1
|
Pérez-Pons A, Teodosio C, Jara-Acevedo M, Henriques A, Navarro-Navarro P, García-Montero AC, Álvarez-Twose I, Lecrevisse Q, Fluxa R, Sánchez-Muñoz L, Caldas C, Pozo J, Martín S, Sanfeliciano TC, Pedreira CE, Botafogo V, González-López O, Mayado A, Orfao A. T-cell immune profile in blood of systemic mastocytosis: Association with disease features. Allergy 2024; 79:1921-1937. [PMID: 38299742 DOI: 10.1111/all.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Systemic mastocytosis (SM) is a heterogeneous disease characterized by an expansion of KIT-mutated mast cells (MC). KIT-mutated MC display activated features and release MC mediators that might act on the tumour microenvironment and other immune cells. Here, we investigated the distribution of lymphocyte subsets in blood of patients with distinct subtypes of SM and determined its association with other disease features. METHODS We studied the distribution of TCD4+ and TCD4- cytotoxic cells and their subsets, as well as total NK- and B cells, in blood of 115 SM patients-38 bone marrow mastocytosis (BMM), 67 indolent SM (ISM), 10 aggressive SM (ASM)- and 83 age-matched healthy donors (HD), using spectral flow cytometry and the EuroFlow Immunomonitoring panel, and correlated it with multilineage KITD816V, the alpha-tryptasemia genotype (HαT) and the clinical manifestations of the disease. RESULTS SM patients showed decreased counts (vs. HD) of TCD4- cytotoxic cells, NK cells and several functional subsets of TCD4+ cells (total Th1, Th2-effector memory, Th22-terminal effector and Th1-like Tregs), together with increased T-follicular-helper and Th1/Th17-like Treg counts, associated with different immune profiles per diagnostic subtype of SM, in multilineal versus MC-restricted KITD816V and in cases with a HαT+ versus HαT- genotype. Unique immune profiles were found among BMM and ISM patients with MC-restricted KITD816V who displayed HαT, anaphylaxis, hymenoptera venom allergy, bone disease, pruritus, flushing and GI symptoms. CONCLUSION Our results reveal altered T- and NK-cell immune profiles in blood of SM, which vary per disease subtype, the pattern of involvement of haematopoiesis by KITD816V, the HαT genotype and specific clinical manifestations of the disease.
Collapse
Affiliation(s)
- Alba Pérez-Pons
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Cristina Teodosio
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - María Jara-Acevedo
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Sequencing Service (NUCLEUS), Universidad de Salamanca, Salamanca, Spain
| | - Ana Henriques
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
- Cytognos SL, Salamanca, Spain
| | - Paula Navarro-Navarro
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Sequencing Service (NUCLEUS), Universidad de Salamanca, Salamanca, Spain
| | - Andrés C García-Montero
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Iván Álvarez-Twose
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
| | - Quentin Lecrevisse
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Laura Sánchez-Muñoz
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
| | - Carolina Caldas
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Julio Pozo
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Martín
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Carlos E Pedreira
- Systems and Computing Department (PESC), COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vitor Botafogo
- Department of Hematology and Hemotherapy, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Oscar González-López
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
| | - Andrea Mayado
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| |
Collapse
|
2
|
Hackler Y, Siebenhaar F, Maurer M, Muñoz M. Virus-infected mast cells activate virus-specific CD8 + T cells. Scand J Immunol 2023; 98:e13272. [PMID: 38441354 DOI: 10.1111/sji.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 03/07/2024]
Abstract
Efficient anti-viral responses of CD8+ T cells require signals that promote their effector cell differentiation, that are mainly provided by dendritic cells (DCs). Mast cells (MCs) are key drivers of DC maturation, but also influence their migration and antigen presenting properties and therefore indirectly mediate CD8+ T cell activation. MCs initiate innate immune responses at pathogen entry sites, promote the development of adaptive immune responses after infection, and release mediators including chemokines that recruit and activate immune cells including T cells during viral infections. However, whether MCs can directly activate virus-specific CD8+ T cells remains largely unknown. Here, we used an in vitro viral infection model with lymphocytic choriomeningitis virus (LCMV)-infected MCs or DCs co-cultured with either LCMV-specific CD8+ T cells or with WT (unspecific) CD8+ T cells. Similar to LCMV-infected DCs, LCMV-infected MCs clustered with virus-specific CD8+ T cells and induced their activation and production of antiviral cytokines. In addition, the co-stimulatory molecules CD86 and OX40L, but not CD80, were upregulated on MCs and an increased production of IL-6 and type I interferons after LCMV infection was shown. Our findings suggest that MCs can promote CD8+ T cell activation during viral infections. MC-mediated CD8+ T cell activation might be especially important within infected tissues where direct cellular interaction can take place. A better understanding of anti-viral functions of MCs may help developing new strategies to better treat viral infections.
