmad
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Mashooq Ahmad Dar
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Raashid Ahmed
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Uneeb Urwat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Aadil Ayaz
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Divya Shrivastava
- School of Life Sciences Jaipur National University, Jaipur, Rajasthan India
| | - Riaz Ahmad Shah
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Nazir Ahmad Ganai
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| |
Collapse
|
34
|
Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, Gan LM, Cao H, Liang Z. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol 2016; 13:98-108. [PMID: 26618242 DOI: 10.1080/15476286.2015.1122164] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antisense Noncoding RNA in the INK4 Locus (ANRIL) is the prime candidate gene at Chr9p21, the well-defined genetic risk locus associated with multiple human diseases including coronary artery disease (CAD), while little is known regarding its role in the pathological processes. Endothelial dysfunction triggers atherosclerotic processes that are causatively linked to CAD. To evaluate the function of ANRIL in human endothelial cells (ECs), we examined ANRIL expression under pathological stimuli and found ANRIL was markedly induced by pro-inflammatory factors. Loss-of-function and chromatin immunoprecipitation approaches revealed that NF-κB mediates TNF-α induced ANRIL expression. RNA sequencing revealed that ANRIL silencing dysregulated expression of inflammatory genes including IL6 and IL8 under TNF-α treatment. We explored the regulatory mechanism of ANRIL on IL6/8 and found that Yin Yang 1 (YY1), an ANRIL binding transcriptional factor revealed by RNA immunoprecipitation, was required for IL6/8 expression under TNF-α treatment. YY1 was enriched at promoter loci of IL6/8 and ANRIL silencing impaired the enrichment, indicating a cooperation between ANRIL and YY1 in the regulation of inflammatory genes. For the first time, we establish the connection between ANRIL and NF-κB pathway and show that ANRIL regulates inflammatory responses through binding with YY1. The newly identified TNF-α-NF-κB-ANRIL/YY1-IL6/8 pathway enhances understanding of the etiology of CAD and provides potential therapeutic target for treatment of CAD.
Collapse
Affiliation(s)
- Xiao Zhou
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Xiaorui Han
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Ann Wittfeldt
- b Department of Molecular and Clinical Medicine , Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg , Sweden
| | - Jingzhi Sun
- c Department of Cardiolody , Affiliated Hospital of Jining Medical University , Jining , 272000 , China
| | - Chujun Liu
- d Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Xiaoxia Wang
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Li-Ming Gan
- b Department of Molecular and Clinical Medicine , Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg , Sweden.,e AstraZeneca R&D , Mölndal , Sweden
| | - Huiqing Cao
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| | - Zicai Liang
- a Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University , Beijing , 100871 , China
| |
Collapse
|
35
|
Hodgkin Lymphoma Cells Have a Specific Long Noncoding RNA Expression Pattern. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2251-3. [PMID: 27456130 DOI: 10.1016/j.ajpath.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022]
Abstract
This commentary highlights the article by Tayari et al that suggests studying clinical implications of long noncoding RNAs as possible diagnostic and predictive biomarkers of Hodgkin lymphoma.
Collapse
|
36
|
Abstract
Precise and dynamic regulation of gene expression is a key feature of immunity. In recent years, rapid advances in transcriptome profiling analysis have led to recognize long non-coding RNAs (lncRNAs) as an additional layer of gene regulation context. In the immune system, lncRNAs are found to be widely expressed in immune cells including monocytes, macrophages, dendritic cells (DC), neutrophils, T cells and B cells during their development, differentiation and activation. However, the functional importance of immune-related lncRNAs is just emerging to be characterized. In this review, we discuss the up-to-date knowledge of lncRNAs in immune regulation.
