1
|
Ungefroren H, Randeva H, Lehnert H, Schrader J, Marquardt JU, Konukiewitz B, Hass R. Crosstalk of TGF-β and somatostatin signaling in adenocarcinoma and neuroendocrine tumors of the pancreas: a brief review. Front Endocrinol (Lausanne) 2025; 16:1511348. [PMID: 40134804 PMCID: PMC11934628 DOI: 10.3389/fendo.2025.1511348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/27/2025] Open
Abstract
Although the vast majority of cancers affecting the human pancreas are pancreatic ductal adenocarcinomas (PDAC), there are several other cancer types originating from non-exocrine cells of this organ, i.e., pancreatic neuroendocrine tumors (panNET). Genomic analyses of PDAC and panNET revealed that certain signaling pathways such as those triggered by transforming growth factor-β (TGF-β) are frequently altered, highlighting their crucial role in pancreatic tumor development. In PDAC, TGF-β plays a dual role acting as a tumor suppressor in healthy tissue and early stages of tumor development but as a promoter of tumor progression in later stages. This peptide growth factor acts as a potent inducer of epithelial-to-mesenchymal transition (EMT), a developmental program that transforms otherwise stationary epithelial cells to invasive mesenchymal cells with enhanced metastatic potential. TGF-β signals through both the canonical Smad pathway involving the receptor-regulated Smad proteins, SMAD2 and SMAD3, and the common-mediator Smad, SMAD4, as well as Smad-independent pathways, i.e., ERK1/2, PI3K/AKT, and somatostatin (SST). Accumulating evidence indicates an intimate crosstalk between TGF-β and SST signaling, not only in PDAC but, more recently, also in panNET. In this work, we review the available evidence on signaling interactions between both pathways, which we believe are of potential but as yet insufficiently appreciated importance for pancreatic cancer development and/or progression as well as novel therapeutic approaches.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- Institute of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
| | - Harpal Randeva
- University Hospital of Coventry and Warwickshire (UHCW) and Warwick Medical School, Coventry, United Kingdom
| | - Hendrik Lehnert
- University Hospital of Coventry and Warwickshire (UHCW) and Warwick Medical School, Coventry, United Kingdom
| | - Jörg Schrader
- First Department of Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Qu P, Shao Z, Zhang Y, He J, Lu D, Wei W, Hua J, Wang W, Wang J, Ding N. Primary cilium participates in radiation-induced bystander effects through TGF-β1 signaling. J Cell Physiol 2024; 239:e31163. [PMID: 38009273 DOI: 10.1002/jcp.31163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Many studies have indicated that tumor growth factor-beta (TGF-β) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-β signaling to regulate diverse cellular processes. But whether the PC participates in TGF-β induced RIBEs remains unclear. The cellular levels of TGF-β1 were detected by western blot analysis and the secretion of TGF-β1 was measured by ELISA kit. The ciliogenesis was altered by CytoD treatment, STIL siRNA transfection, IFT88 siRNA transfection, or KIF3a siRNA transfection, separately, and was detected by western blot analysis and immunofluorescence staining. G0 /G1 phase cells were arrested by serum starvation and S phase cells were induced by double thymidine block. The TGF-β1 signaling was interfered by LY2109761, a TGF-β receptor 1 (TβR1) inhibitor, or TGF-β1 neutral antibody. The DNA damages were induced by TGF-β1 or radiated conditional medium (RCM) from irradiated cells and were reflected by p21 expression, 53BP1 foci, and γH2AX foci. Compared with unirradiated control, both A549 and Beas-2B cells expressed and secreted more TGF-β1 after carbon ion beam or X-ray irradiation. RCM collected from irradiated cells or TGF-β1 treatment caused an increase of DNA damage in cocultured unirradiated Beas-2B cells while blockage of TGF-β signaling by TβR1 inhibitor or TGF-β1 neutral antibody alleviates this phenomenon. IFT88 siRNA or KIF3a siRNA impaired PC formation resulted in an aggravated DNA damage in bystander cells, while elevated PC formation by CytoD or STIL siRNA resulted in a decrease of DNA damage. Furthermore, TGF-β1 induced more DNA damages in S phases cells which showed lower PC formation rate and less DNA damages in G0 /G1 phase cells which showed higher PC formation rate. This study demonstrates the particular role of primary cilia during RCM induced DNA damages through TGF-β1 signaling restriction and thereby provides a functional link between primary cilia and RIBEs.
Collapse
Affiliation(s)
- Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urological Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
He X, Cai L, Tang H, Chen W, Hu W. Epigenetic modifications in radiation-induced non-targeted effects and their clinical significance. Biochim Biophys Acta Gen Subj 2023; 1867:130386. [PMID: 37230420 DOI: 10.1016/j.bbagen.2023.130386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ionizing radiation (IR) plays an important role in the diagnosis and treatment of cancer. Besides the targeted effects, the non-targeted effects, which cause damage to non-irradiated cells and genomic instability in normal tissues, also play a role in the side effects of radiotherapy and have been shown to involve both alterations in DNA sequence and regulation of epigenetic modifications. SCOPE OF REVIEW We summarize the recent findings regarding epigenetic modifications that are involved in radiation-induced non-targeted effects as well as their clinical significance in radiotherapy and radioprotection. MAJOR CONCLUSIONS Epigenetic modifications play an important role in both the realization and modulation of radiobiological effects. However, the molecular mechanisms underlying non-targeted effects still need to be clarified. GENERAL SIGNIFICANCE A better understanding of the epigenetic mechanisms related to radiation-induced non-targeted effects will guide both individualized clinical radiotherapy and individualized precise radioprotection.
Collapse
Affiliation(s)
- Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weibo Chen
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Tang H, Cai L, He X, Niu Z, Huang H, Hu W, Bian H, Huang H. Radiation-induced bystander effect and its clinical implications. Front Oncol 2023; 13:1124412. [PMID: 37091174 PMCID: PMC10113613 DOI: 10.3389/fonc.2023.1124412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
For many years, targeted DNA damage caused by radiation has been considered the main cause of various biological effects. Based on this paradigm, any small amount of radiation is harmful to the organism. Epidemiological studies of Japanese atomic bomb survivors have proposed the linear-non-threshold model as the dominant standard in the field of radiation protection. However, there is increasing evidence that the linear-non-threshold model is not fully applicable to the biological effects caused by low dose radiation, and theories related to low dose radiation require further investigation. In addition to the cell damage caused by direct exposure, non-targeted effects, which are sometimes referred to as bystander effects, abscopal effects, genetic instability, etc., are another kind of significant effect related to low dose radiation. An understanding of this phenomenon is crucial for both basic biomedical research and clinical application. This article reviews recent studies on the bystander effect and summarizes the key findings in the field. Additionally, it offers a cross-sectional comparison of bystander effects caused by various radiation sources in different cell types, as well as an in-depth analysis of studies on the potential biological mechanisms of bystander effects. This review aims to present valuable information and provide new insights on the bystander effect to enlighten both radiobiologists and clinical radiologists searching for new ways to improve clinical treatments.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zihe Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Haitong Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Huahui Bian
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| |
Collapse
|
8
|
Qin F, Chen G, Yu KN, Yang M, Cao W, Kong P, Peng S, Sun M, Nie L, Han W. Golgi Phosphoprotein 3 Mediates Radiation-Induced Bystander Effect via ERK/EGR1/TNF-α Signal Axis. Antioxidants (Basel) 2022; 11:2172. [PMID: 36358544 PMCID: PMC9686538 DOI: 10.3390/antiox11112172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
The radiation-induced bystander effect (RIBE), an important non-targeted effect of radiation, has been proposed to be associated with irradiation-caused secondary cancers and reproductive damage beyond the irradiation-treated area after radiotherapy. However, the mechanisms for RIBE signal(s) regulation and transduction are not well understood. In the present work, we found that a Golgi protein, GOLPH3, was involved in RIBE transduction. Knocking down GOLPH3 in irradiated cells blocked the generation of the RIBE, whereas re-expression of GOLPH3 in knockdown cells rescued the RIBE. Furthermore, TNF-α was identified as an important intercellular signal molecule in the GOLPH3-mediated RIBE. A novel signal axis, GOLPH3/ERK/EGR1, was discovered to modulate the transcription of TNF-α and determine the level of released TNF-α. Our findings provide new insights into the molecular mechanism of the RIBE and a potential target for RIBE modulation.
