1
|
Ayyadevara VSSA, Wertheim G, Gaur S, Chukinas JA, Loftus JP, Lee SJ, Kumar A, Swaminathan S, Bhansali RS, Childers W, Geng H, Milne TA, Hua X, Bernt KM, Besson T, Shi J, Crispino JD, Carroll M, Tasian SK, Hurtz C. DYRK1A inhibition results in MYC and ERK activation rendering KMT2A-R acute lymphoblastic leukemia cells sensitive to BCL2 inhibition. Leukemia 2025; 39:1078-1089. [PMID: 40148558 PMCID: PMC12055583 DOI: 10.1038/s41375-025-02575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Unbiased kinome-wide CRISPR screening identified DYRK1A as a potential therapeutic target in KMT2A-rearranged (KMT2A-R) B-acute lymphoblastic leukemia (ALL). Mechanistically, we demonstrate that DYRK1A is regulated by the KMT2A fusion protein and affects cell proliferation by regulating MYC expression and ERK phosphorylation. We further observed that pharmacologic DYRK1A inhibition markedly reduced human KMT2A-R ALL cell proliferation in vitro and potently decreased leukemia proliferation in vivo in drug-treated patient-derived xenograft mouse models. DYRK1A inhibition induced expression of the proapoptotic factor BIM and reduced the expression of BCL-XL, consequently sensitizing KMT2A-R ALL cells to BCL2 inhibition. Dual inhibition of DYRK1A and BCL2 synergistically decreased KMT2A-R ALL cell survival in vitro and reduced leukemic burden in mice. Taken together, our data establishes DYRK1A as a novel therapeutic target in KMT2A-R ALL and credential dual inhibition of DYRK1A and BCL2 as an effective translational therapeutic strategy for this high-risk ALL subtype.
Collapse
Affiliation(s)
- V S S Abhinav Ayyadevara
- Department of Basic Science, Division of Cancer Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gerald Wertheim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shikha Gaur
- Department of Basic Science, Division of Cancer Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John A Chukinas
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph P Loftus
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sung June Lee
- Department of Systems Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Anil Kumar
- Department of Systems Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Srividya Swaminathan
- Department of Systems Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
- Department of Pediatrics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Rahul S Bhansali
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin M Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thierry Besson
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Institut CARMeN UMR 6064, Rouen, France
| | - Junwei Shi
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John D Crispino
- Division of Experimental Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Martin Carroll
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Christian Hurtz
- Department of Basic Science, Division of Cancer Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
2
|
DeLuca JM, Murphy MK, Wang X, Wilson TJ. FCRL1 Regulates B Cell Receptor-Induced ERK Activation through GRB2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2688-2698. [PMID: 34697226 PMCID: PMC8629370 DOI: 10.4049/jimmunol.2100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
Regulation of BCR signaling has important consequences for generating effective Ab responses to pathogens and preventing production of autoreactive B cells during development. Currently defined functions of Fc receptor-like (FCRL) 1 include positive regulation of BCR-induced calcium flux, proliferation, and Ab production; however, the mechanistic basis of FCRL1 signaling and its contributions to B cell development remain undefined. Molecular characterization of FCRL1 signaling shows phosphotyrosine-dependent associations with GRB2, GRAP, SHIP-1, and SOS1, all of which can profoundly influence MAPK signaling. In contrast with previous characterizations of FCRL1 as a strictly activating receptor, we discover a role for FCRL1 in suppressing ERK activation under homeostatic and BCR-stimulated conditions in a GRB2-dependent manner. Our analysis of B cells in Fcrl1 -/- mice shows that ERK suppression by FCRL1 is associated with a restriction in the number of cells surviving splenic maturation in vivo. The capacity of FCRL1 to modulate ERK activation presents a potential for FCRL1 to be a regulator of peripheral B cell tolerance, homeostasis, and activation.