Collapse
Affiliation(s)
- Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Corresponding author. Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 217, Chicago, IL 60611, USA. Tel.: +1 (773) 755 6380; fax: +1 (773) 755 6581.
| |
Collapse
|
37
|
Wang S, Wu X, Liu Y, Yuan J, Yang F, Huang J, Meng Q, Zhou C, Liu F, Ma J, Sun S, Zheng J, Wang F. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett 2016; 590:559-70. [PMID: 26801864 DOI: 10.1002/1873-3468.12078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 01/31/2023]
Abstract
In this study, we found that H19 is the most strongly differentially expressed long noncoding RNA (lncRNA) during liver development. H19 may inhibit the proliferation of fetal liver cells by blocking the interaction between heterogeneous nuclear ribonucleoprotein (hnRNP) U and actin, which results in gene transcriptional repression. Based on ChIP-seq analysis, we found that genes involved in the Wnt signaling pathway are enriched among hnRNP U-binding genes. Further investigation demonstrated that hnRNP U has opposing effects on cell proliferation and Wnt/β-catenin signaling pathway activity compared to H19 and that hnRNP U is very important in this process.
Collapse
Affiliation(s)
- Shaobing Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Xia Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yan Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jihang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jinfeng Huang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Qingyang Meng
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Chuanchuan Zhou
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Feng Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jinzhao Ma
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jiasheng Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Khandelwal A, Bacolla A, Vasquez KM, Jain A. Long non-coding RNA: A new paradigm for lung cancer. Mol Carcinog 2015; 54:1235-51. [PMID: 26332907 DOI: 10.1002/mc.22362] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/05/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Recent advances in whole genome transcriptome analysis have enabled the identification of numerous members of a novel class of non-coding RNAs, i.e., long non-coding RNAs (lncRNAs), which play important roles in a wide range of biological processes and whose deregulation causes human disease, including cancer. Herein we provide a comprehensive survey of lncRNAs associated with lung cancer, with particular focus on the functions that either facilitate or inhibit the progression of lung cancer and the pathways involved. Emerging data on the use of lncRNAs as biomarkers for the diagnosis and prognosis of cancer are also discussed. We cast this information within the wider perspective of lncRNA biogenesis and molecular functions in the cell. Relationships that exist between lncRNAs, genome-wide transcription, and lung cancer are discussed. Deepening our understanding on these processes is critical not only from a mechanistic standpoint, but also for the development of novel biomarkers and effective therapeutic targets for cancer patients.
Collapse
Affiliation(s)
- Akanksha Khandelwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, University of Texas, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, University of Texas, Austin, Texas
| | - Aklank Jain
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
39
|
Zhang Y, Cao X. Long noncoding RNAs in innate immunity. Cell Mol Immunol 2015; 13:138-47. [PMID: 26277893 PMCID: PMC4786632 DOI: 10.1038/cmi.2015.68] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in immune cell development and immune responses through different mechanisms, such as dosage compensation, imprinting, enhancer function, and transcriptional regulation. Although the functions of most lncRNAs are unclear, some lncRNAs have been found to control transcriptional or post-transcriptional regulation of the innate and adaptive immune responses via new methods of protein–protein interactions or pairing with DNA and RNA. Interestingly, increasing evidence has elucidated the importance of lncRNAs in the interaction between hosts and pathogens. In this review, an overview of the lncRNAs modes of action, as well as the important and diversified roles of lncRNAs in immunity, are provided, and an emerging paradigm of lncRNAs in regulating innate immune responses is highlighted.
Collapse
|
40
|
Zhu HQ, Zhou X, Chang H, Li HG, Liu FF, Ma CQ, Lu J. Aberrant Expression of CCAT1 Regulated by c-Myc Predicts the Prognosis of Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2015. [DOI: 10.7314/apjcp.2015.16.13.5181] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
41
|
Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol 2015; 6:175. [PMID: 25926836 PMCID: PMC4397839 DOI: 10.3389/fimmu.2015.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Grazisa Rossetti
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Sergio Abrignani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Massimiliano Pagani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milano , Italy
| |
Collapse
|