Collapse
Affiliation(s)
- Feng Qin
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Mingyu Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Lili Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| |
Collapse
|
9
|
Hansda S, Ghosh G, Ghosh R. The Role of Bystander Effect in Ultraviolet A Induced Photoaging. Cell Biochem Biophys 2022; 80:657-664. [PMID: 36190618 DOI: 10.1007/s12013-022-01099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
Exposure to sunlight, mainly UVA, leads to typical changes in the features of the skin known as photoaging. UVA irradiation induces the expression of proteases that are responsible for the degradation of the extracellular matrix proteins to results in photoaging; it also downregulates the expression of proteins that are needed for the skin structure. Since, it is known that cells in the neighborhood of irradiated cells, but not directly exposed to it, often manifest responses like their irradiated counterparts, it is important to evaluate if these bystander cells too, can contribute to photoaging. UVA induced cell cycle arrest has been associated with photoaging, from flow cytometry analysis we found that there was an induction of cell cycle arrest at the G1/S phase in the UVA-bystander cells. The expression of some key photoaging marker genes likes, matrix metalloproteinases (MMP-1, MMP-3, MMP-9), cyclooxygenase-2 (COX-2), collagen1 and elastin were assessed from qRT-PCR. Up-regulation of MMP-1 and COX-2, downregulation of collagen1 and elastin, along with suppression below normal expression for MMP-3 and MMP-9 was observed in the UVA-bystander A375 cells. Our findings suggest that UVA-bystander cells may contribute to the process of photoaging.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Gargi Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
10
|
Guo Z, Zhou G, Hu W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022; 32:100828. [PMID: 35908380 PMCID: PMC9340504 DOI: 10.1016/j.neo.2022.100828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The carcinogenic risk from space radiation has always been a health risk issue of great concern during space exploration. In recent years, a large number of cellular and animal experiments have demonstrated that space radiation, composed of high-energy protons and heavy ions, has shown obvious carcinogenicity. However, different from radiation on Earth, space radiation has the characteristics of high energy and low dose rate. It is rich in high-atom-number and high-energy particles and, as it is combined with other space environmental factors such as microgravity and a weak magnetic field, the study of its carcinogenic effects and mechanisms of action is difficult, which leads to great uncertainty in its carcinogenic risk assessment. Here, we review the latest progress in understanding the effects and mechanisms of action related to cell transformation and carcinogenesis induced by space radiation in recent years and summarize the prediction models of cancer risk caused by space radiation and the methods to reduce the uncertainty of prediction to provide reference for the research and risk assessment of space radiation.
Collapse
Affiliation(s)
- Zi Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China.
| |
Collapse
|
11
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
12
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants (Basel) 2022; 11:antiox11030480. [PMID: 35326131 PMCID: PMC8944605 DOI: 10.3390/antiox11030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Cell senescence is critical in diverse aspects of organism life. It is involved in tissue development and homeostasis, as well as in tumor suppression. Consequently, it is tightly integrated with basic physiological processes during life. On the other hand, senescence is gradually being considered as a major contributor of organismal aging and age-related diseases. Increased oxidative stress is one of the main risk factors for cellular damages, and thus a driver of senescence. In fact, there is an intimate link between cell senescence and response to different types of cellular stress. Oxidative stress occurs when the production of reactive oxygen species/reactive nitrogen species (ROS/RNS) is not adequately detoxified by the antioxidant defense systems. Non-coding RNAs are endogenous transcripts that govern gene regulatory networks, thus impacting both physiological and pathological events. Among these molecules, microRNAs, long non-coding RNAs, and more recently circular RNAs are considered crucial mediators of almost all cellular processes, including those implicated in oxidative stress responses. Here, we will describe recent data on the link between ROS/RNS-induced senescence and the current knowledge on the role of non-coding RNAs in the senescence program.
Collapse
|
13
|
Li P, Song J, Du H, Lu Y, Dong S, Zhou S, Guo Z, Wu H, Zhao X, Qin Y, Zhu N. MicroRNA-663 prevents monocrotaline-induced pulmonary arterial hypertension by targeting TGF-β1/smad2/3 signaling. J Mol Cell Cardiol 2021; 161:9-22. [PMID: 34339758 DOI: 10.1016/j.yjmcc.2021.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Pulmonary vascular remodeling due to excessive growth factor production and pulmonary artery smooth muscle cells (PASMCs) proliferation is the hallmark feature of pulmonary arterial hypertension (PAH). Recent studies suggest that miR-663 is a potent modulator for tumorigenesis and atherosclerosis. However, whether miR-663 involves in pulmonary vascular remodeling is still unclear. METHODS AND RESULTS By using quantitative RT-PCR, we found that miR-663 was highly expressed in normal human PASMCs. In contrast, circulating level of miR-663 dramatically reduced in PAH patients. In addition, in situ hybridization showed that expression of miR-663 was decreased in pulmonary vasculature of PAH patients. Furthermore, MTT and cell scratch-wound assay showed that transfection of miR-663 mimics significantly inhibited platelet derived growth factor (PDGF)-induced PASMCs proliferation and migration, while knockdown of miR-663 expression enhanced these effects. Mechanistically, dual-luciferase reporter assay revealed that miR-663 directly targets the 3'UTR of TGF-β1. Moreover, western blots and ELISA results showed that miR-663 decreased PDGF-induced TGF-β1 expression and secretion, which in turn suppressed the downstream smad2/3 phosphorylation and collagen I expression. Finally, intratracheal instillation of adeno-miR-663 efficiently inhibited the development of pulmonary vascular remodeling and right ventricular hypertrophy in monocrotaline (MCT)-induced PAH rat models. CONCLUSION These results indicate that miR-663 is a potential biomarker for PAH. MiR-663 decreases PDGF-BB-induced PASMCs proliferation and prevents pulmonary vascular remodeling and right ventricular hypertrophy in MCT-PAH by targeting TGF-β1/smad2/3 signaling. These findings suggest that miR-663 may represent as an attractive approach for the diagnosis and treatment for PAH.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - He Du
- Department of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Yuwen Lu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shaohua Dong
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Siwei Zhou
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yongwen Qin
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
14
|
AL-Abedi R, Tuncay Cagatay S, Mayah A, Brooks SA, Kadhim M. Ionising Radiation Promotes Invasive Potential of Breast Cancer Cells: The Role of Exosomes in the Process. Int J Mol Sci 2021; 22:ijms222111570. [PMID: 34769002 PMCID: PMC8583851 DOI: 10.3390/ijms222111570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
Along with the cells that are exposed to radiation, non-irradiated cells can unveil radiation effects as a result of intercellular communication, which are collectively defined as radiation induced bystander effects (RIBE). Exosome-mediated signalling is one of the core mechanisms responsible for multidirectional communication of tumor cells and their associated microenvironment, which may result in enhancement of malignant tumor phenotypes. Recent studies show that exosomes and exosome-mediated signalling also play a dynamic role in RIBE in cancer cell lines, many of which focused on altered exosome cargo or their effects on DNA damage. However, there is a lack of knowledge regarding how these changes in exosome cargo are reflected in other functional characteristics of cancer cells from the aspects of invasiveness and metastasis. Therefore, in the current study, we aimed to investigate exosome-mediated bystander effects of 2 Gy X-ray therapeutic dose of ionizing radiation on the invasive potential of MCF-7 breast cancer cells in vitro via assessing Matrigel invasion potential, epithelial mesenchymal transition (EMT) characteristics and the extent of glycosylation, as well as underlying plausible molecular mechanisms. The findings show that exosomes derived from irradiated MCF-7 cells enhance invasiveness of bystander MCF-7 cells, possibly through altered miRNA and protein content carried in exosomes.