Collapse
Affiliation(s)
- Yana Hackler
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Melba Muñoz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
3
|
Kulinski JM, Eisch R, Young ML, Rampertaap S, Stoddard J, Monsale J, Romito K, Lyons JJ, Rosenzweig SD, Metcalfe DD, Komarow HD. Skewed Lymphocyte Subpopulations and Associated Phenotypes in Patients with Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:292-301.e2. [PMID: 31319217 DOI: 10.1016/j.jaip.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mastocytosis is a clonal mast cell disorder associated with elevated mast cell mediators, which themselves have been reported to affect lymphocyte function. However, the impact of an expanded mast cell compartment on lymphocyte subpopulations, and their correlation with clinical phenotypes in patients with indolent systemic mastocytosis (ISM), has not been explored. OBJECTIVE To examine the immunophenotype of circulating lymphocytes in patients with ISM compared with healthy adult controls and examine relationships with aspects of clinical disease. METHODS We examined lymphocyte subsets in 20 adult patients with ISM and 40 healthy adult volunteers by multiparameter flow cytometry. Results were correlated with clinical characteristics. RESULTS Patients with ISM exhibited a significantly lower median frequency and absolute cell count of both circulating CD8+ T cells and natural killer cells accompanying a significantly increased ratio of CD4+/CD8+ T cells when compared with healthy volunteers. Stratification of our ISM patient cohort according to clinical manifestations revealed that CD19+CD21lowCD38low B cells were significantly higher in patients with a history of autoimmune disease and counts of terminally differentiated CD4+ T cells were significantly higher in patients with osteoporosis or osteopenia. CONCLUSIONS Several circulating lymphocyte subpopulations in patients with ISM were significantly different when compared with healthy controls; in specific lymphocyte subsets, this lymphocyte skewing correlated with clinical observations including osteoporosis and autoimmune disease. These data suggest the need for further studies on abnormalities in lymphocyte subsets and the attendant clinical consequences in both mast cell proliferative and activation disorders.
Collapse
Affiliation(s)
- Joseph M Kulinski
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Robin Eisch
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael L Young
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Md
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Joseph Monsale
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Kimberly Romito
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hirsh D Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
4
|
Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis. Cells 2019; 8:cells8020135. [PMID: 30744042 PMCID: PMC6407111 DOI: 10.3390/cells8020135] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell⁻enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.
