1
|
Banna HA, Berg K, Sadat T, Das N, Paudel R, D'Souza V, Koirala D. Synthetic anti-RNA antibody derivatives for RNA visualization in mammalian cells. Nucleic Acids Res 2025; 53:gkae1275. [PMID: 39739875 PMCID: PMC11879077 DOI: 10.1093/nar/gkae1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
Although antibody derivatives, such as Fabs and scFvs, have revolutionized the cellular imaging, quantification and tracking of proteins, analogous tools and strategies are unavailable for cellular RNA visualization. Here, we developed four synthetic anti-RNA scFv (sarabody) probes and their green fluorescent protein (GFP) fusions and demonstrated their potential to visualize RNA in live mammalian cells. We expressed these sarabodies and sarabody-GFP modules, purified them as soluble proteins, characterized their binding interactions with their corresponding epitopes and finally employed two of the four modules, sara1-GFP and sara1c-GFP, to visualize a target messenger RNA in live U2OS cells. Our current RNA imaging strategy is analogous to the existing MCP-MS2 system for RNA visualization, but additionally, our approach provides robust flexibility for developing target RNA-specific imaging modules, as epitope-specific probes can be selected from a library generated by diversifying the sarabody complementarity determining regions. While we continue to optimize these probes, develop new probes for various target RNAs and incorporate other fluorescence proteins like mCherry and HaloTag, our groundwork results demonstrated that these first-of-a-kind immunofluorescent probes will have tremendous potential for tracking mature RNAs and may aid in visualizing and quantifying many cellular processes as well as examining the spatiotemporal dynamics of various RNAs.
Collapse
Affiliation(s)
- Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Kimberley Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tasnia Sadat
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Roshan Paudel
- Department of Computer Science, Morgan State University, Baltimore, MD 21251, USA
| | - Victoria D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
2
|
Yan Z, Eshed A, Tang AA, Arevalos NR, Ticktin ZM, Chaudhary S, Ma D, McCutcheon G, Li Y, Wu K, Saha S, Alcantar-Fernandez J, Moreno-Camacho JL, Campos-Romero A, Collins JJ, Yin P, Green AA. Rapid, Multiplexed, and Enzyme-Free Nucleic Acid Detection Using Programmable Aptamer-Based RNA Switches. Chem 2024; 10:2220-2244. [PMID: 39036067 PMCID: PMC11259118 DOI: 10.1016/j.chempr.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. We describe a class of aptamer-based RNA switches or aptaswitches that recognize target nucleic acid molecules and initiate folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide an intense fluorescent readout without intervening enzymes, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. Aptaswitches can be used to regulate folding of seven fluorogenic aptamers, providing a general means of controlling aptamers and an array of multiplexable reporter colors. Coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/μL in one-pot reactions. Application of multiplexed all-in-one reactions against RNA from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that are readily integrated into rapid diagnostic assays.
Collapse
Affiliation(s)
- Zhaoqing Yan
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Amit Eshed
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Anli A. Tang
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Nery R. Arevalos
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Zachary M. Ticktin
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Soma Chaudhary
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Griffin McCutcheon
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yudan Li
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Kaiyue Wu
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Sanchari Saha
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | | | | | | | - James J. Collins
- Department of Biological Engineering, Massachusetts
Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT,
Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA,
USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School,
Boston, MA, USA
| | - Alexander A. Green
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
- Lead contact
| |
Collapse
|
3
|
Yang ZC, Zhao LX, Sang YQ, Huang X, Lin XC, Yu ZM. Aggregation-Induced Emission Luminogens: A New Possibility for Efficient Visualization of RNA in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:743. [PMID: 38475589 DOI: 10.3390/plants13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
RNAs play important roles in regulating biological growth and development. Advancements in RNA-imaging techniques are expanding our understanding of their function. Several common RNA-labeling methods in plants have pros and cons. Simultaneously, plants' spontaneously fluorescent substances interfere with the effectiveness of RNA bioimaging. New technologies need to be introduced into plant RNA luminescence. Aggregation-induced emission luminogens (AIEgens), due to their luminescent properties, tunable molecular size, high fluorescence intensity, good photostability, and low cell toxicity, have been widely applied in the animal and medical fields. The application of this technology in plants is still at an early stage. The development of AIEgens provides more options for RNA labeling. Click chemistry provides ideas for modifying AIEgens into RNA molecules. The CRISPR/Cas13a-mediated targeting system provides a guarantee of precise RNA modification. The liquid-liquid phase separation in plant cells creates conditions for the enrichment and luminescence of AIEgens. The only thing that needs to be looked for is a specific enzyme that uses AIEgens as a substrate and modifies AIEgens onto target RNA via a click chemical reaction. With the development and progress of artificial intelligence and synthetic biology, it may soon be possible to artificially synthesize or discover such an enzyme.
Collapse
Affiliation(s)
- Zheng-Chao Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Xiang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Qi Sang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan-Chen Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi-Ming Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Yan Z, Tang AA, Eshed A, Ticktin ZM, Chaudhary S, Ma D, McCutcheon G, Li Y, Wu K, Saha S, Alcantar-Fernandez J, Moreno-Camacho JL, Campos-Romero A, Collins JJ, Yin P, Green AA. Rapid and Multiplexed Nucleic Acid Detection using Programmable Aptamer-Based RNA Switches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.02.23290873. [PMID: 37333364 PMCID: PMC10275000 DOI: 10.1101/2023.06.02.23290873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. Here, we describe a class of aptamer-based RNA switches called aptaswitches that recognize specific target nucleic acid molecules and respond by initiating folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide a fast and intense fluorescent readout, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. We demonstrate that aptaswitches can be used to regulate folding of six different fluorescent aptamer/fluorogen pairs, providing a general means of controlling aptamer activity and an array of different reporter colors for multiplexing. By coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/μL in one-pot reactions. Application of multiplexed one-pot reactions against RNA extracted from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that can be readily integrated into rapid diagnostic assays.