Collapse
|
15
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
16
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
17
|
Guo Z, Dai Y, Hu W, Zhang Y, Cao Z, Pei W, Liu N, Nie J, Wu A, Mao W, Chang L, Li B, Pei H, Hei TK, Zhou G. The long noncoding RNA CRYBG3 induces aneuploidy by interfering with spindle assembly checkpoint via direct binding with Bub3. Oncogene 2021; 40:1821-1835. [PMID: 33564066 PMCID: PMC7946627 DOI: 10.1038/s41388-020-01601-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023]
Abstract
Aneuploidy is a hallmark of genomic instability that leads to tumor initiation, progression, and metastasis. CDC20, Bub1, and Bub3 form the mitosis checkpoint complex (MCC) that binds the anaphase-promoting complex or cyclosome (APC/C), a crucial factor of the spindle assembly checkpoint (SAC), to ensure the bi-directional attachment and proper segregation of all sister chromosomes. However, just how MCC is regulated to ensure normal mitosis during cellular division remains unclear. In the present study, we demonstrated that LNC CRYBG3, an ionizing radiation-inducible long noncoding RNA, directly binds with Bub3 and interrupts its interaction with CDC20 to result in aneuploidy. The 261-317 (S3) residual of the LNC CRYBG3 sequence is critical for its interaction with Bub3 protein. Overexpression of LNC CRYBG3 leads to aneuploidy and promotes tumorigenesis and metastasis of lung cancer cells, implying that LNC CRYBG3 is a novel oncogene. These findings provide a novel mechanistic basis for the pathogenesis of NSCLC after exposure to ionizing radiation as well as a potential target for the diagnosis, treatment, and prognosis of an often fatal disease.
Collapse
Affiliation(s)
- Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yongsheng Zhang
- Department of Pathology, the Second Affiliated Hospital, Medical College of Soochow University, Suzhou, 215123, China
| | - Zhifei Cao
- Department of Pathology, the Second Affiliated Hospital, Medical College of Soochow University, Suzhou, 215123, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ningang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Weidong Mao
- Department of Pathology, the Second Affiliated Hospital, Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Tom K Hei
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, NY, USA.
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
18
|
Swati, Chadha VD. Role of epigenetic mechanisms in propagating off-targeted effects following radiation based therapies - A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108370. [PMID: 34083045 DOI: 10.1016/j.mrrev.2021.108370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Despite being an important diagnostic and treatment modality, ionizing radiation (IR) is also known to cause genotoxicity and multiple side effects leading to secondary carcinogenesis. While modern cancer radiation therapy has improved patient recovery and enhanced survival rates, the risk of radiation-related adverse effects has become a growing challenge. It is now well-accepted that IR-induced side effects are not exclusively restricted to exposed cells but also spread to distant 'bystander' cells and even to the unexposed progeny of the irradiated cells. These 'off-targeted' effects involve a plethora of molecular events depending on the type of radiation and tumor tissue background. While the mechanisms by which off-targeted effects arise remain obscure, emerging evidence based on the non-mendelian inheritance of various manifestations of them as well as their persistence for longer periods supports a contribution of epigenetic factors. This review focuses on the major epigenetic phenomena including DNA methylation, histone modifications, and small RNA mediated silencing and their versatile role in the manifestation of IR induced off-targeted effects. As short- and long-range communication vehicles respectively, the role of gap junctions and exosomes in spreading these epigenetic-alteration driven off-targeted effects is also discussed. Furthermore, this review emphasizes the possible therapeutic potentials of these epigenetic mechanisms and how beneficial outcomes could potentially be achieved by targeting various signaling molecules involved in these mechanisms.
Collapse
Affiliation(s)
- Swati
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| | - Vijayta D Chadha
- Centre for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
19
|
Mukherjee S, Dutta A, Chakraborty A. External modulators and redox homeostasis: Scenario in radiation-induced bystander cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108368. [PMID: 34083032 DOI: 10.1016/j.mrrev.2021.108368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 01/07/2023]
Abstract
Redox homeostasis is imperative to maintain normal physiologic and metabolic functions. Radiotherapy disturbs this balance and induces genomic instability in diseased cells. However, radiation-induced effects propagate beyond the targeted cells, affecting the adjacent non-targeted cells (bystander effects). The cellular impact of radiation, thus, encompasses both targeted and non-targeted effects. Use of external modulators along with radiation can increase radio-therapeutic efficiency. The modulators' classification as protectors or sensitizers depends on interactions with damaged DNA molecules. Thus, it is necessary to realize the functions of various radio-sensitizers or radio-protectors in both irradiated and bystander cells. This review focuses on some modulators of radiation-induced bystander effects (RIBE) and their action mechanisms. Knowledge about the underlying signaling cross-talk may promote selective sensitization of radiation-targeted cells and protection of bystander cells.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Dutta
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India
| | - Anindita Chakraborty
- Stress Biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, India.
| |
Collapse
|
20
|
Ni N, Ma W, Tao Y, Liu J, Hua H, Cheng J, Wang J, Zhou B, Luo D. Exosomal MiR-769-5p Exacerbates Ultraviolet-Induced Bystander Effect by Targeting TGFBR1. Front Physiol 2020; 11:603081. [PMID: 33329055 PMCID: PMC7719707 DOI: 10.3389/fphys.2020.603081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Exosomal microRNAs have been investigated in bystander effect, but it is unclear whether microRNA works in ultraviolet radiation-induced bystander effects (UV-RIBEs) and what the underlying mechanism could be. Exosomes from ultraviolet (UV)-irradiated human skin fibroblasts (HSFs) were isolated and transferred to normal HSFs, followed by the detection of proliferation rate, oxidative damage level, and apoptosis rate. Exosomal miRNAs were evaluated and screened with miRNA sequencing and quantitative reverse transcriptase-polymerase chain reaction method. MiRNA shuttle and bystander photodamage reactions were observed after transfection of miR-769-5p. MiR-769-5p targeting gene transforming growth factor-β1 (TGFBR1), and TGFBR1 mRNA 3'-untranslated region (UTR) was assessed and identified by Western blotting and dual-luciferase reporter assay. Bystander effects were induced after being treated with isolated exosomes from UV-irradiated HSFs. Exosomal miR-769-5p expression was significantly upregulated. Human skin fibroblasts showed lower proliferation, increasing oxidative damage, and faster occurrence of apoptosis after transfection. Exosome-mediated transfer of miR-769-5p was observed. Upregulation of miR-769-5p induced bystander effects, whereas downregulation of miR-769-5p can suppress UV-RIBEs. In addition, miR-769-5p was found to downregulate TGFBR1 gene expression by directly targeting its 3'-UTR. Our results demonstrate that exosome-mediated miR-769-5p transfer could function as an intercellular messenger and exacerbate UV-RIBEs. MiR-769-5p inhibits the expression of TGFBR1 by targeting TGFBR1 mRNA 3'-UTR.
Collapse
Affiliation(s)
- Na Ni
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanling Tao
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Hua
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawei Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-Induced Bystander Effect can be Transmitted Through Exosomes Using miRNAs as Effector Molecules. Radiat Res 2020; 194:89-100. [PMID: 32343639 DOI: 10.1667/rade-20-00019.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The radiation-induced bystander effect (RIBE) is a destructive reaction in nonirradiated cells and is one primary factor in determining the efficacy and success of radiation therapy in the field of cancer treatment. Previously reported studies have shown that the RIBE can be mediated by exosomes that carry miRNA components within. Exosomes, which are one type of cell-derived vesicle, exist in different biological conditions and serve as an important additional pathway for signal exchange between cells. In addition, exosome-derived miRNAs are confirmed to play an important role in RIBE, activating the bystander effect and genomic instability after radiotherapy. After investigating the field of RIBE, it is important to understand the mechanisms and consequences of biological effects as well as the role of exosomes and exosomal miRNAs therein, from different sources and under different circumstances, respectively. More discoveries could help to establish early interventions against RIBE while improving the efficacy of radiotherapy. Meanwhile, measures that would alleviate or even inhibit RIBE to some extent may exist in the near future.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feihong Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|
23
|
Zhou G, Hu W, Pei H, Chen H, Hei TK. Recent progress on the Chinese space programme and radiation research. Ann ICRP 2020; 49:213-216. [PMID: 32734778 DOI: 10.1177/0146645320940828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manned space exploration was initiated in China in 1992, and substantial progress has been made. The next step is to build the Chinese Space Station (CSS), which is planned to be launched in 2020. The CSS will provide an on-orbit laboratory for experimental studies including space radiation research. The health risk of space radiation, especially carcinogenesis, is a major concern for long-term space exploration. Establishing a risk assessment system suitable for Chinese astronauts and developing effective countermeasures are major tasks for Chinese space radiobiologists. The Institute of Space Life Sciences, Soochow University has focused on these topics for years. We established cancer models with low-dose-rate exposure of alpha particles, and elucidated a microRNA-TGFβ network regulating bystander effects and a lncRNA-cytoskeleton network regulating genomic instability induced by ionising radiation. We also confirmed the radioresistance of quiescent cells, which inspires a potential strategy to improve individual radioresistance during long-term space travel. However, we believe that a multi-disciplinary strategy must be developed to protect astronauts from highly energised space radiation.