Collapse
Affiliation(s)
- Jenna M DeLuca
- Department of Microbiology, Miami University, Oxford, OH
| | | | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH
| | | |
Collapse
|
3
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
4
|
Sun GC, Jan CR, Liang WZ. Exploring the impact of a naturally occurring sapogenin diosgenin on underlying mechanisms of Ca 2+ movement and cytotoxicity in human prostate cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:395-403. [PMID: 31709706 DOI: 10.1002/tox.22876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Literature has shown that diosgenin, a naturally occurring sapogenin, inducedcytotoxic effects in many cancer models. This study investigated the effect of diosgenin on intracellular Ca2+ concentration ([Ca2+ ]i) and cytotoxicity in PC3 human prostate cancer cells. Diosgenin (250-1000 μM) caused [Ca2+ ]i rises which was reduced by Ca2+ removal. Treatment with thapsigargin eliminated diosgenin-induced [Ca2+ ]i increases. In contrast, incubation with diosgeninabolished thapsigargin-caused [Ca2+ ]i increases. Suppression of phospholipase C with U73122 eliminated diosgenin-caused [Ca2+ ]i increases. Diosgenin evoked Mn2+ influx suggesting that diosgenin induced Ca2+ entry. Diosgenin-induced Ca2+ influx was suppressed by PMA, GF109203X, and nifedipine, econazole, or SKF96365. Diosgenin (250-600 μM) concentration-dependently decreased cell viability. However, diosgenin-induced cytotoxicity was not reversed by chelation of cytosolic Ca2+ with BAPTA/AM. Together, diosgenin evoked [Ca2+ ]i increases via Ca2+ release and Ca2+ influx, and caused Ca2+ -non-associated deathin PC3 cells. These findings reveal a newtherapeutic potential of diosgenin for human prostate cancer.
Collapse
Affiliation(s)
- Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, Taiwan, Republic of China
| |
Collapse
|
5
|
Fenninger F, Jefferies WA. What's Bred in the Bone: Calcium Channels in Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1021-1030. [PMID: 30718290 DOI: 10.4049/jimmunol.1800837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Calcium (Ca2+) is an important second messenger in lymphocytes and is essential in regulating various intracellular pathways that control critical cell functions. Ca2+ channels are located in the plasma membrane and intracellular membranes, facilitating Ca2+ entry into the cytoplasm. Upon Ag receptor stimulation, Ca2+ can enter the lymphocyte via the Ca2+ release-activated Ca2+ channel found in the plasma membrane. The increase of cytosolic Ca2+ modulates signaling pathways, resulting in the transcription of target genes implicated in differentiation, activation, proliferation, survival, and apoptosis of lymphocytes. Along with Ca2+ release-activated Ca2+ channels, several other channels have been found in the membranes of T and B lymphocytes contributing to key cellular events. Among them are the transient receptor potential channels, the P2X receptors, voltage-dependent Ca2+ channels, and the inositol 1,4,5-trisphosphate receptor as well as the N-methyl-d-aspartate receptors. In this article, we review the contributions of these channels to mediating Ca2+ currents that drive specific lymphocyte functions.
Collapse
Affiliation(s)
- Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; .,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver V6H 3Z6, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; and.,Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
6
|
Sun GC, Liang WZ, Jan CR. Mechanisms underlying the effect of an oral antihyperglycaemic agent glyburide on calcium ion (Ca 2+ ) movement and its related cytotoxicity in prostate cancer cells. Clin Exp Pharmacol Physiol 2019; 47:111-118. [PMID: 31529508 DOI: 10.1111/1440-1681.13177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Glyburide is an agent commonly used to treat type 2 diabetes and also affects various physiological responses in different models. However, the effect of glyburide on Ca2+ movement and its related cytotoxicity in prostate cancer cells is unclear. This study examined whether glyburide altered Ca2+ signalling and viability in PC3 human prostate cancer cells and investigated those underlying mechanisms. Intracellular Ca2+ concentrations ([Ca2+ ]i ) in suspended cells were measured by using the fluorescent Ca2+ -sensitive dye fura-2. Cell viability was examined by WST-1 assay. Glyburide at concentrations of 100-1000 μM induced [Ca2+ ]i rises. Ca2+ removal reduced the signal by approximately 60%. In Ca2+ -containing medium, glyburide-induced Ca2+ entry was inhibited by 60% by protein kinase C (PKC) activator (phorbol 12-myristate 13 acetate, PMA) and inhibitor (GF109203X), and modulators of store-operated Ca2+ channels (nifedipine, econazole and SKF96365). Furthermore, glyburide induced Mn2+ influx suggesting of Ca2+ entry. In Ca2+ -free medium, inhibition of phospholipase C (PLC) with U73122 significantly inhibited glyburide-induced [Ca2+ ]i rises. Treatment with the endoplasmic reticulum (ER) Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) abolished glyburide-evoked [Ca2+ ]i rises. Conversely, treatment with glyburide abolished BHQ-evoked [Ca2+ ]i rises. Glyburide at 100-500 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in PC3 cells, glyburide induced [Ca2+ ]i rises by Ca2+ entry via PKC-sensitive store-operated Ca2+ channels and Ca2+ release from the ER in a PLC-dependent manner. Glyburide also caused Ca2+ -independent cell death. This study suggests that glyburide could serve as a potential agent for treatment of prostate cancer.