Collapse
Affiliation(s)
- Zhaoqing Yan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- These authors contributed equally: Zhaoqing Yan, Anli A. Tang
| | - Anli A. Tang
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- These authors contributed equally: Zhaoqing Yan, Anli A. Tang
| | - Amit Eshed
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Zackary M. Ticktin
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Soma Chaudhary
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Griffin McCutcheon
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yudan Li
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Kaiyue Wu
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Sanchari Saha
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | | | | | - James J. Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alexander A. Green
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
6
|
Kukhtevich IV, Rivero-Romano M, Rakesh N, Bheda P, Chadha Y, Rosales-Becerra P, Hamperl S, Bureik D, Dornauer S, Dargemont C, Kirmizis A, Schmoller KM, Schneider R. Quantitative RNA imaging in single live cells reveals age-dependent asymmetric inheritance. Cell Rep 2022; 41:111656. [DOI: 10.1016/j.celrep.2022.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
|
7
|
He P, Zhang C, Ji Y, Ge MK, Yu Y, Zhang N, Yang S, Yu JX, Shen SM, Chen GQ. Epithelial cells-enriched lncRNA SNHG8 regulates chromatin condensation by binding to Histone H1s. Cell Death Differ 2022; 29:1569-1581. [PMID: 35140358 PMCID: PMC9345976 DOI: 10.1038/s41418-022-00944-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Linker histone H1 proteins contain many variants in mammalian and can stabilize the condensed state of chromatin by binding to nucleosomes and promoting a more inaccessible structure of DNA. However, it is poorly understood how the binding of histone H1s to chromatin DNA is regulated. Screened as one of a collection of epithelial cells-enriched long non-coding RNAs (lncRNAs), here we found that small nucleolar RNA host gene 8 (SNHG8) is a chromatin-localized lncRNA and presents strong interaction and phase separation with histone H1 variants. Moreover, SNHG8 presents stronger ability to bind H1s than linker DNA, and outcompetes linker DNA for H1 binding. Consequently, loss of SNHG8 increases the amount of H1s that bind to chromatin, promotes chromatin condensation, and induces an epithelial differentiation-associated gene expression pattern. Collectively, our results propose that the highly abundant SNHG8 in epithelial cells keeps histone H1 variants out of nucleosome and its loss contributes to epithelial cell differentiation.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yan Ji
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yun Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Jian-Xiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| |
Collapse
|
8
|
Sun P, Zou W. Research progress of live-cell RNA imaging techniques. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:362-372. [PMID: 36207827 PMCID: PMC9511491 DOI: 10.3724/zdxbyxb-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
RNA molecules play diverse roles in many physiological and pathological processes as they interact with various nucleic acids and proteins. The various biological processes of RNA are highly dynamic. Tracking RNA dynamics in living cells is crucial for a better understanding of the spatiotemporal control of gene expression and the regulatory roles of RNA. Genetically encoded RNA-tagging systems include MS2/MCP, PP7/PCP, boxB/λN22 and CRISPR-Cas. The MS2/MCP system is the most widely applied, and it has the advantages of stable binding and high signal-to-noise ratio, while the realization of RNA imaging requires gene editing of the target RNA, which may change the characteristics of the target RNA. Recently developed CRISPR-dCas13 system does not require RNA modification, but the uncertainty in CRISPR RNA (crRNA) efficiency and low signal-to-noise ratio are its limitations. Fluorescent dye-based RNA-tagging systems include molecular beacons and fluorophore-binding aptamers. The molecular beacons have high specificity and high signal-to-noise ratio; Mango and Peppers outperform the other RNA-tagging system in signal-to-noise, but they also need gene editing. Live-cell RNA imaging allows us to visualize critical steps of RNA activities, including transcription, splicing, transport, translation (for message RNA only) and subcellular localization. It will contribute to studying biological processes such as cell differentiation and the transcriptional regulation mechanism when cells adapt to the external environment, and it improves our understanding of the pathogenic mechanism of various diseases caused by abnormal RNA behavior and helps to find potential therapeutic targets. This review provides an overview of current progress of live-cell RNA imaging techniques and highlights their major strengths and limitations.
Collapse
Affiliation(s)
- Pingping Sun
- 1. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
- 2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Zou
- 1. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
- 2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
10
|
Bustamante-Jaramillo LF, Fingal J, Blondot ML, Rydell GE, Kann M. Imaging of Hepatitis B Virus Nucleic Acids: Current Advances and Challenges. Viruses 2022; 14:v14030557. [PMID: 35336964 PMCID: PMC8950347 DOI: 10.3390/v14030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles. Regardless of infections leading to extreme viral loads, which may reach 1010 virions per mL serum, hepatitis B viruses are of low abundance and productivity in individual cells. Imaging of the infections in cells is thus a particular challenge especially for cccDNA that exists only in a few copies. The review describes the significance of microscopical approaches on genome and transcript detection for understanding hepatitis B virus infections, implications for understanding treatment outcomes, and recent microscopical approaches, which have not been applied in HBV research.
Collapse
Affiliation(s)
- Luisa F. Bustamante-Jaramillo
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Joshua Fingal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Marie-Lise Blondot
- Microbiologie Fondamentale et Pathogénicité (MFP), CNRS UMR 5234, University of Bordeaux, 33076 Bordeaux, France;
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
11
|
Zhou H, Li Y, Gan Y, Wang R. Total RNA Synthesis and its Covalent Labeling Innovation. Top Curr Chem (Cham) 2022; 380:16. [PMID: 35218412 DOI: 10.1007/s41061-022-00371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
RNA plays critical roles in a wide range of physiological processes. For example, it is well known that RNA plays an important role in regulating gene expression, cell proliferation, and differentiation, and many other chemical and biological processes. However, the research community still suffers from limited approaches that can be applied to readily visualize a specific RNA-of-interest (ROI). Several methods can be used to track RNAs; these rely mainly on biological properties, namely, hybridization, aptamer, reporter protein, and protein binding. With respect to covalent approaches, very few cases have been reported. Happily, several new methods for efficient labeling studies of ROIs have been demonstrated successfully in recent years. Additionally, methods employed for the detection of ROIs by RNA modifying enzymes have also proved feasible. Several approaches, namely, phosphoramidite chemistry, in vitro transcription reactions, co-transcription reactions, chemical post-modification, RNA modifying enzymes, ligation, and other methods targeted at RNA labeling have been revealed in the past decades. To illustrate the most recent achievements, this review aims to summarize the most recent research in the field of synthesis of RNAs-of-interest bearing a variety of unnatural nucleosides, the subsequent RNA labeling research via biocompatible ligation, and beyond.
Collapse
Affiliation(s)
- Hongling Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youfang Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Natural Product and Resource, Shanghai Institute of Organic Chemistry, Shanghai, 230030, China.
| |
Collapse
|
12
|
Arora A, Goering R, Lo HYG, Lo J, Moffatt C, Taliaferro JM. The Role of Alternative Polyadenylation in the Regulation of Subcellular RNA Localization. Front Genet 2022; 12:818668. [PMID: 35096024 PMCID: PMC8795681 DOI: 10.3389/fgene.2021.818668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread and conserved regulatory mechanism that generates diverse 3' ends on mRNA. APA patterns are often tissue specific and play an important role in cellular processes such as cell proliferation, differentiation, and response to stress. Many APA sites are found in 3' UTRs, generating mRNA isoforms with different 3' UTR contents. These alternate 3' UTR isoforms can change how the transcript is regulated, affecting its stability and translation. Since the subcellular localization of a transcript is often regulated by 3' UTR sequences, this implies that APA can also change transcript location. However, this connection between APA and RNA localization has only recently been explored. In this review, we discuss the role of APA in mRNA localization across distinct subcellular compartments. We also discuss current challenges and future advancements that will aid our understanding of how APA affects RNA localization and molecular mechanisms that drive these processes.