Collapse
Affiliation(s)
- G Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Life Sciences in Space, Medical College of Soochow University, Suzhou 215123, China; e-mail: .,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, China
| | - W Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Life Sciences in Space, Medical College of Soochow University, Suzhou 215123, China; e-mail: .,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, China
| | - H Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Life Sciences in Space, Medical College of Soochow University, Suzhou 215123, China; e-mail: .,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, China
| | - H Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Life Sciences in Space, Medical College of Soochow University, Suzhou 215123, China; e-mail: .,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, China
| | - T K Hei
- Columbia University Medical Center, USA
| |
Collapse
|
24
|
Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, Motevaseli E, Mirtavoos-Mahyari H, Eleojo Musa A, Najafi M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 2020; 155:104745. [PMID: 32145401 DOI: 10.1016/j.phrs.2020.104745] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidences show that changes in tumor stroma can adapt cancer cells to radiotherapy, thereby leading to a reduction in tumor response to treatment. On the other hand, radiotherapy is associated with severe reactions in normal tissues which limit the amount radiation dose received by tumor. These challenges open a window in radiobiology and radiation oncology to explore mechanisms for improving tumor response and also alleviate side effects of radiotherapy. Transforming growth factor beta (TGF-β) is a well-known and multitasking cytokine that regulates a wide range of reactions and interactions within tumor and normal tissues. Within tumor microenvironment (TME), TGF-β is the most potent suppressor of immune system activity against cancer cells. This effect is mediated through stimulation of CD4+ which differentiates to T regulatory cells (Tregs), infiltration of fibroblasts and differentiation into cancer associated fibroblasts (CAFs), and also polarization of macrophages to M2 cells. These changes lead to suppression of cytotoxic CD8 + T lymphocytes (CTLs) and natural killer (NK) cells to kill cancer cells. TGF-β also plays a key role in the angiogenesis, invasion and DNA damage responses (DDR) in cancer cells. In normal tissues, TGF-β triggers the expression of a wide range of pro-oxidant and pro-fibrosis genes, leading to fibrosis, genomic instability and some other side effects. These properties of TGF-β make it a potential target to preserve normal tissues and sensitize tumor via its inhibition. In the current review, we aim to explain the mechanisms of upregulation of TGF-β and its consequences in both tumor and normal tissues.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
25
|
Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Relevance of Non-Targeted Effects for Radiotherapy and Diagnostic Radiology; A Historical and Conceptual Analysis of Key Players. Cancers (Basel) 2019; 11:cancers11091236. [PMID: 31450803 PMCID: PMC6770832 DOI: 10.3390/cancers11091236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 11/17/2022] Open
Abstract
Non-targeted effects (NTE) such as bystander effects or genomic instability have been known for many years but their significance for radiotherapy or medical diagnostic radiology are far from clear. Central to the issue are reported differences in the response of normal and tumour tissues to signals from directly irradiated cells. This review will discuss possible mechanisms and implications of these different responses and will then discuss possible new therapeutic avenues suggested by the analysis. Finally, the importance of NTE for diagnostic radiology and nuclear medicine which stems from the dominance of NTE in the low-dose region of the dose–response curve will be presented. Areas such as second cancer induction and microenvironment plasticity will be discussed.
Collapse
|
27
|
Tan W, Zhang Y, Li M, Zhu X, Yang X, Wang J, Zhang S, Zhu W, Cao J, Yang H, Zhang L. miR-27a-containing Exosomes Secreted by Irradiated Skin Keratinocytes Delayed the Migration of Unirradiated Skin Fibroblasts. Int J Biol Sci 2019; 15:2240-2255. [PMID: 31592237 PMCID: PMC6775295 DOI: 10.7150/ijbs.35356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Radiation-induced bystander effect (RIBE), e.g. the biological response occurring in unirradiated cells when their neighboring cells are irradiated, is the consequence of intercellular communication between irradiated and unirradiated cells and intracellular signal transduction of these two cell populations. Although several miRNAs have been found to play an important role in RIBEs, the evidence for the regulatory effects of miRNAs on RIBEs is still limited. In this study, by using a two cell-line co-culture system, we first found that the migration of unirradiated bystander WS1 skin fibroblasts was inhibited after co-culture with irradiated HaCaT skin keratinocytes. Further study revealed that HaCaT cells exposed to α-particles and X-rays quickly showed an elevated miR-27a expression, which was essential for the induction of the bystander effect, resulting in the secretion of miR-27a-containing exosomes as a major RIBE signaling factor. Upon uptake of these exosomes, the recipient unirradiated WS1 cells displayed oxidative stress and increased miR-27a levels. Elevated levels of miR-27a that targets MMP2 in the recipient WS1 cells then led to slowed cell migration, which was dependent upon the redox status of WS1 cells. To summarize, the present study has revealed a critical role of miR-27a in every step of the induction of bystander migration inhibition of unirradiated WS1 fibroblasts co-cultured with irradiated HaCaT keratinocytes, confirming the important regulatory effects of miRNAs in RIBEs. Additionally, we provided direct evidence that RIBEs could affect wound healing.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Mengting Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Xueting Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| | - Xuejiao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Shuyu Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| |
Collapse
|
28
|
Pei W, Hu W, Chai Z, Zhou G. Current status of space radiobiological studies in China. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:1-7. [PMID: 31421843 DOI: 10.1016/j.lssr.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
After successfully launching two space laboratories, namely, Tiangong-1 and Tiangong-2, China has announced her next plan of constructing the Chinese Space Station (CSS) in 2022. The CSS will provide not only platforms for Chinese scientists to carry out experimental studies in outer space but also opportunities for open international cooperation. In this article, we review the development of China's manned space exploration missions and the preliminary plan for CSS. Additionally, China has initiated space radiation research decades ago with both ground-based simulation research platform and space vehicles and has made noticeable progresses in several aspects. These include studies on human health risk assessment using mammalian cell cultures and animals as models. Furthermore, there have been numerous studies on assessing the space environment in plant breeding.
Collapse
Affiliation(s)
- Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
29
|
Hu W, Zhu L, Pei W, Pan S, Guo Z, Wu A, Pei H, Nie J, Li B, Furusawa Y, Konishi T, Hei TK, Zhou G. Overexpression of Ras-Related C3 Botulinum Toxin Substrate 2 Radiosensitizes Melanoma Cells In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5254798. [PMID: 31281584 PMCID: PMC6589259 DOI: 10.1155/2019/5254798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Radioresistance is the major obstacle in the radiotherapy of the malignant melanoma. Thus, it is of importance to increase the radiosensitivity of melanoma cells. In the present study, the radioresistant melanoma cell line OCM-1 with inducible overexpression of Ras-related C3 botulinum toxin substrate 2 was established based on a radiation-inducible early growth response gene (Egr-1) promoter. The effects of Ras-related C3 botulinum toxin substrate 2 overexpression on the radiosensitivity of melanoma cells exposed to either X-rays or carbon ion beams were evaluated in cultured cells as well as xenograft tumor models. In addition, both reactive oxygen species yield and the NADPH oxidase activity were measured in the irradiated melanoma cells. It was found that the radiation-inducible overexpression of Ras-related C3 botulinum toxin substrate 2 sensitized the melanoma cells to both X-rays and carbon ion irradiation by enhancing the NADPH oxidase activity and the subsequent reactive oxygen species production. Besides, the overexpression of Ras-related C3 botulinum toxin substrate 2 enhanced the tumor-killing effect of radiotherapy in xenograft tumors significantly. The results of this study indicate that Ras-related C3 botulinum toxin substrate 2 is promising in increasing the radiosensitivity of melanoma cells, which provides experimental evidence and theoretical basis for clinical radiosensitization of the malignant melanoma.