Collapse
|
5
|
Elieh Ali Komi D, Grauwet K. Role of Mast Cells in Regulation of T Cell Responses in Experimental and Clinical Settings. Clin Rev Allergy Immunol 2018; 54:432-445. [PMID: 28929455 DOI: 10.1007/s12016-017-8646-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mast cells secrete a wide spectrum of stored or newly synthesized pro-inflammatory, anti-inflammatory, and/or immunosuppressive mediators and express several costimulatory and inhibitory surface molecules. Mast cells finely tune activities of T cells, B cells, and regulatory cells and effectively contribute to the development of different T cell-associated responses by influencing their recruitment, activation, proliferation, and differentiation. The interaction between mast cells and T cells, with regard to cellular functionality and immune responses, can be assessed in both activating and inhibitory regulations. While Th2 cytokines, including IL-5 and IL-9, stimulate stem cell factor (SCF)-dependent proliferation of mast cells, Th1 cytokine IFN-γ suppresses SCF-mediated differentiation of mast cell progenitors. Mast cell mediators such as CCL5 have a role in the recruitment of CD8+ T cells to viral infection sites where their ability in clearance of viral reservoirs is needed. The capacity of mast cells in presenting antigens by classes I and II MHC molecules to CD4+ and CD8+ T cells respectively is considered one of the main antigen-dependent interactions of mast cells with T cells. Interestingly, Tregs recruit mast cells to different sites through secretion of IL-9, while the OX40L (expressed on mast cell)-OX40(expressed on T cell) interaction inhibits the extent of the mast cell degranulation. Recently, the capability of exosomes to carry regulatory receptors of the mast cell surface and their role in T cell activation has been investigated. Functional interplay between mast cells and T cell subsets has been suggested primarily by investigating their co-localization in inflamed tissues and involvement of mast cells in autoimmune diseases. In this review, the interactions of mast cells with T cells are reviewed in cell-to-cell, cytokine, and exosome categories.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Korneel Grauwet
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, BTM building Rm 08012, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Lotfi-Emran S, Ward BR, Le QT, Pozez AL, Manjili MH, Woodfolk JA, Schwartz LB. Human mast cells present antigen to autologous CD4 + T cells. J Allergy Clin Immunol 2017. [PMID: 28624612 DOI: 10.1016/j.jaci.2017.02.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mast cells (MCs), the primary effector cell of the atopic response, participate in immune defense at host/environment interfaces, yet the mechanisms by which they interact with CD4+ T cells has been controversial. OBJECTIVE We used in situ-matured primary human MCs and matched CD4+ T cells to diligently assess the ability of MCs to act as antigen-presenting cells. METHODS We examined mature human skin-derived MCs using flow cytometry for expression of antigen-presenting molecules, for their ability to stimulate CD4+ T cells to express CD25 and proliferate when exposed to superantigen or to cytomegalovirus (CMV) antigen using matched T cells and MCs from CMV-seropositive or CMV-seronegative donors, and for antigen uptake. Subcellular localization of antigen, HLA molecules, and tryptase was analyzed by using structured illumination microscopy. RESULTS Our data show that IFN-γ induces HLA class II, HLA-DM, CD80, and CD40 expression on MCs, whereas MCs take up soluble and particulate antigens in an IFN-γ-independent manner. IFN-γ-primed MCs guide activation of T cells by Staphylococcus aureus superantigen and, when preincubated with CMV antigens, induce a recall CD4+ TH1 proliferation response only in CMV-seropositive donors. MCs co-opt their secretory granules for antigen processing and presentation. Consequently, MC degranulation increases surface delivery of HLA class II/peptide, further enhancing stimulation of T-cell proliferation. CONCLUSIONS IFN-γ primes human MCs to activate T cells through superantigen and to present CMV antigen to TH1 cells, co-opting MC secretory granules for antigen processing and presentation and creating a feed-forward loop of T-cell-MC cross-activation.
Collapse
Affiliation(s)
- Sahar Lotfi-Emran
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Brant R Ward
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Quang T Le
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Andrea L Pozez
- Division of Plastic and Reconstructive Surgery, Virginia Commonwealth University, Richmond, Va
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Va; Massey Cancer Center, Virginia Commonwealth University, Richmond, Va
| | - Judith A Woodfolk
- Division of Asthma, Allergy, and Immunology, University of Virginia, Charlottesville, Va
| | - Lawrence B Schwartz
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, Va.