Collapse
Affiliation(s)
- Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hei Yong G. Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joelle Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charlie Moffatt
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Xiao L, Jun YW, Kool ET. DNA Tiling Enables Precise Acylation‐Based Labeling and Control of mRNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lu Xiao
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Yong Woong Jun
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Eric T. Kool
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
14
|
Xiao L, Jun YW, Kool ET. DNA Tiling Enables Precise Acylation-Based Labeling and Control of mRNA. Angew Chem Int Ed Engl 2021; 60:26798-26805. [PMID: 34624169 PMCID: PMC8649056 DOI: 10.1002/anie.202112106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Methods for the site-selective labeling of long, native RNAs are needed for studying mRNA biology and future therapies. Current approaches involve engineering RNA sequences, which may alter folding, or are limited to specific sequences or bases. Here, we describe a versatile strategy for mRNA conjugation via a novel DNA-tiling approach. The method, TRAIL, exploits a pool of "protector" oligodeoxynucleotides to hybridize and block the mRNA, combined with an "inducer" DNA that extrudes a reactive RNA loop for acylation at a predetermined site. Using TRAIL, an azido-acylimidazole reagent was employed for labeling and controlling RNA for multiple applications in vitro and in cells, including analysis of RNA-binding proteins, imaging mRNA in cells, and analysis and control of translation. The TRAIL approach offers an efficient and accessible way to label and manipulate RNAs of virtually any length or origin without altering native sequence.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yong Woong Jun
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Bhakta S, Tsukahara T. Artificial RNA Editing with ADAR for Gene Therapy. Curr Gene Ther 2021; 20:44-54. [PMID: 32416688 DOI: 10.2174/1566523220666200516170137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Editing mutated genes is a potential way for the treatment of genetic diseases. G-to-A mutations are common in mammals and can be treated by adenosine-to-inosine (A-to-I) editing, a type of substitutional RNA editing. The molecular mechanism of A-to-I editing involves the hydrolytic deamination of adenosine to an inosine base; this reaction is mediated by RNA-specific deaminases, adenosine deaminases acting on RNA (ADARs), family protein. Here, we review recent findings regarding the application of ADARs to restoring the genetic code along with different approaches involved in the process of artificial RNA editing by ADAR. We have also addressed comparative studies of various isoforms of ADARs. Therefore, we will try to provide a detailed overview of the artificial RNA editing and the role of ADAR with a focus on the enzymatic site directed A-to-I editing.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| |
Collapse
|
16
|
Baladi T, Nilsson JR, Gallud A, Celauro E, Gasse C, Levi-Acobas F, Sarac I, Hollenstein MR, Dahlén A, Esbjörner EK, Wilhelmsson LM. Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery. J Am Chem Soc 2021; 143:5413-5424. [PMID: 33797236 PMCID: PMC8154517 DOI: 10.1021/jacs.1c00014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Methods for tracking
RNA inside living cells without perturbing
their natural interactions and functions are critical within biology
and, in particular, to facilitate studies of therapeutic RNA delivery.
We present a stealth labeling approach that can efficiently, and with
high fidelity, generate RNA transcripts, through enzymatic incorporation
of the triphosphate of tCO, a fluorescent tricyclic cytosine
analogue. We demonstrate this by incorporation of tCO in
up to 100% of the natural cytosine positions of a 1.2 kb mRNA encoding
for the histone H2B fused to GFP (H2B:GFP). Spectroscopic characterization
of this mRNA shows that the incorporation rate of tCO is
similar to cytosine, which allows for efficient labeling and controlled
tuning of labeling ratios for different applications. Using live cell
confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently translated into H2B:GFP inside human
cells. Hence, we not only develop the use of fluorescent base analogue
labeling of nucleic acids in live-cell microscopy but also, importantly,
show that the resulting transcript is translated into the correct
protein. Moreover, the spectral properties of our transcripts and
their translation product allow for their straightforward, simultaneous
visualization in live cells. Finally, we find that chemically transfected
tCO-labeled RNA, unlike a state-of-the-art fluorescently
labeled RNA, gives rise to expression of a similar amount of protein
as its natural counterpart, hence representing a methodology for studying
natural, unperturbed processing of mRNA used in RNA therapeutics and
in vaccines, like the ones developed against SARS-CoV-2.
Collapse
Affiliation(s)
- Tom Baladi
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Emanuele Celauro
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Cécile Gasse
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Fabienne Levi-Acobas
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Ivo Sarac
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Marcel R Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Anders Dahlén
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
17
|
Overcoming the design, build, test bottleneck for synthesis of nonrepetitive protein-RNA cassettes. Nat Commun 2021; 12:1576. [PMID: 33707432 PMCID: PMC7952577 DOI: 10.1038/s41467-021-21578-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
We apply an oligo-library and machine learning-approach to characterize the sequence and structural determinants of binding of the phage coat proteins (CPs) of bacteriophages MS2 (MCP), PP7 (PCP), and Qβ (QCP) to RNA. Using the oligo library, we generate thousands of candidate binding sites for each CP, and screen for binding using a high-throughput dose-response Sort-seq assay (iSort-seq). We then apply a neural network to expand this space of binding sites, which allowed us to identify the critical structural and sequence features for binding of each CP. To verify our model and experimental findings, we design several non-repetitive binding site cassettes and validate their functionality in mammalian cells. We find that the binding of each CP to RNA is characterized by a unique space of sequence and structural determinants, thus providing a more complete description of CP-RNA interaction as compared with previous low-throughput findings. Finally, based on the binding spaces we demonstrate a computational tool for the successful design and rapid synthesis of functional non-repetitive binding-site cassettes. Phage-coat proteins can be used to build synthetic biology parts. Here the authors use an oligo library and machine learning to predict and verify sequences based on binding scores.
Collapse
|
18
|
Rosenblum SL, Lorenz DA, Garner AL. A live-cell assay for the detection of pre-microRNA-protein interactions. RSC Chem Biol 2021; 2:241-247. [PMID: 33817642 PMCID: PMC8006716 DOI: 10.1039/d0cb00055h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Recent efforts in genome-wide sequencing and proteomics have revealed the fundamental roles that RNA-binding proteins (RBPs) play in the life cycle and function of coding and non-coding RNAs. While these methodologies provide a systems-level view of the networking of RNA and proteins, approaches to enable the cellular validation of discovered interactions are lacking. Leveraging the power of bioorthogonal chemistry- and split-luciferase-based assay technologies, we have devised a conceptually new assay for the live-cell detection of RNA-protein interactions (RPIs), RNA interaction with Protein-mediated Complementation Assay, or RiPCA. As proof-of-concept, we utilized the interaction of the pre-microRNA, pre-let-7, with its binding partner, Lin28. Using this system, we have demonstrated the selective detection of the pre-let-7-Lin28 RPI in both the cytoplasm and nucleus. Furthermore, we determined that this technology can be used to discern relative affinities for specific sequences as well as of individual RNA binding domains. Thus, RiPCA has the potential to serve as a useful tool in supporting the investigation of cellular RPIs.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Daniel A Lorenz
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Amanda L Garner
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
- Department of Medicinal Chemistry , College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , USA
| |
Collapse
|
19
|
Bejugam PR, Das A, Panda AC. Seeing Is Believing: Visualizing Circular RNAs. Noncoding RNA 2020; 6:E45. [PMID: 33187156 PMCID: PMC7712394 DOI: 10.3390/ncrna6040045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Advancement in the RNA sequencing techniques has discovered hundreds of thousands of circular RNAs (circRNAs) in humans. However, the physiological function of most of the identified circRNAs remains unexplored. Recent studies have established that spliceosomal machinery and RNA-binding proteins modulate circRNA biogenesis. Furthermore, circRNAs have been implicated in regulating crucial cellular processes by interacting with various proteins and microRNAs. However, there are several challenges in understanding the mechanism of circRNA biogenesis, transport, and their interaction with cellular factors to regulate cellular events because of their low abundance and sequence similarity with linear RNA. Addressing these challenges requires systematic studies that directly visualize the circRNAs in cells at single-molecule resolution along with the molecular regulators. In this review, we present the design, benefits, and weaknesses of RNA imaging techniques such as single-molecule RNA fluorescence in situ hybridization and BaseScope in fixed cells and fluorescent RNA aptamers in live-cell imaging of circRNAs. Furthermore, we propose the potential use of molecular beacons, multiply labeled tetravalent RNA imaging probes, and Cas-derived systems to visualize circRNAs.