Collapse
Affiliation(s)
- Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lin Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuxian Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Bingyan Li
- Medical College of Soochow University, Suzhou 215123, China
| | - Yoshiya Furusawa
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tom K. Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, New York, NY 10032, USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
30
|
Zhang LY, Yong WX, Wang L, Zhang LX, Zhang YM, Gong HX, He JP, Liu YQ. Astragalus Polysaccharide Eases G1 Phase-Correlative Bystander Effects through Mediation of TGF-βR/MAPK/ROS Signal Pathway After Carbon Ion Irradiation in BMSCs. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:595-612. [DOI: 10.1142/s0192415x19500319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although Astragalus polysaccharide (APS) has been shown to have various pharmacological effects, there have been no studies concerning the inhibitory effects of APS on the radiation-induced bystander effects (RIBE). The aim of this study was to investigate whether APS could suppress RIBE damage by inhibiting cell growth, micronucleus (MN) formation and 53BP1 foci number increased in bone marrow mesenchymal stem cells (BMSCs), named bystander cells, as well as to explore its mechanism. In this study, APS decreased proliferation and colony rate of bystander cells by inducing cell cycle arrest at G1 phase via extrinsic and intrinsic DNA damage. Regarding mechanism, APS inhibited mitogen-activated protein kinase (MAPK) signal pathway by down-regulating the expression of the key proteins, phosphorylated JNK (p-JNK), phosphorylated ERK (p-ERK) but not phosphorylated P38 (p-P38), and down-regulating their downstream function protein and molecule, cyclooxygenase-2 (COX-2) and reactive oxygen species (ROS). Moreover, in bystander cells, APS inhibits expression of transforming growth factor [Formula: see text] receptor II (TGF-[Formula: see text]R II), a cell membrane receptor, resulting in lower ROS production and secretion via TGF-[Formula: see text]R-JNK/ERK-COX-2/ROS not P38 signaling. They gave a hint that the decreased RIBE damage induced by APS treatment involved TGF-[Formula: see text]R-JNK/ERK-COX-2/ROS down-regulation.
Collapse
Affiliation(s)
- Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Wen-Xing Yong
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Lei Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Li-Xin Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Hong-Xia Gong
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Jin-Peng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine, Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| |
Collapse
|
31
|
Ji K, Wang Y, Du L, Xu C, Liu Y, He N, Wang J, Liu Q. Research Progress on the Biological Effects of Low-Dose Radiation in China. Dose Response 2019; 17:1559325819833488. [PMID: 30833876 PMCID: PMC6393828 DOI: 10.1177/1559325819833488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 01/07/2023] Open
Abstract
Human are exposed to ionizing radiation from natural and artificial sources, which consequently poses a possible risk to human health. However, accumulating evidence indicates that the biological effects of low-dose radiation (LDR) are different from those of high-dose radiation (HDR). Low-dose radiation–induced hormesis has been extensively observed in different biological systems, including immunological and hematopoietic systems. Adaptive responses in response to LDR that can induce cellular resistance to genotoxic effects from subsequent exposure to HDR have also been described and researched. Bystander effects, another type of biological effect induced by LDR, have been shown to widely occur in many cell types. Furthermore, the influence of LDR-induced biological effects on certain diseases, such as cancer and diabetes, has also attracted the interest of researchers. Many studies have suggested that LDR has the potential antitumor and antidiabetic complications effects. In addition, the researches on whether LDR could induce stochastic effects were also debated. Studies on the biological effects of LDR in China started in 1970s and considerable progress has been made since. In the present article, we provide an overview of the research progress on the biological effects of LDR in China.
Collapse
Affiliation(s)
- Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| |
Collapse
|
32
|
Tian W, Du Y, Ma Y, Zhang B, Gu L, Zhou J, Deng D. miR663a‑TTC22V1 axis inhibits colon cancer metastasis. Oncol Rep 2019; 41:1718-1728. [PMID: 30664167 PMCID: PMC6365692 DOI: 10.3892/or.2019.6969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have demonstrated that microRNAs (miRs) may act as oncogenes or anti‑oncogenes in various types of cancer, including colon cancer (CC). However, the clinical and biological significance of miR663a in the prognosis of CC and its underlying molecular mechanisms remain unknown. Using the reverse transcription‑quantitative polymerase chain reaction on CC and surgical margin tissue samples from 172 patients with CC, it was identified that miR663a was significantly downregulated in CC (P<0.001), particularly in metastatic CC (P=0.044). miR663a overexpression inhibited the proliferation and migration/invasion of CC cells in vitro, and also tumor growth and metastasis of CC cells in vivo. Additionally, miR663a target genes were analyzed. Inverse changes in tetratricopeptide repeat domain 22 variant 1 (TTC22V1) in response to alterations in miR663a expression were observed. miR663a decreased the reporter activity of the wild‑type TTC22V1‑3' untranslated region (UTR), but did not decrease that of a 3'UTR mutant. miR663a completely abolished cell migration/invasion induced by TTC22V1 containing the wild‑type 3'UTR sequence, but not that induced by TTC22V1 containing the 3'UTR mutant. An inverse correlation between miR663a and TTC22 mRNA levels was observed in CC tissues. These results suggest that TTC22V1 mRNA is a crucial miR663a target that directly promotes cell migration/invasion. TTC22, which, to the best of our knowledge, has rarely been investigated, is located in the nuclei of epithelial cells in colon stem cell niches at crypt bases, and is significantly downregulated in CC, particularly in non‑metastatic CC. High TTC22V1 expression is a significant poor survival factor for patients with CC. Collectively, the results of the present study suggested that TTC22V1 may be a metastasis‑associated gene and that the miR663a‑TTC22V1 axis inhibited CC metastasis.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yantao Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yuwan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
33
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
34
|
Kirolikar S, Prasannan P, Raghuram GV, Pancholi N, Saha T, Tidke P, Chaudhari P, Shaikh A, Rane B, Pandey R, Wani H, Khare NK, Siddiqui S, D'souza J, Prasad R, Shinde S, Parab S, Nair NK, Pal K, Mittra I. Prevention of radiation-induced bystander effects by agents that inactivate cell-free chromatin released from irradiated dying cells. Cell Death Dis 2018; 9:1142. [PMID: 30442925 PMCID: PMC6238009 DOI: 10.1038/s41419-018-1181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
Radiation-induced bystander effect (RIBE) is a poorly understood phenomenon wherein non-targeted cells exhibit effects of radiation. We have reported that cell-free chromatin (cfCh) particles that are released from dying cells can integrate into genomes of surrounding healthy cells to induce DNA damage and inflammation. This raised the possibility that RIBE might be induced by cfCh released from irradiated dying cells. When conditioned media from BrdU-labeled irradiated cells were passed through filters of pore size 0.22 µm and incubated with unexposed cells, BrdU-labeled cfCh particles could be seen to readily enter their nuclei to activate H2AX, active Caspase-3, NFκB, and IL-6. A direct relationship was observed with respect to activation of RIBE biomarkers and radiation dose in the range of 0.1-0 Gy. We confirmed by FISH and cytogenetic analysis that cfCh had stably integrated into chromosomes of bystander cells and had led to extensive chromosomal instability. The above RIBE effects could be abrogated when conditioned media were pre-treated with agents that inactivate cfCh, namely, anti-histone antibody complexed nanoparticles (CNPs), DNase I and a novel DNA degrading agent Resveratrol-copper (R-Cu). Lower hemi-body irradiation with γ-rays (0.1-50 Gy) led to activation of H2AX, active Caspase-3, NFκB, and IL-6 in brain cells in a dose-dependent manner. Activation of these RIBE biomarkers could be abrogated by concurrent treatment with CNPs, DNase I and R-Cu indicating that activation of RIBE was not due to radiation scatter to the brain. RIBE activation was seen even when mini-beam radiation was delivered to the umbilical region of mice wherein radiation scatter to brain was negligible and could be abrogated by cfCh inactivating agents. These results indicate that cfCh released from radiation-induced dying cells are activators of RIBE and that it can be prevented by treatment with appropriate cfCh inactivating agents.