| |
Collapse
|
7
|
Cardamone C, Parente R, Feo GD, Triggiani M. Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol Lett 2016; 178:10-4. [PMID: 27393494 DOI: 10.1016/j.imlet.2016.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
Abstract
Mast cells are widely distributed in human organs and tissues and they are particularly abundant at major body interfaces with the external environment such as the skin, the lung and the gastrointestinal tract. Moreover, mast cells are located around blood vessels and are highly represented within central and peripheral lymphoid organs. The strategic distribution of mast cells closely reflects the primary role of these cells in providing first-line defense against environmental dangers, in regulating local and systemic inflammatory reactions and in shaping innate and adaptive immune responses. Human mast cells have pleiotropic and multivalent functions that make them highly versatile cells able to rapidly adapt responses to microenvironmental changes. They express a wide variety of surface receptors including immunoglobulin receptors, pathogen-associated molecular pattern receptors and danger signal receptors. The abundance of these receptors makes mast cells unique and effective surveillance cells able to detect promptly aggression by viral, bacterial and parasitic agents. In addition, mast cells express multiple receptors for cytokines and chemokines that confer them the capacity of being recruited and activated at sites of inflammation. Once activated by immunological or nonimmunological stimuli mast cells secrete a wide spectrum of preformed (early) and de novo synthesized (late) mediators. Preformed mediators are stored within granules and are rapidly released in the extracellular environment to provide a fast vascular response that promotes inflammation and local recruitment of other innate immunity cells such as neutrophils, eosinophils, basophils and monocyte/macrophages. Later on, delayed release of multiple cytokines and chemokines from mast cells further induce modulation of cells of adaptive immunity and regulates tissue injury and, eventually, resolution of inflammation. Finally, mast cells express several costimulatory and inhibitory surface molecules that can finely tune activities of T cells, B cells and regulatory cells by cognate interactions within lymphoid organs. The multivalent capacity to recognize and to react to internal and external dangers together with their ability to cross-talk with other immunocompetent cells make mast cells a unique effector cell of innate responses and a main bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Chiara Cardamone
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Giulia De Feo
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Italy.
| |
Collapse
|
8
|
Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol 2015; 90:2928-37. [PMID: 26719250 DOI: 10.1128/jvi.03008-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. IMPORTANCE In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination.
Collapse
|
9
|
Bulfone-Paus S, Bahri R. Mast Cells as Regulators of T Cell Responses. Front Immunol 2015; 6:394. [PMID: 26300882 PMCID: PMC4528181 DOI: 10.3389/fimmu.2015.00394] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/19/2015] [Indexed: 01/05/2023] Open
Abstract
Mast cells (MCs) are recognized to participate in the regulation of innate and adaptive immune responses. Owing to their strategic location at the host–environment interface, they control tissue homeostasis and are key cells for starting early host defense against intruders. Upon degranulation induced, e.g., by immunoglobulin E (IgE) and allergen-mediated engagement of the high-affinity IgE receptor, complement or certain neuropeptide receptors, MCs release a wide variety of preformed and newly synthesized products including proteases, lipid mediators, and many cytokines, chemokines, and growth factors. Interestingly, increasing evidence suggests a regulatory role for MCs in inflammatory diseases via the regulation of T cell activities. Furthermore, rather than only serving as effector cells, MCs are now recognized to induce T cell activation, recruitment, proliferation, and cytokine secretion in an antigen-dependent manner and to impact on regulatory T cells. This review synthesizes recent developments in MC–T cell interactions, discusses their biological and clinical relevance, and explores recent controversies in this field of MC research.
Collapse
Affiliation(s)
- Silvia Bulfone-Paus
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, University of Manchester , Manchester , UK
| | - Rajia Bahri
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, University of Manchester , Manchester , UK
| |
Collapse
|
10
|
Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence. Nat Commun 2015; 6:6174. [PMID: 25629393 DOI: 10.1038/ncomms7174] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/22/2014] [Indexed: 02/02/2023] Open
Abstract
Mast cells are tissue-resident immune cells that play a key role in inflammation and allergy. Here we show that interaction of mast cells with antibody-targeted cells induces the polarized exocytosis of their granules resulting in a sustained exposure of effector enzymes, such as tryptase and chymase, at the cell-cell contact site. This previously unidentified mast cell effector mechanism, which we name the antibody-dependent degranulatory synapse (ADDS), is triggered by both IgE- and IgG-targeted cells. ADDSs take place within an area of cortical actin cytoskeleton clearance in the absence of microtubule organizing centre and Golgi apparatus repositioning towards the stimulating cell. Remarkably, IgG-mediated degranulatory synapses also occur upon contact with opsonized Toxoplasma gondii tachyzoites resulting in tryptase-dependent parasite death. Our results broaden current views of mast cell degranulation by revealing that human mast cells form degranulatory synapses with antibody-targeted cells and pathogens for dedicated secretion and defence.