Collapse
Affiliation(s)
- Pruthvi Raj Bejugam
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India; (P.R.B.); (A.D.)
| | - Aniruddha Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India; (P.R.B.); (A.D.)
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Amaresh Chandra Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India; (P.R.B.); (A.D.)
| |
Collapse
|
20
|
Khosravi S, Schindele P, Gladilin E, Dunemann F, Rutten T, Puchta H, Houben A. Application of Aptamers Improves CRISPR-Based Live Imaging of Plant Telomeres. FRONTIERS IN PLANT SCIENCE 2020; 11:1254. [PMID: 32973827 PMCID: PMC7468473 DOI: 10.3389/fpls.2020.01254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/30/2020] [Indexed: 06/01/2023]
Abstract
Development of live imaging techniques for providing information how chromatin is organized in living cells is pivotal to decipher the regulation of biological processes. Here, we demonstrate the improvement of a live imaging technique based on CRISPR/Cas9. In this approach, the sgRNA scaffold is fused to RNA aptamers including MS2 and PP7. When the dead Cas9 (dCas9) is co-expressed with chimeric sgRNA, the fluorescent coat protein-tagged for MS2 and PP7 aptamers (tdMCP-FP and tdPCP-FP) are recruited to the targeted sequence. Compared to previous work with dCas9:GFP, we show that the quality of telomere labeling was improved in transiently transformed Nicotiana benthamiana using aptamer-based CRISPR-imaging constructs. Labeling is influenced by the copy number of aptamers and less by the promoter types. The same constructs were not applicable for labeling of repeats in stably transformed plants and roots. The constant interaction of the RNP complex with its target DNA might interfere with cellular processes.
Collapse
Affiliation(s)
- Solmaz Khosravi
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Evgeny Gladilin
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Frank Dunemann
- Institute for Breeding Research on Horticultural Crops, Julius Kühn-Institut (JKI), Quedlinburg, Germany
| | - Twan Rutten
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas Houben
- Department for Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
21
|
Wosika V, Pelet S. Single-particle imaging of stress-promoters induction reveals the interplay between MAPK signaling, chromatin and transcription factors. Nat Commun 2020; 11:3171. [PMID: 32576833 PMCID: PMC7311541 DOI: 10.1038/s41467-020-16943-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/02/2020] [Indexed: 01/25/2023] Open
Abstract
Precise regulation of gene expression in response to environmental changes is crucial for cell survival, adaptation and proliferation. In eukaryotic cells, extracellular signal integration is often carried out by Mitogen-Activated Protein Kinases (MAPK). Despite a robust MAPK signaling activity, downstream gene expression can display a great variability between single cells. Using a live mRNA reporter, here we monitor the dynamics of transcription in Saccharomyces cerevisiae upon hyper-osmotic shock. We find that the transient activity of the MAPK Hog1 opens a temporal window where stress-response genes can be activated. We show that the first minutes of Hog1 activity are essential to control the activation of a promoter. Chromatin repression on a locus slows down this transition and contributes to the variability in gene expression, while binding of transcription factors increases the level of transcription. However, soon after Hog1 activity peaks, negative regulators promote chromatin closure of the locus and transcription progressively stops.
Collapse
Affiliation(s)
- Victoria Wosika
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Fujita H, Oikawa R, Hayakawa M, Tomoike F, Kimura Y, Okuno H, Hatashita Y, Fiallos Oliveros C, Bito H, Ohshima T, Tsuneda S, Abe H, Inoue T. Quantification of native mRNA dynamics in living neurons using fluorescence correlation spectroscopy and reduction-triggered fluorescent probes. J Biol Chem 2020; 295:7923-7940. [PMID: 32341124 PMCID: PMC7278347 DOI: 10.1074/jbc.ra119.010921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/22/2020] [Indexed: 11/06/2022] Open
Abstract
RNA localization in subcellular compartments is essential for spatial and temporal regulation of protein expression in neurons. Several techniques have been developed to visualize mRNAs inside cells, but the study of the behavior of endogenous and nonengineered mRNAs in living neurons has just started. In this study, we combined reduction-triggered fluorescent (RETF) probes and fluorescence correlation spectroscopy (FCS) to investigate the diffusion properties of activity-regulated cytoskeleton-associated protein (Arc) and inositol 1,4,5-trisphosphate receptor type 1 (Ip3r1) mRNAs. This approach enabled us to discriminate between RNA-bound and unbound fluorescent probes and to quantify mRNA diffusion parameters and concentrations in living rat primary hippocampal neurons. Specifically, we detected the induction of Arc mRNA production after neuronal activation in real time. Results from computer simulations with mRNA diffusion coefficients obtained in these analyses supported the idea that free diffusion is incapable of transporting mRNA of sizes close to those of Arc or Ip3r1 to distal dendrites. In conclusion, the combined RETF-FCS approach reported here enables analyses of the dynamics of endogenous, unmodified mRNAs in living neurons, affording a glimpse into the intracellular dynamics of RNA in live cells.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryota Oikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Mayu Hayakawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Fumiaki Tomoike
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Hiroyuki Okuno
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiki Hatashita
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Carolina Fiallos Oliveros
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
23
|
Abstract
A key approach to investigating RNA species in live mammalian cells is the ability to label them with fluorescent tags and track their dynamics in the complex cellular environment. The growing appreciation for the diversity of RNAs in nature, especially the roles of small, non-coding RNAs for cell function, calls for development of orthogonal RNA tagging systems. We previously developed Riboglow, a new RNA tagging system that features modular elements and hence the possibility to customize features for each application of choice. Riboglow consists of an RNA tag that is genetically fused to the RNA of interest and a small molecule that binds the RNA tag and elicits a fluorescence light up signal. Here, we present an overview of the Riboglow platform and compare and contrast the system with existing RNA tagging systems. Two step by step protocols for implementation of RNA imaging with Riboglow in live mammalian cells are presented, with special emphasis on guidelines that drive choices for modular elements in the Riboglow platform. Such modular elements include the RNA tag sequence and size, the number of RNA tag repeats per tagged RNA, the fluorescent color of the probe, the identity of the chemical linker in the probe, and the concentration of the probe used in live cells. Together, Riboglow is a new RNA tagging platform that enables robust live cell imaging of RNA dynamics, and this detailed protocol and guidelines for implementation will enable broad usage of Riboglow.
Collapse
|
24
|
Peña EJ, Heinlein M. Visualization of Transiently Expressed mRNA in Plants Using MS2. Methods Mol Biol 2020; 2166:103-120. [PMID: 32710405 DOI: 10.1007/978-1-0716-0712-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
RNA transport and localization are evolutionarily conserved processes that allow protein translation to occur at specific subcellular sites and thereby having fundamental roles in the determination of cell fates, embryonic patterning, asymmetric cell division, and cell polarity. In addition to localizing RNA molecules to specific subcellular sites, plants have the ability to exchange RNA molecules between cells through plasmodesmata (PD). Plant RNA viruses hijack the mechanisms of intracellular and intercellular RNA transport to establish localized replication centers within infected cells and then to disseminate their infectious genomes between cells and throughout the plant organism with the help of their movement proteins (MP). In this chapter, we describe the transient expression of the tobacco mosaic virus movement protein (TMV-MP) and the application of the MS2 system for the in vivo labeling of the MP-encoding mRNA. The MS2 method is based on the binding of the bacteriophage coat protein (CP) to its origin of assembly (OAS) in the phage RNA. Thus, to label a specific mRNA in vivo, a tandem repetition of a 19-nucleotide-long stem-loop (SL) sequence derived from the MS2 OAS sequence (MSL) is transcriptionally fused to the RNA under investigation. The RNA is detected by the co-expression of fluorescent protein-tagged MS2 CP (MCP), which binds to each of the MSL elements. In providing a detailed protocol for the in vivo visualization of TMV-MP mRNA tagged with the MS2 system in Nicotiana benthamiana epidermal cells, we describe (1) the specific DNA constructs, (2) Agrobacterium tumefaciens-mediated transfection for their transient expression in plants, and (3) imaging conditions required to obtain high-quality mRNA imaging data.