Collapse
Affiliation(s)
- Saurabh Kirolikar
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Preeti Prasannan
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Gorantla V Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Namrata Pancholi
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Tannishtha Saha
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Pritishkumar Tidke
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Pradip Chaudhari
- Comparative Oncology Program and Small Animal Imaging Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Alfina Shaikh
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Bhagyeshri Rane
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Richa Pandey
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Harshada Wani
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen K Khare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Sophiya Siddiqui
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Jenevieve D'souza
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Ratnam Prasad
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Sushma Shinde
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Sailee Parab
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen K Nair
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Kavita Pal
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India.
| |
Collapse
|
35
|
Pei H, Hu W, Guo Z, Chen H, Ma J, Mao W, Li B, Wang A, Wan J, Zhang J, Nie J, Zhou G, Hei TK. Long Noncoding RNA CRYBG3 Blocks Cytokinesis by Directly Binding G-Actin. Cancer Res 2018; 78:4563-4572. [PMID: 29934435 PMCID: PMC6095725 DOI: 10.1158/0008-5472.can-18-0988] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 01/05/2023]
Abstract
The dynamic interchange between monomeric globular actin (G-actin) and polymeric filamentous actin filaments (F-actin) is fundamental and essential to many cellular processes, including cytokinesis and maintenance of genomic stability. Here, we report that the long noncoding RNA LNC CRYBG3 directly binds G-actin to inhibit its polymerization and formation of contractile rings, resulting in M-phase cell arrest. Knockdown of LNC CRYBG3 in tumor cells enhanced their malignant phenotypes. Nucleotide sequence 228-237 of the full-length LNC CRYBG3 and the ser14 domain of β-actin is essential for their interaction, and mutation of either of these sites abrogated binding of LNC CRYBG3 to G-actin. Binding of LNC CRYBG3 to G-actin blocked nuclear localization of MAL, which consequently kept serum response factor (SRF) away from the promoter region of several immediate early genes, including JUNB and Arp3, which are necessary for cellular proliferation, tumor growth, adhesion, movement, and metastasis. These findings reveal a novel lncRNA-actin-MAL-SRF pathway and highlight LNC CRYBG3 as a means to block cytokinesis and to treat cancer by targeting the actin cytoskeleton.Significance: Identification of the long noncoding RNA LNC CRYBG3 as a mediator of microfilament disorganization marks it as a novel therapeutic antitumor strategy. Cancer Res; 78(16); 4563-72. ©2018 AACR.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Huaiyuan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ji Ma
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Medical College of Soochow University, Suzhou, China
| | - Aiqing Wang
- Medical College of Soochow University, Suzhou, China
| | - Jianmei Wan
- Medical College of Soochow University, Suzhou, China
| | - Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Tom K Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, New York, New York
| |
Collapse
|
36
|
Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer 2018; 119:492-502. [PMID: 30038324 PMCID: PMC6134031 DOI: 10.1038/s41416-018-0192-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background An increasing number of studies have recently reported that
microRNAs packaged in exosomes contribute to multiple biological processes such as
cancer progression; however, little is known about their role in the development
of radiation-induced bystander effects. Methods The exosomes were isolated from the culture medium of BEP2D cells
with or without γ-ray irradiation by ultracentrifugation. To monitor DNA damage
and repair efficiency, the DNA double-strand break biomarker 53BP1 foci, comet,
micronuclei, expression of DNA repair genes and NHEJ repair activity were
detected. The miR-1246 targeting sequence of the DNA ligase 4 (LIG4) mRNA 3′UTR was assessed by luciferase reporter
vectors. Results miR-1246 was increased in exosomes secreted from 2 Gy-irradiated
BEP2D cells and inhibited the proliferation of nonirradiated cells. The miR-1246
mimic, exosomes from irradiated cells, and radiation-conditioned cell culture
medium increased the yields of 53BP1 foci, comet tail and micronuclei in
nonirradiated cells, and decreased NHEJ efficiency. miR-1246 downregulated LIG4
expression by directly targeting its 3′UTR. Conclusions Our findings demonstrate that miR-1246 packaged in exosomes could
act as a transfer messenger and contribute to DNA damage by directly repressing
the LIG4 gene. Exosomal miR-1246 may be a
critical predictor of and player in radiation-induced bystander DNA damage.
Collapse
|
37
|
Michaille JJ, Piurowski V, Rigot B, Kelani H, Fortman EC, Tili E. MiR-663, a MicroRNA Linked with Inflammation and Cancer That Is under the Influence of Resveratrol. MEDICINES 2018; 5:medicines5030074. [PMID: 29987196 PMCID: PMC6163211 DOI: 10.3390/medicines5030074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022]
Abstract
Resveratrol (trans-3,5,4′-trihydroxystilbene, RSV) is a non-flavonoid dietary polyphenol with antioxidant, anti-inflammatory and anti-cancer properties that is primarily found in red berries. While RSV displays many beneficial effects in vitro, its actual effects in vivo or in animal models remain passionately debated. Recent publications suggest that RSV pleiotropic effects could arise from its capability to regulate the expression and activity of microRNAs, short regulators themselves capable of regulating up to several hundreds of target genes. In particular, RSV increases microRNA miR-663 expression in different human cell lines, suggesting that at least some of its multiple beneficial properties are through the modulation of expression of this microRNA. Indeed, the expression of microRNA miR-663 is reduced in certain cancers where miR-663 is considered to act as a tumor suppressor gene, as well as in other pathologies such as cardiovascular disorders. Target of miR-663 include genes involved in tumor initiation and/or progression as well as genes involved in pathologies associated with chronic inflammation. Here, we review the direct and indirect effects of RSV on the expression of miR-663 and its target transcripts, with emphasise on TGFβ1, and their expected health benefits, and argue that elucidating the molecular effects of different classes of natural compounds on the expression of microRNAs should help to identify new therapeutic targets and design new treatments.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, UB-INSERM IFR #100, Faculté Gabriel, Université de Bourgogne-Franche Comté, 21000 Dijon, France.
| | - Victoria Piurowski
- Department of Biology, Franklin College of Arts and Sciences, University of Georgia, Athes, GA 30602, USA.
| | - Brooke Rigot
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Hesham Kelani
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Emily C Fortman
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Pei H, Guo Z, Wang Z, Dai Y, Zheng L, Zhu L, Zhang J, Hu W, Nie J, Mao W, Jia X, Li B, Hei TK, Zhou G. RAC2 promotes abnormal proliferation of quiescent cells by enhanced JUNB expression via the MAL-SRF pathway. Cell Cycle 2018; 17:1115-1123. [PMID: 29895215 PMCID: PMC6110603 DOI: 10.1080/15384101.2018.1480217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced lung injury (RILI) occurs most often in radiotherapy of lung cancer, esophageal cancer, and other thoracic cancers. The occurrence of RILI is a complex process that includes a variety of cellular and molecular interactions, which ultimately result in carcinogenesis. However, the underlying mechanism is unknown. Here we show that Ras-related C3 botulinum toxin substrate 2 (RAC2) and transcription factor jun-B (JUNB) were upregulated in non-small cell carcinoma (NSCLC) tissues and were associated with poor prognoses for NSCLC patients. Ionizing radiation also caused increased expression of RAC2 in quiescent stage cells, and the reentry of quiescent cells into a new cell cycle. The activity of the serum response factor (SRF) was activated by RAC2 and other Rho family genes (RhoA, ROCK, and LIM kinase). Consequently, JUNB acted as an oncogene and induced abnormal proliferation of quiescent cells. Together, the results showed that RAC2 can be used as a target gene for radiation protection. A better understanding of the RAC2 and JUNB mechanisms in the molecular etiology of lung cancer will be helpful in reducing cancer risks and side effects during treatment of this disorder. Our study therefore provides a new perspective on the involvement of RAC2 and JUNB as oncogenes in the tumorigenesis of NSCLC.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Ziyang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lijun Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lin Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- Radiotherapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianghong Jia
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Tom K. Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, NY, New York, USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
39
|
Chen Q, Zhao T, Xie X, Yu D, Wu L, Yu W, Sun W. MicroRNA-663 regulates the proliferation of fibroblasts in hypertrophic scars via transforming growth factor-β1. Exp Ther Med 2018; 16:1311-1317. [PMID: 30116380 PMCID: PMC6090240 DOI: 10.3892/etm.2018.6350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
The present study determined the expression of microRNA (miR)-663 in hypertrophic scar (HS) tissues and investigate the regulatory mechanisms of miR-663 in HS. A total of 51 patients diagnosed with HS between December 2013 and February 2016 were included in the present study. HS tissues (experimental group) and HS-adjacent tissues (control group) were collected. Primary fibroblasts were obtained from HS tissue and transfected with small-interfering RNA against transforming growth factor (TGF)-β1 or miR-663 mimics. Reverse-transcription quantitative PCR was used to determine the levels of TGF-β1 mRNA and miR-663. Western blot analysis was performed to determine TGF-β1 protein expression. An MTT assay was employed to detect the proliferation of fibroblasts, and a dual luciferase reporter assay was performed to identify the binding of miR-663 with TGF-β1 mRNA. TGF-β1 was found to have a regulatory role in HS at the transcriptional level. The expression of TGF-β1 was upregulated in HS tissues, and knockdown of TGF-β1 in cultured fibroblasts led to inhibition of proliferation. The expression of miR-663 was downregulated in HS. miR-663 was revealed to regulate the expression of TGF-β1 by binding with the 3′-untranslated region of TGF-β1 mRNA. Elevated expression of miR-663 inhibited the proliferation of fibroblasts by regulating TGF-β1 expression. The present study demonstrated that upregulation of TGF-β1 in HS tissues is associated with the downregulation of miR-663 expression. miR-663 may regulate the proliferation of fibroblasts in HS and the expression of associated proteins.