Collapse
|
11
|
Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cell Mol Immunol 2014; 12:192-201. [PMID: 25152077 DOI: 10.1038/cmi.2014.73] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 02/01/2023] Open
Abstract
The succinct metaphor, 'the immune system's loaded gun', has been used to describe the role of mast cells (MCs) due to their storage of a wide range of potent pro-inflammatory and antimicrobial mediators in secretory granules that can be released almost instantly on demand to fight invaders. Located at host-environment boundaries and equipped with an arsenal of pattern recognition receptors, MCs are destined to be rapid innate sensors of pathogens penetrating endothelial and epithelial surfaces. Although the importance of MCs in antimicrobial and antiparasitic defense has long been appreciated, their role in raising the alarm against viral infections has been noted only recently. Work on cytomegalovirus (CMV) infection in the murine model has revealed MCs as players in a novel cross-talk axis between innate and adaptive immune surveillance of CMV, in that infection of MCs, which is associated with MC degranulation and release of the chemokine CCL5, enhances the recruitment of protective CD8 T cells to extravascular sites of virus replication, specifically to lung interstitium and alveolar epithelium. Here, we have expanded on these studies by investigating the conditions for MC activation and the consequent degranulation in response to host infection. Surprisingly, the data revealed two temporally and mechanistically distinct waves of MC activation: an almost instant indirect activation that depended on TLR3/TRIF signaling and delayed activation by direct infection of MCs that did not involve TLR3/TRIF signaling. Cell type-specific Cre-recombination that yielded eGFP-expressing reporter virus selectively originating from MCs identified MC as a new in vivo, first-hit target cell of productive murine CMV infection.
Collapse
|
12
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zaika OA, Dolmatova LS. Cooperative apoptosis of coelomocytes of the holothurian <i>Eupentacta fraudatrix</i> and its modulation by dexamethasone. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.49119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Hügle T, White K, van Laar JM. Cell-to-cell contact of activated mast cells with fibroblasts and lymphocytes in systemic sclerosis. Ann Rheum Dis 2012; 71:1582. [PMID: 22504556 DOI: 10.1136/annrheumdis-2011-200809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Gri G, Frossi B, D'Inca F, Danelli L, Betto E, Mion F, Sibilano R, Pucillo C. Mast cell: an emerging partner in immune interaction. Front Immunol 2012; 3:120. [PMID: 22654879 PMCID: PMC3360165 DOI: 10.3389/fimmu.2012.00120] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023] Open
Abstract
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.
Collapse
Affiliation(s)
- Giorgia Gri
- Immunology Laboratory, Department of Medical and Biological Science, University of Udine Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Carroll-Portillo A, Surviladze Z, Cambi A, Lidke DS, Wilson BS. Mast cell synapses and exosomes: membrane contacts for information exchange. Front Immunol 2012; 3:46. [PMID: 22566928 PMCID: PMC3342342 DOI: 10.3389/fimmu.2012.00046] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/27/2012] [Indexed: 11/16/2022] Open
Abstract
In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen presenting surfaces, as well as cell–cell contacts with dendritic cells and T cells. Release of membrane bound exosomes also provide for the transfer of antigen, mast cell proteins, and RNA to other leukocytes. With the recognition of the extended role mast cells have during immune modulation, further investigation of the processes in which mast cells are involved is necessary. This reopens mast cell research to exciting possibilities, demonstrating it to be an immunological frontier.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Department of Pathology, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb's classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells be considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.
Collapse
Affiliation(s)
- Friederike Jönsson
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| | - Marc Daëron
- Institut Pasteur, Département d’Immunologie, Unité d’Allergologie Moléculaire et CellulaireParis, France
- Inserm, Unité 760Paris, France
| |
Collapse
|
18
|
Beghdadi W, Madjene LC, Benhamou M, Charles N, Gautier G, Launay P, Blank U. Mast cells as cellular sensors in inflammation and immunity. Front Immunol 2011; 2:37. [PMID: 22566827 PMCID: PMC3342044 DOI: 10.3389/fimmu.2011.00037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/16/2011] [Indexed: 12/28/2022] Open
Abstract
Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases.
Collapse
|