Collapse
Affiliation(s)
- Eduardo José Peña
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata CONICET, Fac. Cs. Exactas, U.N.L.P, La Plata, Argentina
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
25
|
Abstract
Multicellular organisms rely on systemic signals to orchestrate diverse developmental and physiological programs. To transmit environmental stimuli that perceived in the leaves, plants recruit many mobile molecules including mobile mRNAs as systemic signals for interorgan communication. The mobile mRNAs provide an efficient and specific remote control system for plants to cope with environmental dynamics. Upon being transcribed in local tissues, mobile mRNAs are selectively targeted to plasmodesmata for cell-to-cell and long-distance translocation. The mRNA labeling system based on the RNA-binding protein MS2 provides a useful tool to investigate intracellular trafficking of mobile mRNAs in plants. Here we describe the detailed protocol to visualize intracellular trafficking of plant mobile mRNAs by using the MS2 live-cell imaging system.
Collapse
Affiliation(s)
- Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
26
|
Zinskie JA, Roig M, Janetopoulos C, Myers KA, Bruist MF. Live-cell imaging of small nucleolar RNA tagged with the broccoli aptamer in yeast. FEMS Yeast Res 2019; 18:5078348. [PMID: 30137288 DOI: 10.1093/femsyr/foy093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/20/2018] [Indexed: 11/14/2022] Open
Abstract
The development of the RNA 'vegetable' aptamers, Spinach and Broccoli, has simplified RNA imaging, especially in live cells. These RNA aptamers interact with a fluorophore (DFHBI or DFHBI-1T) to produce a green fluorescence signal. Although used in mammalian and Escherichia coli cells, the use of these aptamers in yeast has been limited. Here we describe how the Saccharomyces cerevisiae snoRNA, snR30, was tagged with the Spinach or the Broccoli aptamers and observed in live cells. The ability to observe aptamer fluorescence in polyacrylamide gels stained with a fluorophore or with a microplate reader can ease preliminary screening of the aptamers in different RNA scaffolds. In snR30 a tandem repeat of the Broccoli aptamer produced the best signal in vitro. Multiple factors in cell preparation were vital for obtaining a good fluorescence signal. These factors included the clearance of the native unmodified snR30, the amount and length of dye incubation and the rinsing of cells. In cells, the aptamers did not interfere with the structure or essential function of snR30, as the tagged RNA localized to the nucleolus and directed processing of ribosomal RNA in yeast. High-resolution images of the tagged snoRNA were obtained with live cells immobilized by a microcompressor.
Collapse
Affiliation(s)
- Jessica A Zinskie
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104.,Rowan University, School of Osteopathic Medicine, Department of Cell Biology and Neuroscience, 2 Medical Center Dr., Stratford, NJ 08084
| | - Meghan Roig
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104.,Florida International University, Department of Biochemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199
| | | | - Kenneth A Myers
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Michael F Bruist
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104
| |
Collapse
|
27
|
Santra K, Geraskin I, Nilsen-Hamilton M, Kraus GA, Petrich JW. Characterization of the Photophysical Behavior of DFHBI Derivatives: Fluorogenic Molecules that Illuminate the Spinach RNA Aptamer. J Phys Chem B 2019; 123:2536-2545. [PMID: 30807171 DOI: 10.1021/acs.jpcb.8b11166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
( Z)-5-(3,5-Difluoro-4-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4 H-imidazol-4-one (DFHBI) and its analogues are fluorogenic molecules that bind the Spinach aptamer (a small RNA molecule), which was selected for imaging RNA. They are extremely weakly fluorescent in liquid solvents. It had been hypothesized that photoisomerization is a very efficient nonradiative process of deactivation. We show, consistent with the results of other studies, that if the isomerization is impeded, the fluorescence signal is enhanced significantly. In addition, we provide a thorough characterization of the photophysical behavior of DFHBI and its derivatives, notably that of ( Z)-5-(3,5-difluoro-4-hydroxybenzylidene)-2-methyl-3-((perfluorophenyl)methyl)-3,5-dihydro-4 H-imidazol-4-one (PFP-DFHBI) in various solvent environments. Solvent-dependent studies were performed with various mixtures of solvents. The results suggest that hydrogen bonding or strong interactions of the solvents with the phenolic-OH group change the absorption band near 420-460 nm and the nature of emission near 430 and 500 nm through various degrees of stabilization and the transformation between the neutral and the anionic species at both ground and excited states. These observations are confirmed by using a methoxy-substituted molecule (( Z)-5-(4-methoxybenzylidene)-2,3-dimethyl-3,5-dihydro-4 H-imidazol-4-one), where the 420-460 nm band is absent in the presence of methanol and the spectra are similar to those of PFP-DFHBI in noninteracting solvents, such as acetonitrile and dichloromethane. Thus, in addition to the major role of photoisomerization as a nonradiative process of deactivation of the excited state, the fluorescence of DFHBI-type molecules is very sensitively dependent upon the pH of the medium as well as upon solvent-specific interactions, such as hydrogen-bonding ability and polarity.
Collapse
|
28
|
Abstract
With its rapid development, ease of collection, and the presence of a unique layer of nuclei located close to the surface, the Drosophila syncytial embryo is ideally suited to study the establishment of gene expression patterns during development. Recent improvements in RNA labeling technologies and confocal microscopy allow for visualizing gene activation and quantifying transcriptional dynamics in living Drosophila embryos. Here we review the available tools for mRNA fluorescent labeling and detection in live embryos and precisely describe the overall procedure, from design to mounting and confocal imaging.
Collapse
Affiliation(s)
- Carola Fernandez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, Cedex 5, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, Cedex 5, France.