Collapse
Affiliation(s)
- Qi Chen
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Tianlan Zhao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaoming Xie
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Daojiang Yu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lijun Wu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei Sun
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
40
|
Sokolov M, Neumann R. Changes in gene expression as one of the key mechanisms involved in radiation-induced bystander effect. Biomed Rep 2018; 9:99-111. [PMID: 30013775 PMCID: PMC6036822 DOI: 10.3892/br.2018.1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
The radiation-induced bystander effect (RIBE) refers to the manifestation of responses by non-targeted/non-hit cells or tissues situated in proximity to cells and tissues directly exposed to ionizing radiation (IR). The RIBE is elicited by agents and factors released by IR-hit cells. The growing body of data suggests that the underlying mechanisms of the RIBE are multifaceted depending both on the biological (characteristics of directly IR-exposed cells, bystander cells, intercellular milieu) and the physical (dose, rate and type of IR, time after exposure) factors/parameters. Although the exact identity of bystander signal(s) is yet to be identified, the published data indicate changes in gene expression for multiple types of RNA (mRNA, microRNA, mitochondrial RNA, long non-coding RNA, small nucleolar RNA) as being one of the major responses of cells and tissues in the context of the RIBE. Gene expression profiles demonstrate a high degree of variability between distinct bystander cell and tissue types. These alterations could independently, or in a signaling cascade, result in the manifestation of readily observable endpoints, including changes in viability and genomic instability. Here, the relevant publications on the gene candidates and signaling pathways involved in the RIBE are reviewed, and a framework for future studies, both in vitro and in vivo, on the genetic aspect of the RIBE is provided.
Collapse
Affiliation(s)
- Mykyta Sokolov
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald Neumann
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Szatmári T, Persa E, Kis E, Benedek A, Hargitai R, Sáfrány G, Lumniczky K. Extracellular vesicles mediate low dose ionizing radiation-induced immune and inflammatory responses in the blood. Int J Radiat Biol 2018. [PMID: 29533121 DOI: 10.1080/09553002.2018.1450533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Radiation-induced bystander effects (RIBE) imply the involvement of complex signaling mechanisms, which can be mediated by extracellular vesicles (EVs). Using an in vivo model, we investigated EV-transmitted RIBE in blood plasma and radiation effects on plasma EV miRNA profiles. MATERIALS AND METHODS C57Bl/6 mice were total-body irradiated with 0.1 and 2 Gy, bone marrow-derived EVs were isolated, and injected systemically into naive, 'bystander' animals. Proteome profiler antibody array membranes were used to detect alterations in plasma, both in directly irradiated and bystander mice. MiRNA profile of plasma EVs was determined by PCR array. RESULTS M-CSF and pentraxin-3 levels were increased in the blood of directly irradiated and bystander mice both after low and high dose irradiations, CXCL16 and lipocalin-2 increased after 2 Gy in directly irradiated and bystander mice, CCL5 and CCL11 changed in bystander mice only. Substantial overlap was found in the cellular pathways regulated by those miRNAs whose level were altered in EVs isolated from the plasma of mice irradiated with 0.1 and 2 Gy. Several of these pathways have already been associated with bystander responses. CONCLUSION Low and high dose effects overlapped both in EV-mediated alterations in signaling pathways leading to RIBE and in their systemic manifestations.
Collapse
Affiliation(s)
- Tünde Szatmári
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Eszter Persa
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Enikő Kis
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Anett Benedek
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Rita Hargitai
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Géza Sáfrány
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| | - Katalin Lumniczky
- a Department of Radiation Medicine, Division of Radiobiology and Radiohygiene , National Public Health Institute , Budapest , Hungary
| |
Collapse
|
42
|
Yuan D, Xu J, Wang J, Pan Y, Fu J, Bai Y, Zhang J, Shao C. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget 2017; 7:32707-22. [PMID: 27129166 PMCID: PMC5078045 DOI: 10.18632/oncotarget.9017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022] Open
Abstract
MiRNAs in the circulation have been demonstrated to be a type of signaling molecule involved in intercellular communication but little is known about their role in regulating radiosensitivity. This study aims to investigate the effects of extracellular miRNAs induced by ionizing radiation (IR) on cell proliferation and radiosensitivity. The miRNAs in the conditioned medium (CM) from irradiated and non-irradiated A549 lung cancer cells were compared using a microarray assay and the profiles of 21 miRNAs up and down-regulated by radiation were confirmed by qRT-PCR. One of these miRNAs, miR-1246, was especially abundant outside the cells and had a much higher level compared with that inside of cells. The expressions of miR-1246 in both A549 and H446 cells increased along with irradiation dose and the time post-irradiation. By labeling exosomes and miR-1246 with different fluorescence dyes, it was found that the extracellular miR-1246 could shuttle from its donor cells to other recipient cells by a non-exosome associated pathway. Moreover, the treatments of cells with miR-1246 mimic or its antisense inhibitor showed that the extracellular miR-1246 could enhance the proliferation and radioresistance of lung cancer cells. A luciferase reporter-gene transfer experiment demonstrated that the death receptor 5 (DR5) was the direct target of miR-1246, and the kinetics of DR5 expression was opposite to that of miR-1246 in the irradiated cells. Our results show that the oncogene-like extracellular miR-1246 could act as a signaling messenger between irradiated and non-irradiated cells, more importantly, it contributes to cell radioresistance by directly suppressing the DR5 gene.
Collapse
Affiliation(s)
- Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jinping Xu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Juan Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Carden T, Singh B, Mooga V, Bajpai P, Singh KK. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J Biol Chem 2017; 292:20694-20706. [PMID: 29066618 DOI: 10.1074/jbc.m117.797001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/03/2017] [Indexed: 01/20/2023] Open
Abstract
The normal cellular function requires communication between mitochondria and the nucleus, termed mitochondria-to-nucleus retrograde signaling. Disruption of this mechanism has been implicated in the development of cancers. Many proteins are known modulators of retrograde signaling, but whether microRNAs (miRNAs) are also involved is unknown. We conducted an miRNA microarray analysis using RNA from a parental cell line, a Rho0 line lacking mitochondrial DNA (mtDNA) and a Rho0 line with restored mtDNA. We found that miR-663 was down-regulated in the mtDNA-depleted Rho0 line. mtDNA restoration reversed this miRNA to parental level, suggesting that miR-663 may be epigenetically regulated by retrograde signaling. By using methylation-specific PCR and bisulfite sequencing we demonstrate that miR-663 promoter is epigenetically regulated not only by genetic but also by pharmacological disruption of oxidative phosphorylation (OXPHOS). Restoration of OXPHOS Complex I inhibitor-induced miR-663 expression by N-acetylcysteine suggested that reactive oxygen species (ROS) play a key role in epigenetic regulation of miR-663. We determined that miR-663 regulates the expression of nuclear-encoded respiratory chain subunits involved in Complexes I, II, III, and IV. miR-663 also controlled the expression of the Complexes I (NDUFAF1), II (SDHAF2), III (UQCC2), and IV (SCO1) assembly factors and was required for stability of respiratory supercomplexes. Furthermore, using luciferase assays, we found that miR-663 directly regulates UQCC2. The anti-miR-663 reduced OXPHOS complex activity and increased in vitro cellular proliferation and promoted tumor development in vivo in mice. We also found that increased miR-663 expression in breast tumors consistently correlates with increased patient survival. We provide the first evidence for miRNA controlling retrograde signaling, demonstrating its epigenetic regulation and its role in breast tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | - Keshav K Singh
- From the Departments of Genetics, .,Pathology, and.,Environmental Health Sciences.,Center for Free Radical Biology.,Center for Aging, and.,UAB Comprehensive Cancer Center, University of Alabama at Birmingham and.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
44
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
45
|
Hurem S, Martín LM, Brede DA, Skjerve E, Nourizadeh-Lillabadi R, Lind OC, Christensen T, Berg V, Teien HC, Salbu B, Oughton DH, Aleström P, Lyche JL. Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. PLoS One 2017; 12:e0179259. [PMID: 28628668 PMCID: PMC5476279 DOI: 10.1371/journal.pone.0179259] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/27/2017] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2-10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc was found to be the most significant upstream regulator, followed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as most frequent downstream target genes. These genes are associated with various developmental processes. The present findings show that continuous gamma irradiation (≥ 0.54 mGy/h) during early gastrula causes gene expression changes that are linked to developmental defects in zebrafish embryos.