Collapse
Affiliation(s)
- Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China.,Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, Taiwan, Republic of China.,Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
7
|
Li X, Ding Y, Zi M, Sun L, Zhang W, Chen S, Xu Y. CD19, from bench to bedside. Immunol Lett 2017; 183:86-95. [PMID: 28153605 DOI: 10.1016/j.imlet.2017.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
|
8
|
Abstract
PURPOSE OF REVIEW Immune deficiency and autoimmunity have been recognized as cotravelers for decades. This clinically oriented review brings together our evolving mechanistic understanding to highlight associations of particular relevance to rheumatologists. RECENT FINDINGS Conceptually, all autoimmunity derives from a loss of tolerance. This distinguishes it from autoinflammation in which the innate immune system is dysregulated without necessarily affecting tolerance. Studies have demonstrated the profound effects of signaling defects, apoptotic pathways and the ramifications of homeostatic proliferation on tolerance. This foundation has translated into an improved understanding of the specific associations of autoimmune diseases with immune deficiencies. This important foundation paves the way for personalized treatment strategies. SUMMARY This review identifies critical mechanisms important to conceptualize the association of primary immune deficiencies and autoimmunity. It highlights a growing appreciation of the hidden single gene defects affecting T-cells within the group of patients with early-onset pleomorphic autoimmunity.
Collapse
|
9
|
Hobeika E, Nielsen PJ, Medgyesi D. Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med (Berl) 2015; 93:143-58. [PMID: 25627575 DOI: 10.1007/s00109-015-1252-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/15/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023]
Abstract
It is becoming more and more accepted that, in addition to producing autoantibodies, B lymphocytes have other important functions that influence the development of autoimmunity. For example, autoreactive B cells are able to produce inflammatory cytokines and activate pathogenic T cells. B lymphocytes can react to extracellular signals with a range of responses from anergy to autoreactivity. The final outcome is determined by the relative contribution of signaling events mediated by activating and inhibitory pathways. Besides the B cell antigen receptor (BCR), several costimulatory receptors expressed on B cells can also induce B cell proliferation and survival, or regulate antibody production. These include CD19, CD40, the B cell activating factor receptor, and Toll-like receptors. Hyperactivity of these receptors clearly contributes to breaking B-cell tolerance in several autoimmune diseases. Inhibitors of these activating signals (including protein tyrosine phosphatases, deubiquitinating enzymes and several adaptor proteins) are crucial to control B-cell activation and maintain B-cell tolerance. In this review, we summarize the inhibitory signaling mechanisms that counteract B-cell activation triggered by the BCR and the coreceptors.