| |
Collapse
|
29
|
Adivarahan S, Zenklusen D. Lessons from (pre-)mRNA Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:247-284. [DOI: 10.1007/978-3-030-31434-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Tutucci E, Vera M, Singer RH. Single-mRNA detection in living S. cerevisiae using a re-engineered MS2 system. Nat Protoc 2018; 13:2268-2296. [DOI: 10.1038/s41596-018-0037-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Live-Cell Imaging and Functional Dissection of Xist RNA Reveal Mechanisms of X Chromosome Inactivation and Reactivation. iScience 2018; 8:1-14. [PMID: 30266032 PMCID: PMC6159346 DOI: 10.1016/j.isci.2018.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
We double-tagged Xist (inactivated X chromosome-specific transcript), a prototype long non-coding RNA pivotal for X chromosome inactivation (XCI), using the programmable RNA sequence binding domain of Pumilio protein, one tag for live-cell imaging and the other replacing A-repeat (a critical domain of Xist) to generate “ΔA mutant” and to tether effector proteins for dissecting Xist functionality. Based on the observation in live cells that the induced XCI in undifferentiated embryonic stem (ES) cells is counteracted by the intrinsic X chromosome reactivation (XCR), we identified Kat8 and Msl2, homologs of Drosophila dosage compensation proteins, as players involved in mammalian XCR. Furthermore, live-cell imaging revealed the obviously undersized ΔA Xist cloud signals, clarifying an issue regarding the previous RNA fluorescence in situ hybridization results. Tethering candidate proteins onto the ΔA mutant reveals the significant roles of Ythdc1, Ezh2, and SPOC (Spen) in Xist-mediated gene silencing and the significant role of Ezh2 in Xist RNA spreading. A Pumilio-based system allows efficient double-tagging of Xist RNA in live cells Induced XCI in undifferentiated ES cells reveals the roles of Kat8 and Msl2 in XCR Live-cell imaging reveals the undersized “ΔA mutant” Xist signals Tethering proteins onto “ΔA mutant” reveals their role in Xist-mediated silencing
Collapse
|
32
|
Liu Y, Niu J, Wang W, Ma Y, Lin W. Simultaneous Imaging of Ribonucleic Acid and Hydrogen Sulfide in Living Systems with Distinct Fluorescence Signals Using a Single Fluorescent Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700966. [PMID: 30027032 PMCID: PMC6051385 DOI: 10.1002/advs.201700966] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/23/2018] [Indexed: 05/24/2023]
Abstract
Ribonucleic acid (RNA) and hydrogen sulfide (H2S) are important genes and gaseous signal molecules in physiological environment. However, simultaneous investigation of distribution and interrelation of RNA and H2S in living systems is restricted by lack of functional molecular tools. To address this critical challenge, the development of TP-MIVC is described as the first paradigm of the probes that can concurrently report ribonucleic acid and hydrogen sulfide with distinct fluorescence signals in the cancer cells, zebrafish, and living animals. The advantageous features of the probe include high stability, low background fluorescence, high sensitivity, and two-photon imaging property. Significantly, regardless of normal mice or tumor mice, tumor tissues exhibit stronger fluorescence intensity than other organs. More interestingly, it is found that TP-MIVC is capable of distinguishing normal mice and tumor mice by in vivo imaging. This study may open a new pathway for distinguishing malignant and benign tumor by fluorescence imaging of RNA.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Fluorescent Probes for Biological ImagingSchool of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringUniversity of JinanShandong250022P. R. China
| | - Jie Niu
- Institute of Fluorescent Probes for Biological ImagingSchool of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringUniversity of JinanShandong250022P. R. China
| | - Weishan Wang
- Institute of Fluorescent Probes for Biological ImagingSchool of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringUniversity of JinanShandong250022P. R. China
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological ImagingSchool of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringUniversity of JinanShandong250022P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological ImagingSchool of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringUniversity of JinanShandong250022P. R. China
| |
Collapse
|
33
|
Luo KR, Huang NC, Yu TS. Selective Targeting of Mobile mRNAs to Plasmodesmata for Cell-to-Cell Movement. PLANT PHYSIOLOGY 2018; 177:604-614. [PMID: 29581179 PMCID: PMC6001314 DOI: 10.1104/pp.18.00107] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
Many plant mRNAs move from cell to cell or long distance to execute non-cell-autonomous functions. These mobile mRNAs traffic through the phloem to regulate many developmental processes, but despite the burgeoning discovery of mobile mRNAs, little is known about the mechanism underlying the intracellular sorting of these mRNAs. Here, we exploited a fluorescence-based mRNA labeling system, using the bacteriophage coat protein MS2, fused to GFP (MS2-GFP) and an MS2 recognition site in the RNA of interest, to visualize the intracellular trafficking of mobile mRNAs in living plant cells of Nicotiana benthamiana We first improved this system by using the nuclear localization sequence from FD, which substantially reduced the fluorescent background of MS2-GFP in the cytoplasm. The modified system allowed us to observe the cytoplasmic fluorescent foci dependent on MS2-binding sites. Coexpressing the MS2-GFP system with a virus movement protein, which is a plasmodesmata (PD)-localized nonspecific RNA-binding protein, targeted cytoplasmic fluorescent foci to the PD, suggesting that the cytoplasmic fluorescent foci contain mRNA and MS2-GFP. Our ex vivo RNA imaging revealed that mobile but not nonmobile mRNAs were selectively targeted to PD. Real-time images of intracellular translocation revealed that the translocation of mRNA and organelles in the transvacuolar strands may be governed by the same mechanism. Our study suggests that PD targeting of mRNA is a selective step in determining mRNA cell-to-cell movement of mRNAs.
Collapse
Affiliation(s)
- Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
34
|
Perez-Romero CA, Tran H, Coppey M, Walczak AM, Fradin C, Dostatni N. Live Imaging of mRNA Transcription in Drosophila Embryos. Methods Mol Biol 2018; 1863:165-182. [PMID: 30324598 DOI: 10.1007/978-1-4939-8772-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Live imaging has been used in recent years for the understanding of dynamic processes in biology, such as embryo development. This was made possible by a combination of advancements in microscopy, leading to improved signal-to-noise ratios and better spatial and temporal resolutions, and by the development of new fluorescence markers, allowing for the quantification of protein expression and transcriptional dynamics in vivo. Here we describe a general protocol, which can be used in standard confocal microscopes to image early Drosophila melanogaster embryos, in order to learn about the transcriptional dynamics of a fluorescently labeled RNA.
Collapse
Affiliation(s)
- Carmina Angelica Perez-Romero
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
- McMaster University, Hamilton, ON, Canada
| | - Huy Tran
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
- Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Physique Théorique, Paris, France
| | - Mathieu Coppey
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - Aleksandra M Walczak
- Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Physique Théorique, Paris, France
| | - Cécile Fradin
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France
- McMaster University, Hamilton, ON, Canada
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France.
| |
Collapse
|
35
|
Shirinfar B, Seema H, Ahmed N. Charged probes: turn-on selective fluorescence for RNA. Org Biomol Chem 2018; 16:164-168. [DOI: 10.1039/c7ob02423a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazolium-based charged fluorescent probes for the selective in vitro and in vivo recognition of RNA over other biomolecules.
Collapse
Affiliation(s)
| | - Humaira Seema
- Institute of Chemical Sciences
- University of Peshawar
- Pakistan
| | - Nisar Ahmed
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| |
Collapse
|
36
|
Yoshimura H. Live Cell Imaging of Endogenous RNAs Using Pumilio Homology Domain Mutants: Principles and Applications. Biochemistry 2017; 57:200-208. [PMID: 29164876 DOI: 10.1021/acs.biochem.7b00983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, dynamic changes in the location of RNA in space and time in living cells have become a target of interest in biology because of their essential roles in controlling physiological phenomena. To visualize RNA, methods for the fluorescent labeling of RNA in living cells have been developed. For RNA labeling, oligonucleotide-based RNA probes have mainly been used because of their high selectivity for target RNAs. By contrast, protein-based RNA probes have not been used widely because of their lack of design flexibility, although they have various potential advantages compared with nucleotide-based probes, such as controllability of intracellular localization, high detectability, and ease of introduction into cells and transgenic organisms in a cell type and tissue specific manner by genetic engineering techniques. This Perspective focuses on a possible approach to the development of protein-based RNA probes using Pumilio homology domain (PUM-HD) mutants. The PUM-HD is a domain of an RNA binding protein that allows custom-made modifications to recognize a given eight-base RNA sequence. PUM-HD-based RNA probes have been applied to visualize various RNAs in living cells. Here, the techniques and RNA imaging results obtained using the PUM-HD are introduced.