Collapse
Affiliation(s)
- Selma Hurem
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Leonardo Martín Martín
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
- University of Camagüey Ignacio Agramonte y Loynaz (UC), Faculty of Agropecuary Sciences, Camagüey, Cuba
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Eystein Skjerve
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Terje Christensen
- Norwegian Radiation Protection Authority (NRPA), CERAD CoE, Østerås, Norway
| | - Vidar Berg
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Deborah Helen Oughton
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Jan Ludvig Lyche
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| |
Collapse
|
46
|
Mody HR, Hung SW, AlSaggar M, Griffin J, Govindarajan R. Inhibition of S-Adenosylmethionine-Dependent Methyltransferase Attenuates TGFβ1-Induced EMT and Metastasis in Pancreatic Cancer: Putative Roles of miR-663a and miR-4787-5p. Mol Cancer Res 2016; 14:1124-1135. [PMID: 27624777 PMCID: PMC5107158 DOI: 10.1158/1541-7786.mcr-16-0083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/29/2016] [Accepted: 08/27/2016] [Indexed: 01/25/2023]
Abstract
The identification of epigenetic reversal agents for use in combination chemotherapies to treat human pancreatic ductal adenocarcinomas (PDAC) remains an unmet clinical need. Pharmacologic inhibitors of Enhancer of Zeste Homolog 2 (EZH2) are emerging as potential histone methylation reversal agents for the treatment of various solid tumors and leukemia; however, the surprisingly small set of mRNA targets identified with EZH2 knockdown suggests novel mechanisms contribute to their antitumorigenic effects. Here, 3-deazaneplanocin-A (DZNep), an inhibitor of S-adenosyl-L-homocysteine hydrolase and EZH2 histone lysine-N-methyltransferase, significantly reprograms noncoding microRNA (miRNA) expression and dampens TGFβ1-induced epithelial-to-mesenchymal (EMT) signals in pancreatic cancer. In particular, miR-663a and miR-4787-5p were identified as PDAC-downregulated miRNAs that were reactivated by DZNep to directly target TGFβ1 for RNA interference. Lentiviral overexpression of miR-663a and miR-4787-5p reduced TGFβ1 synthesis and secretion in PDAC cells and partially phenocopied DZNep's EMT-resisting effects, whereas locked nucleic acid (LNA) antagomiRNAs counteracted them. DZNep, miR-663a, and miR-4787-5p reduced tumor burden in vivo and metastases in an orthotopic mouse pancreatic tumor model. Taken together, these findings suggest the epigenetic reprogramming of miRNAs by synthetic histone methylation reversal agents as a viable approach to attenuate TGFβ1-induced EMT features in human PDAC and uncover putative miRNA targets involved in the process. IMPLICATIONS The findings support the potential for synthetic histone methylation reversal agents to be included in future epigenetic-chemotherapeutic combination therapies for pancreatic cancer. Mol Cancer Res; 14(11); 1124-35. ©2016 AACR.
Collapse
Affiliation(s)
- Hardik R Mody
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Mohammad AlSaggar
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Jazmine Griffin
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Rajgopal Govindarajan
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, Ohio
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| |
Collapse
|
47
|
Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, Hua J, Wei W, Zhu Q. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol 2016; 12:1355-63. [PMID: 26488306 DOI: 10.1080/15476286.2015.1100795] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.
Collapse
Affiliation(s)
- Shuai Xu
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China.,b State Key laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences ; Lanzhou P.R China
| | - Jufang Wang
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China
| | - Nan Ding
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China
| | - Wentao Hu
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China
| | - Xurui Zhang
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China
| | - Bing Wang
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China
| | - Junrui Hua
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China
| | - Wenjun Wei
- a Gansu Key laboratory of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences ; Lanzhou P.R China
| | - Qiyun Zhu
- b State Key laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences ; Lanzhou P.R China
| |
Collapse
|
48
|
Flamant S, Tamarat R. Extracellular Vesicles and Vascular Injury: New Insights for Radiation Exposure. Radiat Res 2016; 186:203-18. [PMID: 27459703 DOI: 10.1667/rr14482.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article reviews our current knowledge about cell-derived extracellular vesicles (EVs), including microparticles and exosomes, and their emergence as mediators of a new important mechanism of cell-to-cell communication. Particular emphasis has been given to the increasing involvement of EVs in the field of radiation-induced vascular injury. Although EVs have been considered for a long time as cell "dust", they in fact precisely reflect the physiological state of the cells. The role of microparticles and exosomes in mediating vascular dysfunction suggests that they may represent novel pathways in short- or long-distance paracrine intercellular signaling in vascular environment. In this article, the mechanisms involved in the biogenesis of microparticles and exosomes, their composition and participation in the pathogenesis of vascular dysfunction are discussed. Furthermore, this article highlights the concept of EVs as potent vectors of biological information and protagonists of an intercellular communication network. Special emphasis is made on EV-mediated microRNA transfer and on the principal consequences of such signal exchange on vascular injury and radiation-induced nontargeted effect. The recent progress in elucidating the biology of EVs has provided new insights for the field of radiation, advancing their use as diagnostic biomarkers or in therapeutic interventions.
Collapse
Affiliation(s)
- Stéphane Flamant
- Institute for Radiological Protection and Nuclear Safety (IRSN) PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institute for Radiological Protection and Nuclear Safety (IRSN) PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
49
|
Fu J, Wang J, Wang X, Wang P, Xu J, Zhou C, Bai Y, Shao C. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells. Mutat Res 2016; 789:1-8. [PMID: 27155559 DOI: 10.1016/j.mrfmmm.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/16/2016] [Accepted: 04/29/2016] [Indexed: 01/13/2023]
Abstract
Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral bystander responses that the release of TNF-α and IL-8 regulated by MAPK and NF-κB pathways synergistically increased cellular injury after α-particle irradiation.
Collapse
Affiliation(s)
- Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Juan Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Xiangdong Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Ping Wang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jinping Xu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Cuiping Zhou
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China.
| |
Collapse
|
50
|
Huang Y, Liu J, Fan L, Wang F, Yu H, Wei W, Sun G. miR-663 overexpression induced by endoplasmic reticulum stress modulates hepatocellular carcinoma cell apoptosis via transforming growth factor beta 1. Onco Targets Ther 2016; 9:1623-33. [PMID: 27073326 PMCID: PMC4806765 DOI: 10.2147/ott.s96902] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
microRNAs are commonly dysregulated in a number of human cancers, for example, hepatocellular carcinoma (HCC), but the precise mechanism of dysregulation has not been extensively studied. Although previous studies have indicated that HCC cells are resistant to endoplasmic reticulum (ER) stress-induced apoptosis, little is known about the relationship between microRNAs and ER stress-mediated apoptosis resistance. In this study, we have demonstrated for the first time that the expression level of miR-663 was significantly upregulated in HCC cells co-incubated with tunicamycin, an ER stress inducer, as measured by a microRNA-chromatin immunoprecipitation microarray and quantitative real-time polymerase chain reaction; however, the effect of miR-663 on HCC cell apoptosis remains unknown. To investigate the potential involvement of miR-663 in HCC, HepG2 cells were transfected with mimics or inhibitors of miR-663. Consequently, we identified that downregulation of miR-663 suppressed HCC cell proliferation and promoted apoptosis under ER stress. Target gene analysis further predicted that the effects of miR-663 on HCC cells were mediated by directly targeting transforming growth factor beta 1 (TGFB1). Interestingly, the expression levels of TGFB1 changed inversely after downregulation or upregulation of miR-663 by inhibitors or mimics of miR-663 in HepG2 cells. Additionally, TGFB1 knockdown inhibited apoptosis in HepG2 cells. In sum, our study identifies a role for miR-663 as a critical regulator of ER stress-mediated apoptosis resistance in HCC cells via TGFB1. Accordingly, therapies aimed at the miR-663/TGFB1 axis might represent a hopeful strategy to overcome apoptosis resistance in HCC.
Collapse
Affiliation(s)
- Yawei Huang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|