Collapse
Affiliation(s)
- Elias Hobeika
- BIOSS Centre of Biological Signalling Studies, University of Freiburg and Department for Molecular Immunology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Normal B cells that have failed to productively rearrange immunoglobulin V region genes encoding a functional B-cell receptor (BCR) are destined to die. Likewise, the majority of B-cell malignancies remain dependent on functional BCR signaling, whereas in some subtypes BCR expression is missing and, apparently, counterselected. Here, we summarize the recent experimental evidence for the importance of BCR signaling and clinical concepts to target the BCR pathway in B-cell leukemia and lymphoma. RECENT FINDINGS Although the dependency on pre-BCR signaling in pre-B acute lymphoblastic leukemia (ALL) seems to be limited to few ALL subtypes (e.g. TCF3-PBX1), most mature B-cell lymphomas rely on BCR signaling provided by different stimuli, for example tonic B-cell signaling, chronic (auto)-antigen exposure, and self-binding properties of the BCR. The finding that in chronic lymphocytic leukemia, BCRs bind to an epitope on the BCR itself unravels a novel concept for chronic lymphocytic leukemia pathogenesis. SUMMARY Targeting of the B-cell receptor tyrosine kinases spleen tyrosine kinase, Bruton's tyrosine kinase, and phosphatidylinositol 3-kinase achieve promising clinical responses in various mature B-cell malignancies and might also be useful in defined subsets of ALL. However, further understanding of the BCR signal integration in the different disease groups is required to accurately predict which groups of patients will benefit from BCR pathway inhibition.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Molecular Targeted Therapy
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San
Francisco CA 94143
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San
Francisco CA 94143
| |
Collapse
|
11
|
Activation of Ras overcomes B-cell tolerance to promote differentiation of autoreactive B cells and production of autoantibodies. Proc Natl Acad Sci U S A 2014; 111:E2797-806. [PMID: 24958853 DOI: 10.1073/pnas.1402159111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Newly generated immature B cells are selected to enter the peripheral mature B-cell pool only if they do not bind (or bind limited amount of) self-antigen. We previously suggested that this selection relies on basal extracellular signal-regulated kinase (Erk) activation mediated by tonic B-cell antigen receptor (BCR) signaling and that this signal can be replaced by an active rat sarcoma (Ras), which are small GTPase proteins. In this study we compared the activity of Ras and Erk in nonautoreactive and autoreactive immature B cells and investigated whether activation of Ras can break tolerance. Our results demonstrate lower levels of active Erk and Ras in autoreactive immature B cells, although this is evident only when these cells display medium/high avidity for self-antigen. Basal activation of Erk in immature B cells is proportional to surface IgM and dependent on sarcoma family kinases, whereas it is independent of B-cell activating factor, IFN, and Toll-like receptor signaling. Ectopic expression of the constitutively active mutant Ras form N-RasD12 in autoreactive cells raises active Erk, halts receptor editing via PI3 kinase, and promotes differentiation via Erk, breaking central tolerance. Moreover, when B cells coexpress autoreactive and nonautoreactive BCRs, N-RasD12 leads also to a break in peripheral tolerance with the production of autoantibodies. Our findings indicate that in immature B cells, basal activation of Ras and Erk are controlled by tonic BCR signaling, and that positive changes in Ras activity can lead to a break in both central and peripheral B-cell tolerance.
Collapse
|
12
|
Elements of the B cell signalosome are differentially affected by mercury intoxication. Autoimmune Dis 2014; 2014:239358. [PMID: 24876949 PMCID: PMC4024408 DOI: 10.1155/2014/239358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 01/30/2023] Open
Abstract
It has been suggested that environmental exposures to mercury contribute to autoimmune disease. Disruption of BCR signaling is associated with failure of central tolerance and autoimmunity, and we have previously shown that low levels of Hg2+ interfere with BCR signaling. In this report we have employed multiparametric phosphoflow cytometry, as well as a novel generalization of the Overton algorithm from one- to two-dimensional unimodal distributions to simultaneously monitor the effect of low level Hg2+ intoxication on activation of ERK and several upstream elements of the BCR signaling pathway in WEHI-231 B cells. We have found that, after exposure to low levels of Hg2+, only about a third of the cells are sensitive to the metal. For those cells which are sensitive, we confirm our earlier work that activation of ERK is attenuated but now report that Hg2+ has little upstream effect on the Btk tyrosine kinase. On the other hand, we find that signaling upstream through the Syk tyrosine kinase is actually augmented, as is upstream activation of the B cell signalosome scaffolding protein BLNK.