Collapse
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Bakshi SF, Guz N, Zakharchenko A, Deng H, Tumanov AV, Woodworth CD, Minko S, Kolpashchikov DM, Katz E. Magnetic Field-Activated Sensing of mRNA in Living Cells. J Am Chem Soc 2017; 139:12117-12120. [PMID: 28817270 PMCID: PMC5654739 DOI: 10.1021/jacs.7b06022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Detection of specific mRNA in living cells has attracted significant attention in the past decade. Probes that can be easily delivered into cells and activated at the desired time can contribute to understanding translation, trafficking and degradation of mRNA. Here we report a new strategy termed magnetic field-activated binary deoxyribozyme (MaBiDZ) sensor that enables both efficient delivery and temporal control of mRNA sensing by magnetic field. MaBiDZ uses two species of magnetic beads conjugated with different components of a multicomponent deoxyribozyme (DZ) sensor. The DZ sensor is activated only in the presence of a specific target mRNA and when a magnetic field is applied. Here we demonstrate that MaBiDZ sensor can be internalized in live MCF-7 breast cancer cells and activated by a magnetic field to fluorescently report the presence of specific mRNA, which are cancer biomarkers.
Collapse
Affiliation(s)
- Saira F Bakshi
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Andrey Zakharchenko
- Nanostructured Materials Lab, University of Georgia , Athens, Georgia 30602, United States
| | - Han Deng
- Department of Biology, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
| | - Craig D Woodworth
- Department of Biology, Clarkson University , Potsdam, New York 13699-5810, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia , Athens, Georgia 30602, United States
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida , 4000 Central Florida Boulevard, Orlando, Florida 32816-2366, United States.,Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University , Lomonosova St. 9, 191002 St. Petersburg, Russian Federation
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University , Potsdam, New York 13699-5810, United States
| |
Collapse
|
38
|
Urbanek MO, Krzyzosiak WJ. Discriminating RNA variants with single-molecule allele-specific FISH. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:230-241. [DOI: 10.1016/j.mrrev.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
39
|
Urbanek MO, Michalak M, Krzyzosiak WJ. 2D and 3D FISH of expanded repeat RNAs in human lymphoblasts. Methods 2017; 120:49-57. [PMID: 28404480 DOI: 10.1016/j.ymeth.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
The first methods for visualizing RNAs within cells were designed for simple imaging of specific transcripts in cells or tissues and since then significant technical advances have been made in this field. Today, high-resolution images can be obtained, enabling visualization of single transcript molecules, quantitative analyses of images, and precise localization of RNAs within cells as well as co-localization of transcripts with specific proteins or other molecules. In addition, tracking of RNA dynamics within single cell has become possible. RNA imaging techniques have been utilized for investigating the role of mutant RNAs in a number of human disorders caused by simple microsatellite expansions. These diseases include myotonic dystrophy type 1 and 2, amyotrophic lateral sclerosis/frontotemporal dementia, fragile X-associated tremor/ataxia syndrome, and Huntington's disease. Mutant RNAs with expanded repeats tend to aggregate predominantly within cell nuclei, forming structures called RNA foci. In this study, we demonstrate methods for fluorescent visualization of RNAs in both fixed and living cells using the example of RNAs containing various expanded repeat tracts (CUG, CCUG, GGGGCC, CGG, and CAG) from experiment design to image analysis. We describe in detail 2D and 3D fluorescence in situ hybridization (FISH) protocols for imaging expanded repeats RNAs, and we review briefly live imaging techniques used to characterize RNA foci formed by mutant RNAs. These methods could be used to image the entire cellular pathway of RNAs, from transcription to degradation.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Michal Michalak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
40
|
Heinrich S, Sidler CL, Azzalin CM, Weis K. Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing. RNA (NEW YORK, N.Y.) 2017; 23:134-141. [PMID: 28096443 PMCID: PMC5238788 DOI: 10.1261/rna.057786.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/03/2016] [Indexed: 05/17/2023]
Abstract
The binding of sequence-specific RNA-interacting proteins, such as the bacteriophage MS2 or PP7 coat proteins, to their corresponding target sequences has been extremely useful and widely used to visualize single mRNAs in vivo. However, introduction of MS2 stem-loops into yeast mRNAs has recently been shown to lead to the accumulation of RNA fragments, suggesting that the loops impair mRNA decay. This result was questioned, because fragment occurrence was mainly assessed using ensemble methods, and their cellular localization and its implications had not been addressed on a single transcript level. Here, we demonstrate that the introduction of either MS2 stem-loops (MS2SL) or PP7 stem-loops (PP7SL) can affect the processing and subcellular localization of mRNA. We use single-molecule fluorescence in situ hybridization (smFISH) to determine the localization of three independent mRNAs tagged with the stem-loop labeling systems in glucose-rich and glucose starvation conditions. Transcripts containing MS2SL or PP7SL display aberrant localization in both the nucleus and the cytoplasm. These defects are most prominent in glucose starvation conditions, with nuclear mRNA processing being altered and stem-loop fragments abnormally enriching in processing bodies (PBs). The mislocalization of SL-containing RNAs is independent of the presence of the MS2 or PP7 coat protein (MCP or PCP).
Collapse
Affiliation(s)
| | | | - Claus M Azzalin
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Karsten Weis
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
41
|
Heinrich S, Derrer CP, Lari A, Weis K, Montpetit B. Temporal and spatial regulation of mRNA export: Single particle RNA-imaging provides new tools and insights. Bioessays 2017; 39. [PMID: 28052353 DOI: 10.1002/bies.201600124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transport of messenger RNAs (mRNAs) from the nucleus to cytoplasm is an essential step in the gene expression program of all eukaryotes. Recent technological advances in the areas of RNA-labeling, microscopy, and sequencing are leading to novel insights about mRNA biogenesis and export. This includes quantitative single molecule imaging (SMI) of RNA molecules in live cells, which is providing knowledge of the spatial and temporal dynamics of the export process. As this information becomes available, it leads to new questions, the reinterpretation of previous findings, and revised models of mRNA export. In this review, we will briefly highlight some of these recent findings and discuss how live cell SMI approaches may be used to further our current understanding of mRNA export and gene expression.
Collapse
Affiliation(s)
| | | | - Azra Lari
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Karsten Weis
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Department of Viticulture and Enology, University of California, Davis, CA, USA
| |
Collapse
|
42
|
Genshaft AS, Li S, Gallant CJ, Darmanis S, Prakadan SM, Ziegler CGK, Lundberg M, Fredriksson S, Hong J, Regev A, Livak KJ, Landegren U, Shalek AK. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol 2016; 17:188. [PMID: 27640647 PMCID: PMC5027636 DOI: 10.1186/s13059-016-1045-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023] Open
Abstract
We present a scalable, integrated strategy for coupled protein and RNA detection from single cells. Our approach leverages the DNA polymerase activity of reverse transcriptase to simultaneously perform proximity extension assays and complementary DNA synthesis in the same reaction. Using the Fluidigm C1™ system, we profile the transcriptomic and proteomic response of a human breast adenocarcinoma cell line to a chemical perturbation, benchmarking against in situ hybridizations and immunofluorescence staining, as well as recombinant proteins, ERCC Spike-Ins, and population lysate dilutions. Through supervised and unsupervised analyses, we demonstrate synergies enabled by simultaneous measurement of single-cell protein and RNA abundances. Collectively, our generalizable approach highlights the potential for molecular metadata to inform highly-multiplexed single-cell analyses.