Collapse
|
13
|
Protein kinase Cδ promotes transitional B cell-negative selection and limits proximal B cell receptor signaling to enforce tolerance. Mol Cell Biol 2014; 34:1474-85. [PMID: 24515435 DOI: 10.1128/mcb.01699-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase Cδ (PKCδ) deficiency causes autoimmune pathology in humans and mice and is crucial for the maintenance of B cell homeostasis. However, the mechanisms underlying autoimmune disease in PKCδ deficiency remain poorly defined. Here, we address the antigen-dependent and -independent roles of PKCδ in B cell development, repertoire selection, and antigen responsiveness. We demonstrate that PKCδ is rapidly phosphorylated downstream of both the B cell receptor (BCR) and the B cell-activating factor (BAFF) receptor. We found that PKCδ is essential for antigen-dependent negative selection of splenic transitional B cells and is required for activation of the proapoptotic Ca(2+)-Erk pathway that is selectively activated during B cell-negative selection. Unexpectedly, we also identified a previously unrecognized role for PKCδ as a proximal negative regulator of BCR signaling that substantially impacts survival and proliferation of mature follicular B cells. As a consequence of these distinct roles, PKCδ deficiency leads to the survival and development of a B cell repertoire that is not only aberrantly autoreactive but also hyperresponsive to antigen stimulation.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Several autoimmune lymphoproliferative syndromes have been described lately. We review here the main clinical and laboratory findings of these new disorders. RECENT FINDINGS The prototypical autoimmune lymphoproliferative syndrome (ALPS) has had its diagnostic criteria modified, somatic mutations in RAS genes were found to cause an ALPS-like syndrome in humans, and mutations in a gene encoding a protein kinase C (PRKCD) were discovered to cause a syndrome of lymphoproliferation, autoimmunity and natural killer cell defect. SUMMARY The recent discoveries shed light on the molecular pathways governing lymphocyte death, proliferation and immune tolerance in humans.
Collapse
|
15
|
Ksionda O, Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. FRONTIERS IN BIOLOGY 2013; 8:508-532. [PMID: 24744772 PMCID: PMC3987922 DOI: 10.1007/s11515-013-1276-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
17
|
Kuehn HS, Niemela JE, Rangel-Santos A, Zhang M, Pittaluga S, Stoddard JL, Hussey AA, Evbuomwan MO, Priel DAL, Kuhns DB, Park CL, Fleisher TA, Uzel G, Oliveira JB. Loss-of-function of the protein kinase C δ (PKCδ) causes a B-cell lymphoproliferative syndrome in humans. Blood 2013; 121:3117-25. [PMID: 23430113 PMCID: PMC3630827 DOI: 10.1182/blood-2012-12-469544] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/16/2013] [Indexed: 12/31/2022] Open
Abstract
Defective lymphocyte apoptosis results in chronic lymphadenopathy and/or splenomegaly associated with autoimmune phenomena. The prototype for human apoptosis disorders is the autoimmune lymphoproliferative syndrome (ALPS), which is caused by mutations in the FAS apoptotic pathway. Recently, patients with an ALPS-like disease called RAS-associated autoimmune leukoproliferative disorder, in which somatic mutations in NRAS or KRAS are found, also were described. Despite this progress, many patients with ALPS-like disease remain undefined genetically. We identified a homozygous, loss-of-function mutation in PRKCD (PKCδ) in a patient who presented with chronic lymphadenopathy, splenomegaly, autoantibodies, elevated immunoglobulins and natural killer dysfunction associated with chronic, low-grade Epstein-Barr virus infection. This mutation markedly decreased protein expression and resulted in ex vivo B-cell hyperproliferation, a phenotype similar to that of the PKCδ knockout mouse. Lymph nodes showed intense follicular hyperplasia, also mirroring the mouse model. Immunophenotyping of circulating lymphocytes demonstrated expansion of CD5+CD20+ B cells. Knockdown of PKCδ in normal mononuclear cells recapitulated the B-cell hyperproliferative phenotype in vitro. Reconstitution of PKCδ in patient-derived EBV-transformed B-cell lines partially restored phorbol-12-myristate-13-acetate-induced cell death. In summary, homozygous PRKCD mutation results in B-cell hyperproliferation and defective apoptosis with consequent lymphocyte accumulation and autoantibody production in humans, and disrupts natural killer cell function.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The recognition that apoptosis - programmed cell death - is an important mechanism in immune homeostasis has led to the identification of human disorders associated with defects in the critical control mechanism. RECENT FINDINGS Patients have been identified with defects affecting the extrinsic apoptotic pathway mediated by the protein receptor FAS which results in the autoimmune lymphoproliferative syndrome and more recently in defects affecting the intrinsic apoptotic pathway mediated by RAS proteins resulting in the RAS-associated autoimmune leukoproliferative disorder. This review summarizes the immunopathogenesis, clinical features and diagnostic approaches to these human disorders. SUMMARY Apoptotic pathways are critical in the maintenance of leukocyte homeostasis, and genetic defects impacting these can result in clinical disease manifested as expansion of selected leukocyte populations, autoimmunity, increased risk for malignancy and in some situations defects in host defense.
Collapse
|