Collapse
Affiliation(s)
- Alex S Genshaft
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline J Gallant
- Department of Immunology, Genetics & Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Spyros Darmanis
- Department of Immunology, Genetics & Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Departments of Bioengineering and Applied Physics, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - Sanjay M Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Carly G K Ziegler
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.,Division of Health Sciences & Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Joyce Hong
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biology and Koch Institute, MIT, Boston, MA, 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | | | - Ulf Landegren
- Department of Immunology, Genetics & Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA. .,Division of Health Sciences & Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 2016; 44:9050-9070. [PMID: 27625393 PMCID: PMC5100574 DOI: 10.1093/nar/gkw803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.
Collapse
Affiliation(s)
- Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Bilinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
44
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
45
|
Laprade H, Lalonde M, Guérit D, Chartrand P. Live-cell imaging of budding yeast telomerase RNA and TERRA. Methods 2016; 114:46-53. [PMID: 27474163 DOI: 10.1016/j.ymeth.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/11/2016] [Accepted: 07/23/2016] [Indexed: 02/02/2023] Open
Abstract
In most eukaryotes, the ribonucleoprotein complex telomerase is responsible for maintaining telomere length. In recent years, single-cell microscopy techniques such as fluorescent in situ hybridization and live-cell imaging have been developed to image the RNA subunit of the telomerase holoenzyme. These techniques are now becoming important tools for the study of telomerase biogenesis, its association with telomeres and its regulation. Here, we present detailed protocols for live-cell imaging of the Saccharomyces cerevisiae telomerase RNA subunit, called TLC1, and also of the non-coding telomeric repeat-containing RNA TERRA. We describe the approach used for genomic integration of MS2 stem-loops in these transcripts, and provide information for optimal live-cell imaging of these non-coding RNAs.
Collapse
Affiliation(s)
- Hadrien Laprade
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - David Guérit
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada.
| |
Collapse
|
46
|
Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem 2016; 17:1589-92. [PMID: 27305425 DOI: 10.1002/cbic.201600323] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 12/25/2022]
Abstract
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| |
Collapse
|
47
|
Halstead JM, Wilbertz JH, Wippich F, Lionnet T, Ephrussi A, Chao JA. TRICK: A Single-Molecule Method for Imaging the First Round of Translation in Living Cells and Animals. Methods Enzymol 2016; 572:123-57. [PMID: 27241753 DOI: 10.1016/bs.mie.2016.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The life of an mRNA is dynamic within a cell. The development of quantitative fluorescent microscopy techniques to image single molecules of RNA has allowed many aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances in live-cell multicolor RNA imaging, however, have now made it possible to investigate RNA metabolism in greater detail. In this chapter, we present an overview of the design and implementation of the translating RNA imaging by coat protein knockoff RNA biosensor, which allows untranslated mRNAs to be distinguished from ones that have undergone a round of translation. The methods required for establishing this system in mammalian cell lines and Drosophila melanogaster oocytes are described here, but the principles may be applied to any experimental system.
Collapse
Affiliation(s)
- J M Halstead
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - F Wippich
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - T Lionnet
- Transcription Imaging Consortium, HHMI Janelia Research Campus, Ashburn, VA, United States
| | - A Ephrussi
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - J A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
48
|
Abstract
Intracellular trafficking and asymmetric localization of RNA molecules within cells are a prevalent process across phyla involved in developmental control and signaling and thus in the determination of cell fate. In addition to intracellular localization, plants support the trafficking of RNA molecules also between cells through plasmodesmata (PD), which has important roles in the cell-to-cell and systemic communication during plant growth and development. Viruses have developed strategies to exploit the underlying plant RNA transport mechanisms for the cell-to-cell and systemic dissemination of infection. In vivo RNA visualization methods have revolutionized the study of RNA dynamics in living cells. However, their application in plants is still in its infancy. To gain insights into the RNA transport mechanisms in plants, we study the localization and transport of Tobacco mosaic virus RNA using MS2 tagging. This technique involves the tagging of the RNA of interest with repeats of an RNA stem-loop (SL) that is derived from the origin of assembly of the bacteriophage MS2 and recruits the MS2 coat protein (MCP). Thus, expression of MCP fused to a fluorescent marker allows the specific visualization of the SL-carrying RNA. Here we describe a detailed protocol for Agrobacterium tumefaciens-mediated transient expression and in vivo visualization of MS2-tagged mRNAs in Nicotiana benthamiana leaves.
Collapse
Affiliation(s)
- E J Peña
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata CONICET, Fac. Cs. Exactas, U.N.L.P., La Plata, Argentina
| | - M Heinlein
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
49
|
Abstract
Nucleic acid aptamers are promising alternatives to antibodies in analytics. They are generally obtained through an iterative SELEX protocol that enriches a population of synthetic oligonucleotides to a subset that can recognize the chosen target molecule specifically and avidly. A wide range of targets is recognized by aptamers. Once identified and optimized for performance, aptamers can be reproducibly synthesized and offer other key features, like small size, low cost, sensitivity, specificity, rapid response, stability, and reusability. This makes them excellent options for sensory units in a variety of analytical platforms including those with electrochemical, optical, and mass sensitive transduction detection. Many novel sensing strategies have been developed by rational design to take advantage of the tendency of aptamers to undergo conformational changes upon target/analyte binding and employing the principles of base complementarity that can drive the nucleic acid structure. Despite their many advantages over antibodies, surprisingly few aptamers have yet been integrated into commercially available analytical devices. In this review, we discuss how to select and engineer aptamers for their identified application(s), some of the challenges faced in developing aptamers for analytics and many examples of their reported successful performance as sensors in a variety of analytical platforms.
Collapse
Affiliation(s)
- Muslum Ilgu
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA and Ames Laboratory, US DOE, Ames IA 50011, USA
| |
Collapse
|
50
|
Bensidoun P, Raymond P, Oeffinger M, Zenklusen D. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae. Methods 2016; 98:104-114. [PMID: 26784711 DOI: 10.1016/j.ymeth.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
Regulation of mRNA and protein expression occurs at many levels, initiated at transcription and followed by mRNA processing, export, localization, translation and mRNA degradation. The ability to study mRNAs in living cells has become a critical tool to study and analyze how the various steps of the gene expression pathway are carried out. Here we describe a detailed protocol for real time fluorescent RNA imaging using the PP7 bacteriophage coat protein, which allows mRNA detection with high spatial and temporal resolution in the yeast Saccharomyces cerevisiae, and can be applied to study various stages of mRNA metabolism. We describe the different parameters required for quantitative single molecule imaging in yeast, including strategies for genomic integration, expression of a PP7 coat protein GFP fusion protein, microscope setup and analysis strategies. We illustrate the method's use by analyzing the behavior of nuclear mRNA in yeast and the role of the nuclear basket in mRNA export.
Collapse
Affiliation(s)
- Pierre Bensidoun
- Département de Biochimieet médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Pascal Raymond
- Département de Biochimieet médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marlene Oeffinger
- Département de Biochimieet médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Daniel Zenklusen
- Département de Biochimieet médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|